
AN APPROACH TO SELF-MANAGEMENT BASED ON AUTOMATIC DIAGNOSTICS

Rui Pedro Lopes(1), José Luís Oliveira(2)

(1)Instituto Politécnico de Bragança, Escola Superior de Tecnologia e Gestão, P-5300 Bragança
{rlopes@ipb.pt}

(2)Universidade de Aveiro, Dept. de Electrónica e Telecomunicações, P-3810 Aveiro
{jlo@inesca.pt}

Abstract

Management operations imply, most of the time, the
implementation of prevention policies in order to avoid faults
and to provide expeditious answers to those faults.

This paper present an architecture that allows to infer about
network symptoms and to correlate these with well-known
anomalies in order to provide the adequate diagnostic that
will drive to the fault repair.

I. Introduction

Nowadays, a typical data network is inherently
heterogeneous. Rapid technological changes, different
technical solutions and the accumulation of legacy systems
overload today networks with many different kinds of
systems, protocols and languages. All of these issues increase
the network management difficulty.

With several of such environments around the world there is
a need for a management system compatible with every
system, as mainframes, UNIX workstations and servers, PC
systems equipped with diverse operating frameworks. The
variety in interconnection media and protocols might be even
greater: Ethernet, FDDI, ATM, TCP/IP, IPX/SPX, NetBIOS
and many others.

Recently, a number of technologies capable of surviving over
heterogeneity emerged, such as DCOM [1] and CORBA [2].
Moreover, recent machine independent languages, as Java,
can relieve the burden typically associated with the
developing of distributed applications. From the management
perspective there are all a panoply of new challenges. The
proliferation of normalised and proprietary MIBs arises some
interrogations about the usefulness of all this data.

A first approach to simplify the management operations
construction is to provide an adequate abstraction of the
overall MIBs, spread along the network [3]. This information
is viewed as a virtual database that can be accessed remotely
through an SQL interface, Java applets or a Common
Gateway Interface (CGI).

From the human manager viewpoint, management operations
can be boring and inefficiently performed, such as scheduled
tasks (operations activated periodically and occasionally
planned to start at a specific time). Most of the management
operations are often based on human effort, both for the
collection of information and for the processing of results. It
is desirable that the Network Management System (NMS)
provides increasing levels of automation, as a way to improve
the decision support for a human manager [4]. An important
contribution can be done by high level management models

and expert systems mechanism that are based on control
algorithms capable of pro-active management operations [5].

On the following sessions it will be described a Network
Management System - the PRONET - that allows to reduce
the volume of management information delivered to the user
manager, by the use of an abstraction layer over the
management data, and that integrates proactive management
features based on the symptom-diagnostic paradigm.

II. Heterogeneous Systems Management

Nowadays, network managers are confronted with a panoply
of different systems, network components and network
technology (Figure 1). Besides the difficulties to maintain a
communication network in a correct operational state, the
user/manager must have a solid information about all the
equipment in the network. The vertiginously advances in this
area make the manager task even hard to perform. He has to
maintain continuously updated about technology advances.

Ethernet

IBM Compatible

Frame
Relay

Router

Router

Ethernet

Laptop computer
Linux

FDDI
Backbone

Mac II

Mac LC

Mac LC

Hub/Bridge

Bridge

Router

File Server

Web Server

Print Server
Laser printer

100VG Hub

Figure 1 - An heterogeneous network configuration.

One of the problems associated with the current management
frameworks, namely the SNMP (the most popular near data
networks) is the absence of a robust and secure mechanism to

perform remote configuration. The manager has to move
close to the dysfunctional system, check the problem and
correct it. This solution is not effective and it is even less if
the network is spread along a wide geographical area (in an
extreme situation, another city or even another country).

Moreover, the diagnostic and corrective procedures can be
very distinct even if we are dealing with the same type of
problem but occurring in different systems and at a different
time.

The current developing efforts are turning heterogeneous
local area networks into a more uniform environment. Also
the construction of distributed applications is getting easier
and faster:
• Evolving application programming environments, as the

Java language, define a common layer over
heterogeneous physical platforms.

• The evolving of distributed programming environment
(DPE) such as CORBA combined with well known
proprietary protocols, such as Sun’s RMI (Remote
Method Invocation) [6] and Microsoft’s DCOM
(Distributed Common Object Model).

The level of automation in Network Management Systems is
low or even null. It is resumed to e-mail messages or a pager
warning sent to the manager when some working parameter
gets out of predetermined bounds or some abnormal
situations has occurred. The system, by itself, does not take
corrective actions, not even in simple situations such as the
reconfiguration of bad subnet masks or warning the user
when disk space is insufficient.

The complexity of applications and systems is continuously
growing. In a short period of time, the manager will be
incapable of doing all by himself. The first step in automatic
management could be done by automatically performing
scheduled tasks through time, easing the burden caused by
repetitive tasks. The next step could be the development of
intelligent network management systems, based on an
abstraction layer over extensive management data.

III. Management Information

A network management system contains several agents which
are accessed by a management station. The management
information is viewed as a collection of managed objects,
organised in a Management Information Base (MIB) [7].
Every SNMP agent in the network implements one or more
MIBs. The MIB is a virtual information store, defining
managed objects. Objects in the MIB are defined using an
abstract language - Abstract Syntax Notation One (ASN.1)
[9]. In particular, each object has a name, a syntax, and an
encoding [10]. Each MIB specifies variables needed for
monitoring and control of various components in the
network. A MIB potentially represents a large collection of
objects. So, in a relatively large network, the provided
management information can be enormous.

Although, this information is not redundant, its usefulness
will vary for one management application to another. The
bottom-up approach of SNMP management framework have
provided thousands of information that may not have
potential use. Also, the form in which object are available is
not always adequate to management operations. For instance,
the number of input datagrams discarded due to errors in their
IP headers (1.3.6.1.2.1.4.4 - ipInHdrErrors, in MIB-II [8])

is not as helpful as its derivative with respect to time: the
error rate.

A. Meta-variables

The meta-variable concept is not new [4]. A meta-variable is
defined as a function over MIB variables allowing
aggregation and data processing.

A meta-variable processor can be defined as an intermediary
device in the network whose role is to compute predefined
expressions and export its result to an NMS. Strategically
placed processors can implement useful interpretations of
management information. It is also possible to extend the
concept so that a meta-variable can represent any number of
agents, for example the mean of all the ifInErrors
(1.3.6.1.2.1.2.2.1.14 - MIB-II) in a network segment.

The meta-variable processor is a process independent of the
network management system. It can be seen as a proxy agent
accessed in several different ways.

B. A Distributed Database

The distributed nature of a management system can be
viewed as a distributed data base (Figure 2).

Network

Management Applications

Manager

...SNMP

Meta - Variables
processor

SQL HTTP

Meta - Variables
processor

Agent Group

Agent Group

Meta - Variables
processor

Agent Group

Figure 2 - Management system as a distributed database.

The information in the database comes from all the meta-
variables and agents in the network and can be accessed in a
number of ways with little changes to the presented
architecture.

The meta-variable processor allows different types of access:
• as a proxy agent, accessible by SNMP;
• as a HTTP client, associated with a Web server and

CGI.
• as a remote call, provided by mechanisms such as

CORBA, RMI or DCOM.
• as SQL interface, considering the overall management

data as a single virtual database [4].

IV. Network Management System

We have developed a Network Management System
(PRONET) with by the following main goals:

• Robust - since the system is a general controller for
network anomalies it will be very unpleasant if itself
can suffer from any “disease”.

• Modular - the successive technical advances, specially
in this field, may turn application inappropriate in a
short time period. By adding or replacing some modules,
it is possible to extend the application life.

• Distributed - remote information processing helps
reduce the management traffic on the network, increases
systems performance and creates a scenario less
sensitive to catastrophic errors.

• Standards conformance - follow the standard is
extremely important if we want to ensure compatibility
in an heterogeneous environments.

PRONET is based on the Java language. The main reason for
the choice is its distributed nature: it runs in any Java enabled
browser and provides an easy to use distributed programming
environment (RMI). In addition, there are very complete and
powerful graphical toolkits, such as [12], that reduces the
development time.

A. Global Architecture

PRONET is divided in two larger blocks: the NMS Applet
and NMS Server. The primary role of the NMS Applet is to
provide user interface and application-level functionality. As
an applet, it can be executed in any platform capable of
running a Java enabled browser.

For security reasons, a Java applet cannot access the disk in
the local host or to perform connections others than to the
server. Due to this limitations a Java application, running on
the server and acting as a trader, receive and forward
messages between the NMS applet and meta-variable
processors. The HTTP server provides some bootstrap
capabilities, when loading the applet. After the applet takes
control, it uses RMI to communicate with the server.

B. Network Management System

Every network management system should have tools such as

logical topology discovery, a network browser feature, MIB
browser and some general SNMP utilities. In the PRONET,
these functions are performed by the Network
Browser/Management tools [13] (Figure 3).

NMS Server

NMS Applet

Network browser/
Management tools

Task
Planner

Task
Monitor

Task Base DB

Meta-Variable
Processor

SNMP

Scheduler

Meta-Variable
Processor

Scheduler

SQL

Meta-Variable
Processor

Scheduler

. . .

Network
browser/

Management
tools

Topology
Base DB

Figure 3 - NMS in detail.

The work window uses the Explorer paradigm to represent
the network topology that is modelled through three main
entities (Figure 4):
• Domain () - representing an IP domain;
• System () - an IP equipment with or without a SNMP

agent;
• Group () - associates several systems into one

specific set (for instance, routers, printers, www_servers,
etc.). The main idea is to group components with similar
management requirements.

Some tools, as an Agent Browser, a Graphic Tracer and a
Trap Log where also integrated. The Agent Browser is the
trivial MIB browser that is common to almost management
applications. The Graphic Tracer allows to specify several

Figure 4 - Network browser/Management tools.

MIB attributes used to poll and draw the respective values.
The Trap Log permits to register all traps generated from
error situations in SNMP agents. All these features are
performed in parallel using threads.

The topology information is stored in the NMS Server in a
Topology Base. It gathers host information such as its
network address, agent type, host status (online/offline)
and group information, such as domain and logical grouping.

C. Data Abstraction

The NMS architecture include yet an information abstraction
layer based on the meta-variable concept. The purpose is to
provide a set of tools to simplify the elaboration of different
and more useful views of management data. The definition of
a meta-variable processor consists of two steps: a) the
definition of an operation on the raw management data
(Figure 5) and b) the scheduling information setting.

Operation

Management
Data View

Figure 5 - Raw data manipulation.

The scheduling information combines three variables:
StartTime, Period and EndTime. It defines the instant
when the operation should be executed for the first time, the
periodicity of the operation and when it should stop. The
combination between operations and the scheduling establish
a management Task.

These operations are executed in the Task Planner (TP)
(Figure 6). It has a predefined set of functions that can be
classified into three categories:

1. Simple algebrical functions: sum, minus, divide,
multiply.

2. Complex algebrical functions: mean, derivative, etc.

3. General functions: threshold, mail, warn, graph, log, etc.

Every function implements the same template (in an OOP
approach) (Figure 7). In Java, this means that they share the
same Interface. This fact allows to wrap any number of
functions so that it may be possible to build a complex
operation based on the existing functions.

AgentQuery

Query

ThresholdQuery

FilterQuery

FilterSchedule Sum Derivative

. . .

. . .

Interface
Class
Inheritance

Figure 7 - Predefined functions inheritance tree.

Each operation is built by attaching objects (operation
components):
...
agentObject=new Query(...);
schedule=new Schedule(...);
AgentQuery query=new FilterSchedule(schedule,
 new ThresholdQuery(boundListener,
 lowerLimit, upperLimit, agentObject));
...

The query object represents a periodic (FilterSchedule)
query on an agentObject object. If the query value falls
outside the integers lowerLimit or upperLimit, the object
boundListener is notified.

This approach allows to associate any number of functions by

Figure 6 - Task Planner.

any order.

To the user, the creation of a management task is conducted
by an expression wizard (Figure 8).

Figure 8 - Task Wizard (1/2).

It follows two steps:

1. Selection of the function;

2. Selection of the function arguments (Figure 9). If the
selected argument is another function, it jumps to 1.
recursively.

Figure 9 - Task Wizard (2/2).

After the operation definition, the scheduling information
must be described. The TP has a calendar control that allows
the definition of the startTime, period and endTime.

After the definition of the operation and the programming of
the scheduling information, the server is updated with the
new management task .

Similarly to the Topology information, each task is stored in
the Task Base. Each object runs as a distinct thread. This
means that it has its own resources within the global
application. The thread approach eliminates the need for the
application to maintain control on every meta-variable
processor. In another words, each thread is responsible for its
own scheduling control, information retrieval and data
processing.

V. Proactive Procedures

The doctor/patient paradigm is the classical example of
intelligent corrective measures taken on a faulty entity. The
model is not exclusive to the health domain. It can be applied
to the network management field.

The doctor, when examine a patient follows three steps:

1. Collect health data (symptoms): attend to patient
complaints, listen to the organism vital signs;

2. Match symptoms to known health problems (diagnostic);

3. Generate the solution for the problem (heal).

The doctor generates the diagnostic based on a large health
problem database, collected during the student years and as a
result of the medicine practice. This is the bigger problem
when transposing the scenario to network management field.

It is possible to transpose the previous situation to a network
management scenario, attending to the data involved and the
operations to be performed (Figure 10).

Symptoms
Database

Network

Diagnostics
Database

Solutions
Database

Fault Detector

Parameters
Database

Fault Manager

Monitoring Management

Fault
Notifications

Figure 10 - Fault Management Architecture.

1. Collect management data (monitoring): listen to network
components complaints (traps) and pool for management
data. Each value is matched for sanity in the Parameters
Database (Fault Detection). If the value is considered
outside sanity bounds, a Symptom is generated.

2. The Symptoms from the previous point are correlated
with the Diagnostics (Diagnostics Database). If the
Symptom is recognised, a diagnostic is formulated: a
Fault Notification is generated.

3. The Fault Notification is matched for an existing solution
(Solutions Database). If it exists, the Fault Manager takes
the corrective measures (Management).

The user intervention on such a system could be reduced to a
minimum, leaving to the manager only unresolved situations.

VI. Conclusions

The management of a modern data networks deal with many
problems. Network management systems does not provide
sufficient automation mechanisms to help the user with some
repetitive management tasks.

The SNMP framework approach have defined a very low
level model, mainly concerned to management information

organisation and retrieval. Between this layer and the
customers needs there is a large hole to fulfil.

This paper have presented a distributed Network
Management System architecture based on data abstraction
and on automatic procedures. It was also proposed the
doctor/patient metaphor to detect and solve anomalies in a
faulty network.

References

[1] Nat Brown, Charlie Kindel, Distributed Component Object
Model Protocol -- DCOM/1.0, Internet Draft <draft-brown-
dcom-v1-spec-00.txt>.

[2] OMG, The Common Object Request Broker: Architecture and
Specification, v.2.1, August 1997.

[3] José Luís Oliveira, J. Arnaldo Martins, "A Management
Architecture based on Network Topology Information", Journal
of Network and Systems Management, Plenum, Vol. 2, No 4,
pp. 401-414, December 1994.

[4] José Luís Oliveira, Arquitectura para Desenvolvimento e
Integração de Aplicações de Gestão, PhD Thesis, Universidade
de Aveiro, September 1995.

[5] José Luís Oliveira, J. Arnaldo Martins, "Scheduling and
Processing Network Management Operations", in Proc. of the
15th IASTED International Conference APPLIED
INFORMATICS, February 1997, Innsbruck, Austria, pp. 387-
390.

[6] Sun Microsystems, Inc., “Remote Method Invocation
Specification”, http://java.sun.com/products/jdk/rmi/, 1996.

[7] M. Schoffstall, M. Fedor, J. Davin, J. Case, “A Simple Network
Management Protocol (SNMP)”, Internet Request for
Comments 1157, October 1990.

[8] K. McCloghrie, M. Rose, “Management Information Base for
Network Management of TCP/IP-based internets: MIB-II”,
Internet Request for Comments 1213, March 1991.

[9] ISO/IEC 8824, Information Processing Systems - Open Systems
Interconnection - Specification of Abstract Syntax Notation
One.

[10] K. McCloghrie, M. Rose, “Management Information Base for
Network Management of TCP/IP-based internets”, Internet
Request for Comments 1156, May 1990.

[11] Chris Wellens, Karl Auerbach, “Towards Useful Management”,
The Simple Times: The Bi-Monthly Newsletter of SNMP
Technology, Comment and Events, Volume 4, Nº3.
ftp://www.simple-times.org/

 [12] BISS GmbH, The BISS Java framework, http://www.biss-
net.com/biss-awt.htm

[13] Gabriel Vieira, Orlando Sá Morais, Bancada de Gestão de
Redes, University of Aveiro, September 1997.

