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Abstract—An integration algorithm that conjugates a M ethod of
Lines (MOL) strategy based on finite differences space
discretizations, with a collocation strategy based on increasing
level dyadic grids is presented. It reveals potential either as a
grid generation procedure and a Partial Differential Equation
(PDE) integration scheme. It copes satisfactorily with a example
characterized by a steep travelling wave and a example that
presented a forming steep shock, which demonstrates its
versatility in dealing with different types of steep moving front
problems, exhibiting features like advection-diffusion, widely
common in the standard Chemical Processes simulation models.
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I.  INTRODUCTION

One can state that the main purpose of scienceo is
contribute for the understanding of the physicaémmena
that surround us. Therefore, in order to achichie goal,
scientific researchers apply the so called scientiethod that
can be resumed as:

« Use of experience and data available for recognitio
problems that need to be solved.

« Formulation of hypothesis that potentially wouldveo
the problem detected.

e Gathering of information in order to test the hypesis
formulated.

e Confirmation or rejection of the hypothesis forntath
by the analysis of former or new data obtained.

The generally explanatory hypothesis can be singly
model, or more precisely, a mathematical modelk, thsume
the observed phenomena on more easily treatalddiors
between abstract entities trough mathematical dpes In
the field of mathematical models, one can narroenemore
the scope of interest to problems defined over esiace
continuous domains, where phenomena are not ofdgtatl
by the values of the variables that define itsesthtt also by
the gradients of these variables in relation toitltependent
coordinates. In the latter case, the mathematicadets are
necessarily constituted by differential (or intdgmguations
defined on multidimensional domains, i.e., partidfferential
equations (PDE’s). However, the process of consirgica
suitable model, or modelling, has to be complenentéh
the not less important task of solving it efficignt
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II.  NUMERICAL METHODS

It is clear that it is not always possible to solve
mathematical problems using analytic proceduresthise
cases (usually non-linear problems), one has tortret®
numerical analysis, the study of algorithms, i.equential
operation schemes that generally imply a discrétinaof
continuous defined problems. These schemes capiedin
the solution of a variety of mathematical problersgch as
optimization, calculation of integrals, interpotatj resolution
of algebraic or differential equations, etc. Ouemest resides
on the numerical methods for the solution of tinepehdent
partial differential equations (or systems of equet) defined
pver one- or multidimensional space domains. Tlsebemes
usually imply the construction of discrete gridatticover the
total domain, and the approximation of the contisisolution
by basis functions. The most important classesurherical
methods developed for the solution of PDE’s diffetween
each other by the type of basis functions choser, e

» Finite Differences (FD) — Taylor expansion series.

» Finite Elements (FE) — Interpolating polynomials.
e Spectral — Orthogonal Functions.

A. Method of Lines

However, our interest reside in a general strafiegythe
solution of PDE’s named Method of Lines (MOL)[1] i¢h
structure can accommodate different strategies afshm
discretization. Generally, the numerical solutioh RDE’s
imply the approximation of the original differertiproblem
defined over a continuous domain, to a system gélahic
equations defined on a discretized domain. This
transformation may be done simultaneously on every
independent variable. Alternatively, one may appdy
sequenced strategy: discretization of the origjpralblem in
all directions except one (usually time for InitBdbundary
Value Problems) and integration in remaining dimtiusing
an integrator package. The PDE original problem
approximated to a system of ordinary differentigu&tions
(ODE’s), which is solved by a standard ODE integrato,
one can use a variety of different basis functioRr®
approximations, different order polynomials, wats2, 3],
radial basis functions[4], etc, to execute the rdiszation.
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B. Adaptation Concept

For that purpose, we define a collocation stratdupt

The classical approach to these kind of procedises Uses function dependent features, to allow thevatitin (or

generally rigid and not adaptable to its evoluti@Gme way to
turn around the problems that may arise from the laf
flexibility of that approach is the introduction ofhe
adaptation concept. Adaptivity implies the adjusimef
algorithm parameters to the particular circumstance the
solution evolution. In the field of numerical sobrt of PDE’s
it can assume the following purposes:

« h-refinement — grid refinement and relaxation.
e p-refinement — adjustment of approximating orders.
« r-refinement — introduction of nodal velocities.

These strategies are not mutually exclusive and tay
combined in mixed adaptive methods. The applicatdn
adaptivity in the PDE solving field has already exa

decades, and the number and variety of methodsopeapis
rather extensive [5,6]. However, the primordial esltjves of
the adaptive procedure are generally the same:

construction of grids that concentrate nodes in dbenain

regions where the solution is more active (i.e.vahgteeper
gradients) and disperse them in the remaining regiand
follow efficiently the problematic features of teelution. The
application of adaptivity into the MOL strategy cept is

straightforward [7].

C. Dyadic Grids

the °

deactivation) of nodes belonging to dyadic gridsgrag from
the lower resolution levelM) — the basis level; to a maximum
allowed resolution levelN).

D. Numerical Algorithm

Applying the dyadic grid concept with finite diffemces
approximations, we devise a collocation algorithon §rid
generation which can be applied in MOL algorithm fhe
solution of PDE’s. Considering a region of spacendm
defined by two consecutive dyadic grids (Fig. 2gpdocation
algorithm is developed for activating the requiredies by the
procedure described below.

Collocation Algorithm

k=M

e for i=1,..%-1

estimateU;" (order n derivative at nodg by finite
differences

if collocation criterion is met: select intermedinteles

. k+1.  k+1.  k+1
of levelk+1l:  x7:% " X5

e k=k+1 (repeafor k=M, ...,N-1)

We chose to construct grids at each time step ef th

integration, based in a series of embedded onerdiimeal
dyadic grids of decreasing level. Alevel one-dimensional
dyadic grid is defined by a nodal mesh with ifitervals.
Obviously, in a correspondent uniform grid, theestof ak-
level grid is constant through the total domainhigher level
grid is constructed by adding nodes to the immediat
previous one, at every interval middle positiorg(FHi).
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Fig. 1. Uniform dyadic grids of increasing level n.

It is important to note that a grid of levklis always
included in all grids of higher level. So, the posp is to

generate grids that combine nodes of different Ieve

according to the function activity at the varioegions of the
domain. It is obvious that the presented strategyle easily
extended to multidimensional domains.
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Fig. 2. Representation of the connection betweetlesof consecutive levels.

The collocation criterion obeys to two differentasegies.
First, the grid size is calculated by,

k k
Xisg ~ Xig
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Ax = : 2)

Then, we define a criterion that captures oscilaion the
finite difference estimate profile:

Criterion |
» calculated, =U"xU;", and J, =U}, xU/"

e criterion verified if:

. |Ui”><A><|>£l or {j’l?())
and |U‘n'1 +|Uin +|U‘n+1 > g,
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Additionally, a second criterion that tracks highriations
on the finite difference estimate profile is define



Criterion Il
+ calculated, =U"-U; andd, =U/}, -U
e criterion verified if:
. |U{‘><A><i>£l or 9,x0,<0
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and >¢g,

& ands represent the criteria tolerances. Both criteziatto
take advantage of the approximating nature of thacs
derivatives estimating scheme. The errors assaciaith the
finite difference procedure induce artificial ofafilons in the
estimated derivative profiles mainly near the stdamts

regions, which can be identified. Therefore, weréase the
grid resolution on these regions by activation ighbr level
nodes that do not verify the more demanding cotlona
criteria. The gathering of all active nodes in gvayadic grid,
generate the overall grid. One advantage of thigguture is
the possibility of applying the collocation algdrit

sequentially, analyzing several derivative ordeysskages,
e.g. generating a grid that verify the first defiva condition
and subsequently running the obtained grid throcaugiecond
derivative analysis.
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Fig. 3. Grid generated for the Step Function.

Ill. GRID GENERATION

A. Example 1 — Step Function

A simple function that represents a one-dimensional
negative space step, i.e. a discontinuity locatethe middle
position of the domain [0,1],

u(x)=1 , 0sx<05
{U(X):O , 05<x<1’ 2

is tested using the collocation criterion 1. We lgsa the finite
difference approximation (5 nodes centred) of thiest f
derivative, withg; = & = 0.1. The basis grid of lowest level is
a uniform grid with 2 intervals and the highest dyadic grid
level isN=12. The grid generated is presented in Fig. 3. We
observe that the algorithm is able to detect tlsedtitinuity
quite satisfactorily and the constructed grid ie@qehte to
represents the function main features with a reasentotal
number of nodesNP=57).

B. Example 2 — TGH Function

Now, we try to represent in a discrete fashion racfion
characterised by a very steep front located atrtiokelle of the
domain, surrounded by two flat plateaus at eack. sithe
function is defined by the following hyperbolic gant:

u(x) = tant(GOx - 0.01). (3)

Again, it is applied the collocation criterion ly ithe analysis
of the finite difference approximation (5 nodestced) of the
first derivative, withg, = & = 0.1,M=4 andN=12. The results
are resumed in Fig. 4. We conclude that the freneasily
tracked and the generated grid allows the repragentof the
by a reasonable total number of nodeB£58).

The algorithm proves to be able to generate gridg t
efficiently detect and represent steep featurethén studied
functions.

IV. SIMULATION EXPERIMENTS

The node collocation procedure is incorporated m a
algorithm for the resolution of one-dimensional dim
dependent PDE’s. This strategy is based on theigatipn of
a MOL algorithm where the space derivatives are
approximated by finite differences formulas, withridg
generation procedure at specified times that refitata the
space grid according to the solution evolution. these
intermediate times the solution profiles are retwesed
through an interpolation scheme. The time integratis
performed by the ODE integrator DASSL. Therefore th
presented algorithm can be included in the classhof
refinement PDE solution adaptive procedures.

A. Model 1 — Advection Equation
We test the integration algorithm using a very demp

First, we tested the performance of the Conocatiorbquation known as the advection equation

algorithm for the generation of grids that confotm the
properties of selected one-dimensional functions.
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defined over the domain [k [0,1], with the boundary

condition,

Fig. 4. Grid generated for the TGH Function.
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u(ot)=0.

In spite of its apparent simplicity, the solutiohtlois equation
can be rather problematic, depending on the initaditions

chosen. The solution space wave is propagated ghrtme

without distortion, with velocity in the positive direction of
the x referential. If the initial profile exhibits a ste front, the
adequate numerical translation of the continuoodlpm by a
uniform fixed grid, may prove to be difficult. Sae use the

function,

u(x,o)=ex;{-@}

TABLE 1.

SIMULATION PARAMETERS FORMODEL 1

Collocation criterion

lorll

Derivative order for collocation

n=1and 2; or n=1

Time step

10°

Finite Difference approximation

5 nodes centred - uniform grid

Interpolation strategy

Cubic splines with 9 nodes

Timeintegrator tolerances

10°

Dyadic gridslevels

M=4; N=10

€1=& =102

with X, = 0.5 ands = 1x10*, which represents a steep wave to
test the algorithm performance in the conditionscdéed in
Table I.

The results obtained are resumed in Fig. 5 andsiigu
criterion | and Il, respectively. It is observeatlhe algorithm
provides rather good results, providing a closektraf the
wave propagation until it collides to the right Indary. The
results obtained with the two criteria appear todg similar.
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Fig. 5. Simulation results for the advection maakghg criterion |.
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Fig. 6. Simulation results for the advection maakhg criterion 1.



B. Model 2 — 1-D Burgers’ Equation

The second test model is the widely studied 1-Dsirig
Burgers’ Equation[4],

ou ou

— = —-u—

ot ox

vg—;‘j, ()
defined over the domain [k [0,1], with the boundary
conditions:

u(O,t) = u(lt) =0. (8)
This PDE represent an advection-diffusion problevhjch,

depending of the initial condition applied, may g&Bt some
interesting challenges. Therefore, for the initi@hdition,

©)

u(x,O) = sin(2nx) + %sin(nx) ,

as the advection velocities are the solution itsbE problem
evolves from a rather smooth profile to a steeptfforming
atx = 0,60 byt = 0,20. From this instant on, the front moves
on the positive direction of until it eventually crashes onto
the right boundary and slowly fades away. The sité¢he
moving front thickness depends on the importancethef
diffusion term, i.e. it is proportional with the ade of the
diffusion coefficient ¥). In Table II, we resume the algorithm
run conditions fon = 10°, using both collocation criteria. The
simulation results for the criterion | are condehse Fig. 7.
We conclude that the algorithm successfully follote
formation and movement of the steep, with hardly an
difficulty. The results obtained using the two oacthtion
criteria seem to be very similar.

Now, the Burgers’ equation is solved in more deniagnd
conditions, decreasing the influence of diffusivity fixing
the parametev = 10*. In these conditions, we apply the usual
sequential first and second derivative analysisp@ated with
criterion .

However, the maximum level grid is increased\tdl 2, to
account to the reducing thickness of the movingstieont.
The general conditions are resumed in Table IlI.

TABLE II. SIMULATION PARAMETERS FORMODEL 2 (v = 107)

lorll

n=1 and 2; or n=1

102

5 nodes centred - uniform grid
Cubic splines with 7 nodes
10°

M=4; N=10

Criterion Il:g; = &, =10"

Collocation criterion

Derivative order for collocation
Time step
Finite Difference approximation

Inter polation strategy
Timeintegrator tolerances
Dyadic gridslevels

Criterion l:g, = &, =10,
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Fig. 7. Simulation results for the Burgers’ modsing criterion 1¢ = 10°).
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Fig. 8. Simulation results for model 2ta0, using criterion I\ = 10%).

In Fig. 8, we present the grid generation resutscerning
the initial condition profile. It is obvious thatud to the
smooth characteristics of this profile, the gridrdatively
coarse and the maximum level attained is only agsbD@.

However, the situation changes radically t80.20 (Fig.
9). At this instant, the front is fully developednd the
procedure has to take advantage of the maximuni redes
to adequately conform to the front and its edges.



TABLE lII. SIMULATION PARAMETERS FORMODEL 2 (v =10
Collocation criterion |
Derivative order for collocation n=1and 2
Time step 2.5x10°

Finite Difference approximation

5 nodes centred - uniform grid

Inter polation strategy

Cubic splines with 7 nodes

Time integrator tolerances

10°

Dyadic gridslevels

M=4; N=12

€1 =& :103
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Fig. 9. Simulation results for model 2ta0.2, using criterion I = 10%).

0.8

0.7 .‘4
.
.
0.6 * .
.
0.5 .
.
0.4 * .
*
s 03 o
*
02 . .
0.1 .
*
.
0 vt +
0.1 3
-0.2
0 0.2 0.4 0.6 0.8 1
X
13 4
12 L 3
114 L 4
10 + -
9 A -
c 84 <R
74 9000000
6 1 o000
54 * - * - *
4 4 * * * * * * * * * * * * * * * *
3

Fig. 10. Simulation results for model 2taf..0, using criterion I = 10%).

After the formation of the steep front, the aldomit shows
its ability to follow the movement of the front Wwiut
introducing numerical distortions on the edges (EQ).

The algorithm also proves its suitability by prawig a
adequately simulation of the front crash at thétrigpundary
(Fig. 11). In general, the simulation is succedgftarried out.
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Fig. 11. Simulation results for model 2tal.0, using criterion I\ = 10%.
V. CONCLUSIONS

We conclude that the integration algorithm thatjegates
a MOL strategy with finite differences space disizegions,
with a collocation strategy based on increasinglledyadic
grids, revealed potential either as a grid genemapirocedure
and a PDE integration scheme. It coped satisfdgtaith a
example characterized by a steep travelling wavd an
example that presented a forming steep shock, whioties
its versatility in dealing with different types pfoblems.
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