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ABSTRACT

This paper presents a segmental duration model, that, as
far as the authors know, is the first published for European
Portuguese, with objective and subjective evaluations. The
model is aimed at TTS applications and is based on an
ANN, trained with a resilient back-propagation algorithm.
Using a substantial amount of training data and a carefully
selected set of input factors, the standard deviation of the
error of segmental duration estimations reaches 19 ms and
the correlation coefficient goes above 0.9. Several models
have been published for other languages with objective
and subjective good performances. The methodology of
construction of the model, the importance of the used
factors and the neural network will be presented, together
with the evaluation of the model, allowing a comparison
with other models for other languages.

1. INTRODUCTION

The present model is part of a global prosody model,
which is presently under development in the authors’
Institutions with the basic motivation to use it in a
Portuguese TTS system.

Several types of duration models were studied in the
preparation of this work, concerning the selection of text
parameters and the model architecture itself. Relevant
examples are: - models considering the Inter-Perceptual
Center Groups (IPCG) produced for French [1] and
Brazilian Portuguese [2], capable of generation of pauses
and respective durations; - models considering several
different Sum-of-Products for each type of segment [3]
achieving a very good performance and requiring large
amounts of input data; - the traditional Klatt model [4]; - a
syllable-based model introducing the Z-score concept [5];
- a rule-based algorithm for the French language for two
cadencies of speech [6]; a look-up table based model for
Galician [7], a neural network based model for Spanish [8]
and a Bayesian belief network model [9][10].

The common idea behind this work is to take all the
relevant factors influencing the duration of a segment in a

read utterance and use them as input to a tool that can
automatically learn how each factor influences the
duration and how the factors combine and are related to
each other. Based on a sufficiently large amount of
examples, this model will be able to efficiently predict
durations of segments.

The data used for training, validation and testing the
model were extracted from the FEUP-IPB database [11].
This database consists of several texts extracted from
newspapers that were read by a professional radio
broadcast speaker (average 12.2 phonemes/second). The
dimension of the part of the database that was used in the
present work is 7 texts, in a total of 200 phases of
practically all types and sizes, consisting in a total of
18.700 segments of 21 minutes of speech.

2. DESCRIPTION OF THE MODEL

A large number of factors were considered as candidates
in the beginning of the work. One by one, they were
studied and taken in and out in order to evaluate their
relative importance for the results. Some times a group of
more than one factor was considered and taken out jointly
to check for consistency. The conclusion was that the
result is many times different from considering the factors
isolated. This is because these factors interact
significantly. After several experiments, considering
different combinations of factors, the set of factors was
finally established. Some factors were coded in varying
ways, in order to find the best solution.
The final set of factors of the model of duration of the
present segment and their codification is as follow:

a. Position relative to the tonic syllable in the duration
group – coded in one of 5 positions;

b. Type of syllable – one of nine types, according to
the sequences of consonants and vowels;

c. Type of previous syllable – same as in b;
d. Type of vowel in the syllable according to length –

one of five;
e. Type of vowel in last syllable – same as in d;
f. Type of vowel in next syllable – same as in d;
g. Length of the duration group – number of syllables

and phonemes;



h. Relative position of the duration group in the
sentence – first; middle; last;

i. Suppression or not of last vowel;
j. Phonetic identity of segment – one of the 44

different segments considered in the inventory of
the database (excluding pause and aspiration);

k. Context segments identities– previous (-1) and next
three (+1, +2, +3) segments – each coded as in j.

During the process of selection of the factor to be used, a
qualitative measurement of its relative importance comes
out. Factor j is clearly the most important. Then come
factors a, d, g, h, i and k as next important, and factors b,
c, e and f are less important.

In the last list of factors any of these does not alone
improve significantly the performance of the model.
Anyhow, when considered jointly, these less important
factors improve the model performance.

The ANN is a feed-forward fully connected network,
with one 10-neurons hidden layer activated by log-sigmoid
transfer functions (figure 1). The output is one neuron
activated by a tan-sigmoid transfer function. This neuron
codes the predicted duration in values between 0 and 1.
This codification is linear in the range 0 and 250 ms. The
input neurons code the set of factors.

Figure 1: Architecture of the neural network.

If the number of weights of the net is not fewer than the
number of training situations, and the training is excessive,
an over-fitting problem may occur. The error obtained
over the training set is driven to a very small value, but
when new data is presented to the network the error
becomes larger. The network has “memorized” the
training examples, but it has not “learned” to generalize to
new situations. In order to avoid this problem, an
additional set of data besides the training (13700
segments) and the test (2000 segments) sets was used for
validation (3000 segments). The validation vectors are
used to stop the training phase as early as needed when
further training will hurt generalization to the validation
set. Test set performance can be used to measure how well
the network generalizes beyond training and validation
sets.

The performance function used for training was the
mean squared error taken between the output and the
target values.

Multi-layer networks typically use sigmoid functions in
the hidden layers. These functions compress an infinite
input range into a finite output range. Sigmoid functions
are characterized by the fact that their slope must approach
zero as the input gets larger. This can cause a problem
when using steepest descending algorithms to train, since
the gradient can have a very small magnitude and cause
small changes in the weights and bias. The purpose of the
used resilient back-propagation algorithm is to eliminate
these harmful effects of the magnitude of the derivatives.
Only the sign of the derivative and not tme magnitude is
used to determine the direction of the weights update [12].
With this algorithm the training session takes about 30
seconds in one 850 MHz-clocked PC.

3. MODEL EVALUATION

The evaluation was done with the validation and test sets,
not used for training.

Three indicators were used to evaluate the performance
of the model. The standard deviation of the error (σ), and
the mean of the absolute error (δ) were used, according to
the following expressions:
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where xi is the difference between the values of the error
value of each segment and the mean error. The error being
given by the difference between predicted and original
durations, for each segment.
When the mean error value is null, as in this case, σ is
equal to the rmse (root-mean-square error); rmse and
δ are given by:
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The linear correlation coefficient (r) was the third
indicator selected. It is given, together with VA,B for
vectors A and B by:
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where VA,B is the variance between vectors A=[a1 a2 …
aN] and B=[b1 b2 … bN].
The general performance, considering all types of
phonemes, is σ =20 ms., δ =15 ms. and r=0.82.

Each model has its own characteristics and
peculiarities. Some of these models mentioned in the
introduction also include estimation of pauses, others are
applicable for several speech rates, etc.. Any type of
comparison of the prediction models’ performances can
not be seen as a definitive comparison due to differences
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in the material under analysis, like the numbers of
segments considered, the differences in languages, and
possibly the most relevant are the databases used, that
usually are different.

Table1: Performance of the present model (r and σ)
Vowe

l
r σ

(ms)
Cons. r σ

(ms)
a 0.59 27.9 p 0.38 8.3
6 0.66 20.9 !p 0.44 17.5
E 0.60 24.3 t 0.73 13.5
e 0.72 27.8 !t 0.58 16.6
@ 0.49 33.0 k 0.52 13.6
i 0.56 23.4 !k 0.36 16.4

O 0.67 24.3 b 0.86 9.3
o 0.59 27.6 !b 0.31 15.1
u 0.56 24.3 d 0.79 10.4
j 0.61 20.8 !d 0.37 16.3
w 0.70 19.3 g 0.72 9.0
j~ 0.39 17.3 !g 0.40 12.3
w~ 0.72 20.6 m 0.33 19.0
6~ 0.72 24.2 n 0.40 17.9
e~ 0.48 27.7 J 0.40 16.3
i~ 0.74 27.6 l 0.33 19.2
o~ 0.62 28.2 l* 0.61 24.8
u~ 0.70 30.6 L 0.46 18.6

Aver. 0.62 25.0 r 0.60 12.8
R 0.27 20.4

Phonemes are presented in SAMPA v 0.49 19.5
   code. f 0.60 22.3
l* is a velar l. z 0.34 17.8
! Represents the occlusive part of s 0.58 25.3
   stop consonants. S 0.66 25.0

Z 0.55 21.2
Aver. 0.50 16.9

Another important issue is that significantly different
values for each indicator can be obtained using different
(in content or length) sets with the same prediction model.
This means that the results are strongly dependent of the
used database. Also a better r doesn’t mean always a
better σ, as can be observed in the segments l* and L of
table 1, not enabling a consistent ranking of models.

The Sum of Products model in [3], reports a value of
r=0.88 when tested with a different database, with all
types of segments. Brigitte Zellner in [6] reports an r value
not less than 0.7 for all cases, for two different speech
rates in her proposed algorithm for French. Barbosa and
Bailly, in [1], report a value of σ=43 ms, for normal
speech rate, from their IPGC model for French. Later,
Barbosa reported a value of σ=36 ms for the adaptation of
the IPGC model for Brazilian Portuguese. In [7], Salgado
and Banga reported a value of σ=19.6 ms in the training
set for a Galician Language Model. At the same time

Cordoba et al, in [8], reported a value of δ=14.3 ms. as the
best score for the neural network model for Spanish. For
our model, in the left part of Table1, the vowels present an
average r=0.62 and σ=25 ms. The right part of the table,
presents r=0.5 and σ=16.9 ms. as the average values for
consonants.

Very interesting scores were presented by Goubanova
et al in [9] and [10]. In [9] the scores (rmse=5 ms and
average r of 0.94) for the proposed Bayesian belief
network (BN) are compared with other models, for
vowels. The scores in [10] for BN were for a different
database (rmse=3 ms and r=0.56 for vowels and rmse=2
ms and r=0.38 for consonants). The rmse is remarkably
low being the outcome from a comparison with labeled
segments in the database. What is the meaning for rmse
values with higher precision than the precision in labeling
of segments? Van Santen, for example, mentions an
average error in the database used in his work [3] of 3 ms,
but also refers a significant variability (21.4 ms. of
standard deviation) when the same speaker repeats the
same word in the same context. Why doesn’t the value of r
doesn’t increase, following the high precision of rmse in
[10]? Which is the most important one?

Another important issue is the impact on the scores
obtained for rmse, caused by the relative dimension of the
database used for training. A significant decrease in rmse
should be expected from an increase in this dimension.
Rules for r are much more difficult to find.

Table 2: Objective scores of the material used.
Paragraph N. of segm. σ (ms) r
1 36 19.0 0.97
2 164 18.9 0.89
3 177 22.6 0.94
4 209 19.0 0.91
5 204 19.8 0.94

The subjective evaluation of the model presented in this
paper was done through a perceptual test. Five paragraphs
were used. Three realizations of each paragraph were
randomly presented to 17 listeners, individually, for
evaluation in a 0-20 scale: the original; another with the
segmental durations modified according to the prediction
model; and a third with the average durations. The
modifications were done with a TD-PSOLA algorithm.
The listener is not which case corresponds to each
realization and subjects could hear as many times as they
want. Table 2 presents, for each paragraph, the number of
contained segments and σ and r values, for the predicted
durations.
Fig. 2 shows the average evaluation by listeners. For most
of them the model is very close to the original, and in three
cases the model is even preferred.

Fig. 3 presents the average evaluation by paragraph.
The model keeps very close to the original, and in



paragraph 3 the model duration sequence is even
preferred.
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Figure 2: Average evaluation by listeners.
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Figure 3: Average evaluation by paragraph.

Finally, the average evaluation, considering all data, is
17.5, 16.6 and 14.1 for original, model and fixed
realizations, respectively.

4. CONCLUSION

The evaluation of the model was done comparing output
durations with the real durations of speaker’s segments.
Many times slightly different durations do not mean wrong
durations, because the specific speaker production is not
the only one admissible and is allowed to vary
substantially. What is important is that synthetic speech
will sound natural for the model estimated durations. This
can only be validated with perceptual tests.

The presented scores considering all type of segments,
are at similar quality level as the ones presented for other
models and languages. Table 2 presents better scores for r,
when measured in paragraphs, compared to the one
presented for all test data, confirming that the scores are
very dependent of database.

Perceptual tests shows that the model is 0.9 in 20 close
to the original and 2.4 in 20 far from the fixed realizations.

The model also predicts very consistently the durations
of final segments which tend to be quite lengthened in
European Portuguese.

A more consistent evaluation framework is needed for
the performance assessment of duration and prosody
models in general.
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