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ABSTRACT 
 
In this paper, a hysteretic model with pinching is presented that is able to reproduce the cyclic response 
of steel and composite joints. Secondly, the computer implementation and adaptation of the model in a 
spring element within the computer code Seismosoft is described. The model is subsequently 
calibrated using a series of experimental test results for steel and composite joints subjected to cyclic 
loading. Finally, typical parameters for the various joint configurations are proposed. 
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INTRODUCTION 
 
The behaviour of steel or composite joints under cyclic loading is characterized by hysteretic loops 
with progressive degradation of strength and stiffness that eventually leads to failure of the joint. A 
typical natural event that, for simplicity, is usually approximated by cyclic loading is an earthquake. 
Usually, seismic events provoke relatively high amplitudes of rotation in the joint area, so that steel 
repeatedly reaches the plastic range and the joint fails after a relatively small number of cycles. This 
typical behaviour is usually called oligocyclic fatigue, in close analogy with the behaviour of steel 
under repeated cyclic loading stressed into the plastic regime. Because of the inherent complexity of 
steel and composite joints, characterized by material non-linearity (plasticity, strain-hardening), non-
linear contact and slip, geometrical non-linearity (local instability), residual stress conditions and 
complicated geometrical configurations, the definition of each individual cycle is not easy. In contrast 
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to the typical static monotonic response of a steel or composite joint, it must be able to reproduce the 
pinching effect. 

Previous work by the authors (Nogueiro et al. 2003) investigated the effect of pinching on the seismic 
response of steel frames and concluded that it results in a variation of about 20% of the joint rotation, 
thus increasing the ductility demand on the joints to avoid failure. It is the objective of this paper: (i) to 
present a hysteretic model with pinching based on the Richard-Abbott mathematical model (Richard & 
Abbott 1975) and developed by Della Corte et al (2000); (ii) to describe the computer implementation 
and adaptation of the model in a spring element within the computer code SeismoStruct (Seismosoft 
2004); (iii) to apply and calibrate the model with a series of experimental test results for steel and 
composite joints subjected to cyclic loading; and (iv) to compare and propose typical parameters for 
the chosen joint configurations. 

 

MODIFIED RICHARD-ABBOTT MODEL 
 
The Richard-Abbott model is based on a formula developed in 1975 (Richard & Abbott 1975) to 
reproduce the elastic-plastic behaviour of several materials and was initially used to simulate the static 
monotonic response of joints and later applied to cyclic situations (De Martino et al.1984), a thorough 
description being shown in Simões et al. (2001). This model was modified by Della Corte et al. 
(2000); to include pinching. To describe pinching, two limit curves are introduced, that represent a 
lower and an upper bounds to possible M-φ values. Both curves have a Richard-Abbott type law, 
shown in Figure 1a, and are characterised by parameters Kop, Mop, Khp, np (lower bound curve) and Ko, 
Mo, Kh, n (upper bound curve). Additionally, any generic point (M,φ) of the real path is also considered 
to belong to a Richard-Abbott type curve, where the relevant parameters are defined as follows: 

 
Kot = Kop + (Ko - Kop) × t (1a)

Mot = Mop + (Mo - Mop) × t (1b)
Kht = Khp + (Kh – Khp) × t (1c)

nt = np + (n - np) × t (1d)
 
The parameter t, ranging in the interval [0,1], defines the transition law from the lower bound to the 
upper bound curve. It must reproduce, as closely as possible, the shape of the experimental curves and 
is given by: 
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where t1, t2 and φlim are three experimentally calibrated parameters. Figure 1b illustrates, qualitatively, 
the resulting pinching behaviour with reference to one single excursion from the origin. 
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Figure 1: The loading branch without pinching (a) and with pinching (b). 

 



In case of a generic deformation history, the parameter φlim is related to the maximum experienced 
deformation in the direction of the loading branch to be described. It is evaluated according to the 
following relationship: 

 
( )maxlim φφφ += oC  (3)

 
where oφ  is the absolute value of the deformation corresponding to the starting point of the current 
excursion, φmax is the maximum absolute value of the deformation experienced in the previous loading 
history, in the direction of loading branch to be described (Figure 2a) and C is a calibration parameter. 
The unloading branch is assumed to be linear with a slope equal to the initial stiffness Ko up to the 
interception with the straight line obtained drawing a parallel to the hardening line going through the 
origin. This allows the Bauschinger effect to be considered. 

 

a)  b)  
Figure 2: Effect of parameter C (a) and definition of the unloading branch (b). 

 
Cyclic action in the inelastic range produces accumulation of plastic deformation, until ductility of the 
system is locally exhausted and failure occurs due to fracture. In some cases, the repetition of loading 
is accompanied by degradation of the structural response because of deterioration of its mechanical 
properties. This can be taken into consideration both for strength (Mo,red) and stiffness (Ko,red) using the 
following expressions: 
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ou ,φ  is the corresponding ultimate value in the case of one single excursion from the origin (monotonic 

loading), Eh is the hysteretic energy accumulated in all previous experienced excursions, My represents 
the conventional yield resistance of the joint, Ko the initial stiffness as defined in the Figure 2b and 
coefficient i is an empirical parameter related to damage rate. 
 
Hardening due to cyclic plastic deformation is considered to be isotropic. Besides, experimental results 
of constant deformation amplitude tests for joints not exhibiting strength deterioration show that cyclic 
hardening grows up in few cycles and then becomes stable. Therefore, the following assumption is 
made:  
 

Mo,inc = Mo                                           if φmax ≤ φy 
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Mo and Mo,inc are the initial and increased value of strength, respectively; φmax is the maximum value of 
deformation reached in the loading history (in either positive or negative direction); φy is the 



conventional yielding value of deformation (see Figure 2); Hh is an empirical coefficient defining the 
level of the isotropic hardening (Filippou et al. 1983). The above formulation practically corresponds 
to translate the asymptotic line of the original Richard-Abbott (De Martino et al.1984), equation as a 
function of the extent of the plastic deformation.    
 
 
COMPUTATIONAL IMPLEMENTATION  
 
The numerical implementation of the hysteretic model described above was carried out using the 
Delphi (Delphi 7, 2002) development platform. A six degree-of-freedom spring element was 
implemented in the structural analysis software SeismoStruct from Seismosoft (2004). The 
implementation comprised two major parts. The first consists of the management of the hysteretic 
cycles, where a clear distinction between positive and negative moment must be made because of 
possible asymmetry of joint response under hogging or sagging bending. An illustrative flowchart of 
the cycle management is shown in Figure 3.  
 

  If Strn=0  Then
  Cycle:=1
  StrnIncrOld:=0

  StrnIncr:= Strn-StrO

  If StrnIncr*StrnIncrOld<0 Then
  Cycle:= Cycle+1

Parameter:=0If initial load negative If initial load positive

  If StrnIncr<0 and Cycle=1 Then
  Parameter:= -1

  If StrnIncr>0 and Cycle=1 Then
  Parameter:=1

  If StrnIncr>0 and Cycle=2 Then
  Parameter:= -2

  If StrnIncr<0 and Cycle=2 Then
  Parameter:=2

  If StrnIncr<0 and Cycle>2 and Odd (Cycle+1) Then
  Parameter:=4

  If StrnIncr>0 and Cycle>2 and Odd (Cycle) Then
  Parameter:=3

  If StrnIncr>0 and Cycle>2 and Odd (Cycle+1) Then
  Parameter:= -4

  If StrnIncr<0 and Cycle>2 and Odd (Cycle) Then
  Parameter:= -3

StrnIncrOld:=StrnIncr  
Figure 3: Flowchart for the management of hysteretic cycles. 

 
The second part of the implementation relates to the development of the code for each cycle. Several 
possibilities must be considered, depending on the starting bending moment (positive or negative) and 
the sign of the strain increment (positive or negative). In total, 30 parameters have to be defined for 
this model, fifteen for the ascending branches (subscript a) and fifteen for the descending branches 
(subscript d): Ka (and Kd) is the initial stiffness, Ma (and Md) is the strength, Kpa (and Kpd) is the post 
limit stiffness, na (and nd) is the shape parameter, all these for the upper bound curve (see figure 1), Kap 
(and Kdp) is the initial stiffness, Map (and Mdp) is the strength, Kpap (and Kpdp) is the post limit stiffness, 
nap (and ndp) is the shape parameter, all these for the lower bound curve, t1a and t2a (and t1d and t2d) are 
the two parameters related to the pinching, Ca (and Cd) is the calibration parameter related to the 
pinching, normally equal to 1 (see figure 2),  iKa (and iKd) is the calibration coefficient related to the 
stiffness damage rate, iMa (and iMd) is the calibration coefficient related to the strength damage rate, Ha 
(and Hd) is the calibration coefficient that defines the level of isotropic hardening and Emaxa (and Emaxd) 
is the maximum value of deformation.  
 
To illustrate the application and versatility of the model, it was tested on a typical steel joint with its 
properties defined in Table 1, with stiffness and strength deterioration but no hardening. 

 
TABLE 1 

JOINT PARAMETERS 
Ka 

KNm/rad 
Ma 

KNm 
Kpa 

KNm/rad 
na Kap  

KNm/rad 
Map  
KNm 

Kpap  
KNm/rad 

nap t1a t2a Ca iKa iMa Ha Emaxa 
rad 

34440 116 1700 2 34440 60 1700 1 10 0.15 1 15 0.01 0 0.1 

Kd 
KNm/rad 

Md 
KNm 

Kpd 
KNm/rad 

nd Kdp  
KNm/rad 

Mdp  
KNm 

Kpdp  
KNm/rad 

ndp t1d t2d Cd iKd iMd Hd Emaxd 
rad 

44440 136 1700 2 44440 80 1700 1 10 0.15 1 15 0.01 0 0.1 



Firstly two monotonic loadings were considered, one positive and another negative. Subsequently, two 
distinct cyclic load histories were applied (ECCS load history and an random load history). The 
results, illustrated in Figure 4, show that, for low rotations (< θy), the cyclic results coincide with the 
monotonic results. With increased rotation, the cyclic response deviates from the monotonic response 
because of strength and stiffness deterioration. 
 

 

 

Figure 4: Hysteretic and monotonic curves.  
 
 

APPLICATION AND VALIDATION 
 
In order to establish reliable parameters for a range of end-plate beam-to-column steel and composite 
joint configurations and to validate the accuracy of the model, a group of well-documented 
experimental results were selected from the literature. These tests were performed by Simões et al. 
(2001), Dubina et al. (2002) and Liew et al. (2004) and are summarized in Table 2.  
 

TABLE 2  
EXPERIMENTAL TESTS 

 Nº Test Ref. Author Type Beam Column hc 
cm 

M+
y 

KNm 
M-

y 
KNm 

K+
y 

KNm/rad 
K-

y 
KNm/rad 

1 E9 Simões External IPE270 HEA220 12 114 115 24570 26810 
2 E10 Simões External IPE270 HEA220+C 12 170 159 36950 40830 
3 E11 Simões Internal IPE270 HEA220 12 83 81 16500 18830 
4 E12 Simões Internal IPE270 HEA220+C 12 117 118 34440 36220 
5 BX-CUC1 Dubina Internal Fig.7 Fig.7 12 143 137 36870 37920 
6 BX-CUC2 Dubina Internal Fig.7 Fig.7 12 143 137 36870 37920 
7 CJ2 Liew Internal 305x305xUB50 305x305x97UC 12 165* 150* 27648 16987 
8 CJ4 Liew Internal 305x305xUB50 305x305x97UC+S 12 190* 165* 42697 45118 
9 BX-CSC1** Dubina Internal Fig.7 Fig.7 12 195 150 102500 75050 

HEA220+C (concrete); 305x305x97UC+S (Stiffening of column wed). *Estimated value. **Symmetrical test 
 
Ideally, the initial stiffness, moment resistance and post-limit stiffness should be obtained directly 
from complementary monotonic tests, as was the case for all tests except for tests 7 and 8. The cyclic 
tests are thus best used to find the strength and stiffness deterioration coefficients, the isotropic 
hardening, and the pinching parameters. 
 
Tests 1 and 2 are external joints. All other tests correspond to internal joints. Tests 2 and 4 have the 
column encased in concrete. All tests are loaded anti-symmetrically, except for test 9. Test 8 has the 
column web stiffened with a doubler plate (Figure 10d). All concrete slabs have 12 cm thickness and 



continuous steel reinforcement around the column. Figures 5 to 10 illustrate the joint details and the 
corresponding experimental and analytical hysteretic curves. 
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Figure 5: Joints 1 (a), 2 (b), 3 (c) and 4 (d) – Simões et al. [6]. 

 

  

  
Figure 6: Hysteretic curves for joints 1 to 4. 

 

a) b) c) d)
Figure 7: Bare steel joint 5 and 6 (a), (b) and composite joint 9 (c), (d) – Dubina et al. [9]. 

 

   
Figure 8: Hysteretic curves for joints 5, 6 and 9. 

 

a) b) c)

d) 

Figure 9: End plate for joints 7 (a) and 8 (b), composite joint 8 (c) and web stiffener (d) – Liew et al. [10]. 
 



  
Figure 10: Hysteretic curves for joints 7 and 8. 

 
It is noted that tests 5 and 6, although structurally identical, were subjected to different cyclic loading 
procedures. Globally, the model is able to accurately reproduce all experimental results. Tables 3 and 4 
summarise the results for all parameters for the nine tests.  

 
 TABLE 3 

JOINT PARAMETERS FOR ALL TESTS FOR THE ASCENDING BRANCHES 
Test Nº 1 2 3 4 5/6 7 8 9** Ref. Value 

Ka KNm/rad 24570 36950 16500 34400 36870 27648 42697 102500 K+
y 

Ma KNm 130 200 85 117 170 200 230 240 1.2×M+
y 

Kpa KNm/rad 600 1025 825 1700 1100 691 1280 3000 0.03× K+
y 

na 2 2 2 2 2 2 2 2 2 
Kap KNm/rad 24570 36950 16500 34400 36870 27648 42697 102500 K+

y 
Map KNm 70 120 40 60 100 100 115 1** 0.65× Ma 

Kpap KNm/rad 600 1025 825 1700 1100 660 1280 3000 0.03× K+
y 

nap 1 1 1 1 1 1 1 1 1 
t1a 15 10 6 10 15 15 15 15 6<...<15 
t2a 0.5 0.5 0.15 0.15 0.5 0.2 0.15 0.2 0.15<...<0.5 
Ca 1 1 1 1 1 1 1 1 1 
iKa 15 20 3 15 25 3 20 25 3<...<25 
iMa 0.04 0.05 0.01 0.01 0.04 0.1 0.01 0.4 0.01<..<0.1 
Ha 0.04 0.04 0.04 0.02 0.01 0.04 0.02 0.02 0.01<..<0.04 

Emaxa rad 0.1 0.1 0.1 0.1 1 0.01 0.1 0.1 0.1 
 

TABLE 4 
JOINT PARAMETERS FOR ALL TESTS FOR THE DESCENDING BRANCHES 

Test Nº 1 2 3 4 5/6 7 8 9** Ref. Value 
Kd KNm/rad 26810 40830 18830 36220 37920 16987 45118 75050 K-

y 
Md KNm 125 170 80 118 167 180 200 175 1.2×M-

y 
Kpd KNm/rad 670 1020 940 1800 1140 425 1250 3250 0.03× K+

y 
nd 2 2 2 2 2 2 2 2 2 

Kdp KNm/rad 26810 40830 18830 36220 37920 16987 45118 75050 K-
y 

Mdp KNm 60 75 60 60 110 90 100 110 0.65× Md 
Kpdp KNm/rad 670 1020 940 1800 1140 425 1250 3250 0.03× K+

y 
ndp 1 1 1 1 1 1 1 1 1 
t1d 6 15 5 20 20 20 20 20 5<...<20 
t2d 0.2 0.5 0.15 0.15 0.2 0.15 0.15 0.5 0.15<...<0.5 
Cd 1 1 1 1 1 1 1 1 1 
iKd 18 20 1 5 15 1 10 15 1<...<20 
iMd 0.06 0.08 0.01 0.01 0.06 0.01 0.01 0.01 0.01<..<0.08 
Hd 0 0 0.02 0 0 0 0 0 0 

Emaxd rad 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 



Examination of the variation of the non-dimensional properties for the nine tests reveals that, except 
for tests 3 and 4, that present some deviations from the remaining tests (because they were only 
subjected to moderate rotations and did not reach collapse), the structural properties for strength and 
stiffness were fairly constant. These values can be seen in the last column of Tables 3 and 4. For the 
calibration parameters, it was not possible to find a clear tendency. This results from the small number 
of tests that are used and the variation of joint characteristics. Thus, for these parameters, a range of 
values is presented that covers all tested joints. 
 
 
CONCLUSIONS 
This paper presents the numerical implementation of a hysteretic model able to simulate a generic 
cyclic steel-composite joint behaviour. It is incorporated in the structural analysis software 
SeismoStruct (Seismosoft 2004); as a joint element, thus allowing realistic nonlinear static and 
dynamic structural analyses. The model was applied to nine experimental joint tests from three 
independent sources, showing a very good agreement with the experimental results, even when using 
different cyclic loading strategies. Despite the small sample size, a clear trend was observed for the 
required model parameters for end-plate beam-to-column composite joints. This may lead to the 
proposal of design parameters for such joints, an issue that is currently being pursued by the authors 
with an enlarged sample of test results. 
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