
Analysis and Performance
Optimization of E-mail Server

Dissertação apresentada ao Instituto Politécnico de Bragança para cumprimento dos requisitos necessários
à obtenção do grau de Mestre em Sistemas de Informação, sob a supervisão de Prof. Dr. Rui Pedro Lopes.

Eduardo Manuel Mendes Costa
Outubro 2010

Preface

The e-mail service is increasingly important for organizations and their employees. As such, it requires
constant monitoring to solve any performance issues and to maintain an adequate level of service. To
cope with the increase of traffic as well as the dimension of organizations, several architectures have been
evolving, such as cluster or cloud computing, promising new paradigms of service delivery, which can
possibility solve many current problems such as scalability, increased storage and processing capacity,
greater rationalization of resources, cost reduction, and increase in performance.

However, it is necessary to check whether they are suitable to receive e-mail servers, and as such the
purpose of this dissertation will concentrate on evaluating the performance of e-mail servers, in different
hosting architectures. Beyond computing platforms, was also analze different server applications. They
will be tested to determine which combinations of computer platforms and applications obtained better
performances for the SMTP, POP3 and IMAP services. The tests are performed by measuring the number
of sessions per ammount of time, in several test scenarios.

This dissertation should be of interest for all system administrators of public and private organizations
that are considering implementing enterprise wide e-mail services.

i

Acknowledgments

This work would not be complete without thanking all who helped me directly or indirectly to complete
it.

Firstly I would like to thank Prof. Rui Lopes, for his knowledge, his help, advices and all the support.
I also thank Prof. José Rufino for making available the resources of the Laboratory for Computer

Science, necessary for establishing the test scenarios.
I also would like to thank Prof. Tiago Pedrosa for all the support and advices.
My final thanks go to God and to my family: my wife for all the support, patience and encouragement

you always gave me, which helped me in difficult moments. To my parents for all the support and
encouragement to finish this dissertation.

ii

Abstract

Nowadays the use of electronic services and Internet communications are increasingly common among
citizens and thus the demand for better services and better solutions is constantly growing. In recent years
we have seen the emergence of new infrastructures and computing platforms as well as the improvement
of the existing ones. The need to improve services and electronic communications is compelling and it
requires constant monitoring and studying new solutions towards new infrastructures and platforms.

To cope with the increase of traffic as well as the dimension of organizations, several architectures
have been evolving, such as cluster or cloud computing, promising new paradigms of service delivery,
which can possibility to solve many current problems such as scalability, increased storage and processing
capacity, greater rationalization of resources, cost reduction, and increase in performance. However, there
it is not clear if they are suitable to host e-mail servers. In this dissertation we perform the evaluation of
the performance of e-mail servers, in different hosting architectures. Beyond computing platforms, was
also analyze different server applications.

Tests were run to determine which combinations of computer platforms and applications obtained
better performances for the SMTP service and for services POP3/IMAP. The tests are performed by
measuring the number of sessions per ammount of time, in several test scenarios. We used Qmail and
Postfix as SMTP servers and Qmail, Courier and Dovecot for POP and IMAP services.

iii

Resumo

Nos dias de hoje, o uso de serviços de comunicações electrónicas e de Internet é cada vez mais comum
entre os cidadãos. Neste sentido, a demanda por melhores serviços e melhores soluções está em constante
crescimento. Nos últimos anos tem-se assistido ao aparecimento de novas infra-estruturas e plataformas
de computação, bem como a melhoria das já existentes. A constante necessidade de melhorar os serviços
e comunicações electrónicas exige um constante acompanhamento e estudo de novas soluções para novas
infra-estruturas e plataformas.

Para lidar com o aumento do tráfego, bem como a dimensão da organizações, várias arquitecturas
foram evoluindo, tais como o cluster ou cloud computing, promissores de novos paradigmas de prestação
de serviços, que podem possibilitar a resolução de muitos dos problemas actuais, tais como escalabilidade,
maior armazenamento e capacidade de processamento, uma maior racionalização de recursos, redução de
custos e aumento no desempenho. No entanto, não está claro se estes estão adequados para os servidores
de e-mail. Nesta dissertação realizamos a avaliação do desempenho dos servidores de e-mail em diferentes
arquitecturas. Para além das plataformas de computação, também foram analisadas diferentes aplicações
servidoras.

Foram realizados testes para determinar que combinações de plataformas de computação e aplicações
obtêm melhor desempenho para o serviço SMTP e para os serviços POP3/IMAP. Os testes são realizados
através da medição do número de sessões por quantidade de tempo, em vários cenários de teste. Optou-
se por usar o Qmail e o Postfix como serviço de SMTP e servidores Qmail, Courier e Dovecot para os
serviços POP e IMAP.

iv

Contents

Preface i

Acknowledgments ii

Abstract iii

Resumo iv

1 Introduction 1
1.1 Objectives . 1
1.2 Structure of this Document . 1

2 Performance Optimization 3
2.1 Cluster Computing . 3

2.1.1 High-Availability (HA) Clusters . 4
2.1.2 Load-Balancing Clusters . 6
2.1.3 High-Performance Computing (HPC) Clusters . 9

2.2 Grid Computing . 9
2.2.1 Architecture . 10
2.2.2 Implementations . 13

2.3 Cloud Computing . 13
2.3.1 Cloud Computing Models . 13
2.3.2 Cloud Computing Architecture . 15
2.3.3 Main Suppliers and Services . 18

2.4 E-Mail Service . 21
2.4.1 Mail Tranfer Agent (MTA) . 21
2.4.2 E-mail Service Implementations . 23
2.4.3 Mail Storage Format . 27

3 Test Scenarios 31
3.1 Tests . 31
3.2 Applications . 33

3.2.1 Simple Mail Transfer Protocol (SMTP) Applications 34
3.2.2 Post Office Protocol (POP)3/Internet Message Access Protocol (IMAP) Applications 34

3.3 Architecture . 34
3.3.1 Single Computer . 35
3.3.2 Cluster . 35
3.3.3 Cloud . 36

v

4 Results 39
4.1 SMTP Results . 39

4.1.1 Qmail Results . 39
4.1.2 Postfix Results . 40
4.1.3 Qmail vs. Postfix Results . 41

4.2 POP3/IMAP Results . 44
4.2.1 Qmail Results . 44
4.2.2 Courier Results . 44
4.2.3 Dovecot Results . 46
4.2.4 Qmail vs. Courier vs. Dovecot POP3 Results . 46
4.2.5 Courier vs. Dovecot IMAP Results . 50

5 Conclusions 53
5.1 Future Work . 53

Bibliography 55

A Appendix - Installations and Configurations 59
A.1 Operating System (OS) . 59
A.2 Lightweigh Directory Access Protocol (LDAP) . 59
A.3 Qmail . 62
A.4 Postfix . 67
A.5 Courier . 68
A.6 Dovecot . 69
A.7 Linux Virtual Server (LVS)-Direct Routing (DR) . 70
A.8 Eucalyptus . 72
A.9 Management of Virtual Machine (VM) images on Eucalyptus 73

A.9.1 Create Image . 74
A.9.2 Integrate image with eucalyptus . 74
A.9.3 Register image with eucalyptus . 75
A.9.4 Running a VM image on eucalyptus . 75

A.10 HAproxy . 76

List of Tables

2.1 Comparison between suppliers/solutions of Cloud Computing 19

vii

List of Figures

2.1 Cluster Layout . 4
2.2 Grid Architecture . 10
2.3 Cloud Computing Taxonomy or Cloud Computing Stack [Keith, 2009] 16
2.4 Three ways to host a Software as a Service (SaaS) Application [Keith, 2009] 18
2.5 Mbox storage format . 27
2.6 Maildir storage format . 28

3.1 Single Server . 35
3.2 Cluster . 36
3.3 Cloud . 37

4.1 Qmail - Total SMTP sessions by scenario . 40
4.2 Postfix - Total SMTP sessions by scenario . 41
4.3 Qmail vs. Postfix - Single - Total SMTP sessions . 42
4.4 Qmail vs. Postfix - Cluster 2 Nodes - Total SMTP sessions 42
4.5 Qmail vs. Postfix - Cluster 3 Nodes - Total SMTP sessions 43
4.6 Qmail vs. Postfix - Cloud 2 Nodes - Total SMTP sessions 44
4.7 Qmail - Total POP3 sessions . 45
4.8 Courier - Total POP3 sessions . 45
4.9 Courier - Total IMAP sessions . 46
4.10 Dovecot - Total POP3 sessions . 47
4.11 Dovecot - Total IMAP sessions . 47
4.12 Qmail vs. Courier vs. Dovecot - Single - Total POP3 sessions 48
4.13 Qmail vs. Courier vs. Dovecot - Cluster 2 Nodes - Total POP3 sessions 48
4.14 Qmail vs. Courier vs. Dovecot - Cluster3 Nodes - Total POP3 sessions 49
4.15 Qmail vs. Courier vs. Dovecot - Cloud 2 Nodes - Total POP3 sessions 49
4.16 Courier vs. Dovecot - Single - Total IMAP sessions . 50
4.17 Courier vs. Dovecot - Cluster 2 Nodes - Total IMAP sessions 51
4.18 Courier vs. Dovecot - Cluster 3 Nodes - Total IMAP sessions 51
4.19 Courier vs. Dovecot - Cloud 2 Nodes - Total IMAP sessions 52

viii

List of Acronyms

ACL Access Control List

AIX Advanced Interactive eXecutive

AMI Amazon Machine Image

AMS Andrew Messaging System

API Application Programming Interface

ARP Address Resolution Protocol

AWS Amazon Web Services

AoE ATA over Ethernet

BSD Berkeley Software Distribution

BOINC Berkeley Open Infrastructure for Network Computing

CDB Constant DataBase

CC Cluster Controller

CLC Cloud Controller

CPU Central Processing Unit

CRAM Challenge-Response Authentication

CRM Customer Relationships Management

CaaS Communication as a Service

DKIM DomainKeys Identified Mail

DR Direct Routing

DNS Domain Name System

DaaS Data Storage as a Service

EBS Elastic Block Storage

EC2 Elastic Compute Cloud

FTP File Transfer Protocol

GAE Google App Engine

ix

GB Gigabyte

GPL General Public License

GRAM Grid Resource Access and Management

GRIP Grid Resource Information Protocol

GSSAPI Generic Security Services Application Program Interface

HACMP High Availability Cluster Multiprocessing

HA High-Availability

HP-UX Hewlett Packard UniX

HPC High-Performance Computing

HTTP Hypertext Transfer Protocol

IMAP Internet Message Access Protocol

IP Internet Protocol

IPL IBM Public License

IRC Internet Relay Chat

iSCSI Internet Small Computer System Interface

IT Information Technology

IaaS Infrastructure as a Service

JDBC Java Database Connectivity

KPOP Kerberized Post Office Protocol

KVM Kernel Based Virtual Machine

LAN Local Area Network

LDAP Lightweigh Directory Access Protocol

LVS Linux Virtual Server

MB Megabytes

MD5 Message-Digest Algorithm 5

MDA Mail Delivery Agent

MHS Message Handling Services

MIME Multipurpose Internet Mail Extensions

MIT Massachusetts Institute of Technology

MSA Mail Submission Agent

MTA Mail Tranfer Agent

MUA Mail User Agent

x

MX Mail Exchanger

NAS Network-Attached Storage

NAT Network Address Translation

NC Node Controller

NFS Network File System

NNTP Network News Transfer Protocol

NTP Network Time Protocol

OS Operating System

OSI Open Systems Interconnection

OTP One-time Password

PAYG Pay as you Go

PCRE Perl Compatible Regular Expressions

POP Post Office Protocol

PaaS Plataform as a Service

QMQP Quick Mail Queuing Protocol

QMTP Quick Mail Transport Protocol

QoS Quality of Service

RAC Real Application Clusters

RAM Random Access Memory

REST Representational State Transfer

RFC Request for Comments

S3 Simple Storage Service

SAN System Area Network

SASL Simple Authentication and Security Layer

SC Storage Controller

SDK Software Development Kit

SLA Service Level Agreements

SMTP Simple Mail Transfer Protocol

SSH Secure Shell

SSL Secure Sockets Layer

SSO Single Sign On

STD Internet Standard

xi

SaaS Software as a Service

TB Terabyte

TCP Transmission Control Protocol

TLS Transport Layer Security

UPS Uninterruptible Power Supply

VIP Virtual IP

VM Virtual Machine

VoIP Voice over IP

WAN Wide Area Network

WSFC Microsoft Windows Server Failover Clustering

WS Web Services

XML eXtendable Markup Language

xii

Chapter 1

Introduction

Nowadays the use of electronic services and Internet communications are increasingly common among
citizens and thus the demand for better services and better solutions is constantly growing. Recent years
have seen the emergence of new infrastructures and computing platforms as well as the improvement
of the existing ones. The need to improve services and electronic communications is compelling and it
requires constant monitoring and studying new solutions towards new infrastructures and platforms.

Computing platforms such as clusters and more recently cloud computing bring new paradigms of
service delivery, and also the possibility to solve many current problems such as scalability, increased
storage and processing capacity, greater rationalization of resources, cost reduction, and increase in
performance.

One of the services critical to the operation of companies, institutions as well as to the communication
between individuals is the e-mail. It is present in several devices, from mainfraim computers to mobile
phones, using several protocols and architectures. It is, by far, the most ubiquitous service in the Internet.
For this reason we chose to analyse the behavior of this service in several environments, to evaluate the
performance of e-mail servers.

1.1 Objectives

The aim of this dissertation is to study architectures and computing platforms hosting e-mail services,
in relation to the applications that implement this services, architectural details, vendors, platforms and
infrastructure and advantages and disadvantages that comes with their adoption. More attention is given
to open-source computing plataforms, due to the its’ wide availability and flexibility.

The main contribution aims to test and check which platforms and e-mail services applications, or
combinations, are more suitable, thus performing better.

1.2 Structure of this Document

This dissertation is composed by five chapters, including the present chapter:

• Chapter 1: introdution and objectives.

• Chapter 2: makes a presentation on the state of the art of Cluster, Grid and Cloud Computing, as
well as E-mail server applications.

• Chapter 3: presents a case study focusing on the details needed to run an E-mail server in in a
cluster and cloud environments and comparing them with single computer environment. It also
defines test scenarios and tests to be carried out.

• Chapter 4: presents and discusses the results.

1

2 CHAPTER 1. INTRODUCTION

• Chapter 5: presents the conclusions of work and future evolution.

Chapter 2

Performance Optimization

The dependency on electronic communication services make it increasingly necessary to keep a high rate
of throughput as well as high availability and fault tolerance. Computer systems have evolved with
this requirements in mind and today there are systems that are suitable to cope with the modern day
demands. Clusters, as well as cloud computing, provide capability on demand, making it easy to provide
resources beyond the hardware limits.

2.1 Cluster Computing

A cluster computer is a set of independent computers connected by a high performance network [Baker, 2000].
All the subsystems are supervised within a single administrative domain, usually residing in a single room
and managed as a single computer system. This subsystem components are called nodes and can incor-
porate a single microprocessor as well as multiple microprocessors in a symmetric multiprocessor config-
uration. The nodes are commonly connected to each other through fast Local Area Networks (LANs) or
System Area Networks (SANs) technologies that may be structured hierarchically. The cluster network
should be dedicated, thus separated from the external world. Clusters are usually deployed to improve
performance and/or availability in relation to a single computer, while typically being much more cost-
effective than single computers of comparable speed or availability [Bader and Pennington, 2001]. The
nodes which compose the cluster can be homogeneous or heterogeneous, an important factor for the
analysis of cluster performance [Naiouf et al., 2006]. Homogeneous nodes are those that have the same
architecture, the same OS (including the same OS version) and the same key component libraries, such
as libc or glibc on Linux and freeware BSD OSs. Heterogeneous nodes are those that can not be defined
as homogeneous [lam, 2006]. Figure 3.2 shows an example of a cluster with N nodes.

A cluster can be used in many modes: high capacity and sustained performance, high capacity and
throughput, high availability through redundancy, or high bandwidth through a multiplicity of disks
and disk access channels or I/O. According to its role, clusters are classified in: High-Availability (HA),
Load-Balacing and Computing Clusters. It is also possible to have Hybrid Clusters, combinations of the
above.

2.1.1 High-Availability (HA) Clusters

HA clusters, also knows as Failover Clusters, are implemented primarily for the purpose of improving the
availability of services. To ensure high-availability of services, the cluster requires several mechanisms and
services to operate properly, such as a monitor mechanism, a backup mechanism, a recover mechanism
and a failover mechanism [Li-Gu et al., 2006]. The mode of operation is to have redundant nodes which
are used when some primary node fail. In pratice, if a server with a particular application crashes, the
application will be unavailable until someone fixes the crashed server. With HA this situation is remedied
by detecting hardware/software faults, and immediately restarting the application on another system

3

4 CHAPTER 2. PERFORMANCE OPTIMIZATION

Figure 2.1: Cluster Layout

without administrative intervention, a process know as Failover. As part of this process, the cluster
software can configure the node before starting the application on it. For example, file systems may
have to be imported and mounted, network hardware may have to be configured, and some applications
customizations maybe needed. The HA clusters are typically used for critical databases, file sharing,
networking, business applications and customer services such as e-commerce sites. Applications of HA
cluster try to build redundancy to eliminate single points of failure, using multiple network connections
and data storage which is multiply connected via SAN [Yves and Patrice, 2008]. To monitor the health
and status of each node, the HA clusters usually use a heartbeat private network. A special condition
that the software devices cluster must have is being able to deal with the split-brain. This occurs when all
of the private links go down simultaneously, but the cluster nodes are still running. When this happens,
each node in the cluster may mistakenly decide that every other node has gone down and attempt to
start services that other nodes are still running, resulting in duplicate instances of service may cause
data corruption on shared storage. Access to services provided by the cluster is done through a network
address that is called the logical host or cluster logical host. This logical host identity is not tied to a
single cluster node. It is actually a network address/hostname that is linked with the service(s) provided
by the cluster. If a cluster node that is running a service goes down, this service will be restarted on
another node in the cluster and it will be associated with the network address/hostname of service, the
logical host.

Two nodes is the minimum size for this type of clusters, as it is the minimum requirement to provide
redundancy [Chee-Wei and Chen-Khong, 2007]. However, tipically, many clusters are composed of many
nodes, sometimes dozens or hundreths of nodes. These configurations can be classified in one of the
following models: [Robertson, 2000]:

• Active/Active - Traffic destined to the failed node is passed to an existing node or load is balanced
by the other nodes. This is usually only possible when the nodes utilize a homogeneous software
configuration.

• Active/Passive - Provides a fully redundant instance for each node that is only brought online
when the primary node fails. This configuration typically requires an extra amount of hardware
that is not used until needed.

Not all applications can run in a clustered environment for high availability, and the design decisions
need to be made in the early design phase of software. The applications must satisfy at least the following
technical requirements in order to run in a HA cluster environment:

2.1. CLUSTER COMPUTING 5

• Should be a relatively easy way to start, stop, force-stop, and check the status of the application. In
practice, the application must have a line interface commands or scripts to monitor the application,
and must support multiple instances.

• The application must support the use of shared storage (NAS/SAN).

• The application should store as much data as possible in a non-volatile shared storage. It is also
important that it can restart another node using the last saved state.

• The application should not corrupt the data when crash or restart from the last saved state.

HA cluster typically use all techniques to make the individual systems and shared infrastructure as
reliable as possible. These include:

• Disk mirroring avoiding system failures due to failures of internal disks.

• Redundant network connections, this means redundancy of all active and passive components of
network.

• Redundant Storage Area Network data connections.

• Redundant electrical power inputs on different circuits, usually both or all protected by Uninterruptible
Power Supply (UPS) units.

These techniques help to minimize the need for clustering failover between systems. The HA cluster
products commonly used comercialy or research/academic are:

• HP ServiceGuard for HP-UX and Linux

• IBM High Availability Cluster Multiprocessing (HACMP) for AIX and Linux - recently
rebranded PowerHA for AIX

• Linux-HA - a commonly used free software HA package for the Linux OS.

• Microsoft Cluster Server (MSCS) and Microsoft Windows Server Failover Clustering
(WSFC) for Server 2008.

• Oracle Clusterware - multi-platform, provides the infrastructure for Oracle Real Application
Clusters (RAC) and enables the protection of both Oracle and non-Oracle applications.

• Red Hat Cluster Suite - Linux only.

• Sun Cluster - Solaris/OpenSolaris only.

• Veritas Cluster Server - multi-platform.

• VMware HA - HA for virtual machines.

2.1.2 Load-Balancing Clusters

Load-Balancing it is a technique used to distribute workload evenly across two or more computers,
network links, CPUs, hard drives, or other resources, in order to get a optimal resource utilization,
maximize throughput, minimize response time, and avoid overload [Bourke, 2001]. The use of load-
balancing stategies can improve the performance of parallel and distributed applications, by dividing the
workload among the machines, to take proper advantage of the resources [Laine and Midorikawa, 2007].
We can use different approaches to this objective, both for homogeneous and heterogeneous environments.
Generally in homogeneous environments, such as homogeneous clusters, a static strategy is used to divide
the work into a number of pieces equal to the number of nodes or processors in the environment, to evenly

6 CHAPTER 2. PERFORMANCE OPTIMIZATION

distribute the computing local nodes. In heterogeneous environments, such as heterogeneous clusters or
computational grids, the workload is divided according to the computational power of each host, and
then, all the nodes received a workload proportional to its processing capacity an load status. This
static workload partition and distribution creates a low overhead compared with dynamic strategies
[Laine and Midorikawa, 2007]. These strategies are normally based on the divide-to-conquer techniques.

One of the most common applications of load balancing is to provide a single Internet service from
multiple servers, sometimes known as a server farm. Some examples are: popular Web Sites, large
Internet Relay Chat (IRC) networks, high-bandwidth File Transfer Protocol (FTP) sites, Network News
Transfer Protocol (NNTP) servers, Domain Name System (DNS) servers and Email servers. At Internet
services, the load balancer is usually a software program that is listening on the port that clients use to
access the service. The load balancer foward the request to one of cluster nodes. This allows the load
balancer to reply to the client without the client ever knowing who really answered. It also prevents
clients contacting nodes clusters directly, which results in security benefits by hiding the structure of
internal network and may prevent attacks in case of vulnerabilities. To select the node, a load balancer
must know which ones are available. For this, it will periodically perform a “health check”. In practice
it will periodically send echo-replies, connection attemps, requests, or anything that the administrator
considers a valid measure to qualify their state.

At Internet services the easiest way to perform load-balancing is to dedicate servers to predefined
groups of users. This approach does not required a dedicated software or a extra hardware node and
is called DNS round robin [Tarreau, 2006]. In this technique, a DNS server has a multiple Internet
Protocol (IP) address for a given hostname, it will return all in a rotating order. This technique unlike
dedicated load balancer, is not “transparent” to clients, because there will be different address for the
same hostname. This is usually used by load balancers for multi-site, but requires that the application is
not affected by the lack of server context. For this reason, this is generally used by search engines, POP
servers, or to deliver static contents. This method requires additional checks the status of servers, so that
in case of failure to proceed to change the IP to another server [Tarreau, 2006]. For this reason it is often
used as a complementary solution and never as a first choice. Depending on the degree of control over
the DNS server and the granularity of load balancing desired this technique may have other advantages
or disadvantages.

The load balancers use a variety of scheduling algorithms to determinate which server node should
send the request. The most common scheduling algorithms used in load-balancing clusters are [clu, 2009]:

• Round-Robin - Distributes each request sequentially around a pool of cluster nodes. Using this
algorithm, all the cluster nodes are treated as equals without regard to capacity or load.

• Weighted Round-Robin - Distributes each request sequentially around a pool of cluster nodes
proportionaly to its capacity. Capacity is indicated by a user-assigned weight factor, which is then
adjusted up or down by dynamic load information. This is a preferred choice if there are significant
differences in the capacity of cluster nodes.

• Least-Connection - Distributes more requests to cluster nodes with fewer active connections.
This is a type of dynamic scheduling algorithm, making it a better choice if there is a high degree
of variation in the request load.

• Weighted Least-Connections - Distributes more requests to cluster nodes with fewer active
connections relative to their capacities. Capacity is indicated by a user-assigned weight, which is
then adjusted up or down by dynamic load information. The addition of weighting makes this
algorithm ideal when the cluster nodes pool contains hardware of varying capacity.

• Locality-Based Least-Connection - Distributes more requests to cluster nodes with fewer active
connections relative to their destination IPs. This algorithm is for use in a proxy-cache server cluster.
It routes the packets for an IP address to the server for that address unless that server is above its
capacity and has a server in its half load, in which case it assigns the IP address to the least loaded
cluster node.

2.1. CLUSTER COMPUTING 7

• Locality-Based Least-Connection with Replication Scheduling - Distributes more requests
to servers with fewer active connections relative to their destination IPs. This algorithm is also
used in a proxy-cache server cluster. It differs from Locality-Based Least-Connection Scheduling
by mapping the target IP address to a subset of cluster nodes. Requests are then routed to the
server in this subset with the lowest number of connections. If all the nodes for the destination IP
are above capacity, it replicates a new server for that destination IP address by adding the cluster
node with the least connections from the overall pool of cluster nodes to the subset of cluster nodes
for that destination IP. The most-loaded node is then dropped from the cluster node subset to
prevent over-replication.

• Source Hash Scheduling - Distributes requests to the pool of cluster nodes by looking up the
source IP in a static hash table. This algorithm is for load balancers routers with multiple firewalls.

Generally, a hardware load balancer [Tarreau, 2006] and some software load balancers [clu, 2009] will
work at the network packets level and will act on routing, using one of the following methods:

• Direct routing: allows the cluster nodes to process and route packets directly to a requesting user
rather than passing outgoing packets through the load balancer router. In this method the load
balancer and the cluster nodes must be in same network segment and must share the same address
for all services.

• Tunnelling: this mode of operation is identical to direct routing, except that tunnels are established
between load balancer and cluster nodes.

• Network Address Translation (NAT): the load balancer receive the request and routes it to
the appropriate cluster node. The latter processes the request and returns the packets to the load
balancer. The load balancer uses network translation to replace the address of the cluster node
with the public IP address. The main disadvantage of this method is that the load balancer become
a bottleneck in a large deployments because it must process outgoing and incoming requests.

In certain situations, it may be desirable for a client to reconnect repeatedly to the same cluster node
(multi-screen web forms, cookies, Secure Sockets Layer (SSL), and FTP connections). In those situations
a client may not work properly unless the transactions are being handled by the same cluster node to
retain the context. The load balancing clustering provides features to help solve this problem, and the
most common are Persistence and Firewall Marks [clu, 2009].

Most of the products that implement load balancing are hardware appliances and the most used are:

• Barracuda Load Balancer

• Array Networks APV Series

• A10 Networks AX Series

• Cisco LocalDirector 400 Series

• Brocade Global Sever Load Balancing

• F5 Networks

• Citrix NetScaler

• Kemp Technologies Load Master Series

• CoyotePoint Equalizer Family

There are also software implementations Load Balancing and the most used are:

• Zeus Load Balancer

• RedHat Cluster Suite

• LVS

8 CHAPTER 2. PERFORMANCE OPTIMIZATION

2.1.3 High-Performance Computing (HPC) Clusters

High-Performance Computing (HPC) cluster is a set of thousands of independents nodes interconnected
through specialized fast networks. Each node run independent operating system kernel, thus synchro-
nization between nodes is demanded for user mode programs. This means that temporal synchronization
of the nodes is a dificult task [Betti et al., 2009]. Moreover, the HPC cluster applications often require an
accurate time synchronization in activities such as performance analysis, debugging code, or checkpoint
data. Therefore, the performance of an HPC parallel application can be severely hampered by the absence
of time synchronization between the activities of the cluster nodes, thus putting a limit on scalability of
these architectures. The HPC Clusters are used by many research areas and fields that require a very
high computational power such as theoretical physics, weather forecasting, cryptoanalysis. Historically,
supercomputers were dedicated machines to solve specific kinds of computationally difficult problems,
but only a few institutions were able to own one of them, because these machines were really expen-
sive. Nowadays with the progress in computer industry and in computer science, it is possible to build
a supercomputer by means of high-end computers grouped in a cluster [Betti et al., 2009]. This modern
supercomputers are cheaper than old ones and generally have more computing power. In November 2009
the TOP500 Supercomputing sites list includes 410 HPC Clusters out of 500 total entries. Most of these
supercomputers running a version of Linux kernel (446 entries out 500 int the TOP500 list of November
2009). Generally each node of cluster runs a Linux kernel that handles all cores in the node [top, 2009].

2.2 Grid Computing

Grid computing is a form of parallel and distributed computing based on an infrastructure that integrate
and collaborates the use of heterogeneous collections of high end computers, storage systems, sensors,
scientific instruments, databases, etc., all interconnected by a wide, geographically dispersed network
[Kouvatsos and Mkwawa, 2003, Al-Khannak et al., 2007]. These resources are owned and managed by
several organizations, usualy called administrative domains. A Grid is built from multi-purpose protocols
and interfaces that address fundamental issues such as authentication, authorization, resource discovery,
and resource access. Grid computing is oriented to high performance computing, but because of their
geographical separation may be a delay in communications between the nodes. This uses its constituent
resources in a coordinated manner to offer different qualities of service, like the reponse time, throughput,
availability, security and/or co-allocation of multiple resources.

Grid computing allows monitoring and interacting with hosted applications. It is also possible to
monitor and interact with power systems and network system using online distributed system. Medicine,
natural sciences, computer science, economics, and energy management and other challenging problems
are the research areas and fields where grid computing has been mainly used [Al-Khannak et al., 2007].
Examples of grand challenge problems that Grid computing offer a way to solve are protein folding, finan-
cial modeling, earthquake simulation, and climate/weather modeling. Web technologies and standards
(e.g. eXtendable Markup Language (XML) or Web Services (WS) are the foundation for scalability and
adaptability in grid computing.

2.2.1 Architecture

The main layers of Grid architecture are Fabric, Connectivity, Resource, Collective, Application (Figure
2.2) [Foster et al., 2001]. Grid middleware is the core system of grid computing and users rely on it to use
the available resources. This core system encompasses the layers Connectivity, Resource and Collective.

The Fabric layer provides the resources to shared and these are mediated by Grid protocols, such as
computational resources, storage systems, catalogs, network resources, scientific instruments and sensors.
A “resource” can be a logical entity, such as a computer cluster, distributed file system, or a distributed
computer pool. In some cases a resourece implementation can involve internal protocols (e.g. Network
File System (NFS)), but these are not a concern of the Grid architecture. Fabric components implement

2.2. GRID COMPUTING 9

Figure 2.2: Grid Architecture

locally, resource-specific operations that occur on specific resources (physical or logical) as a result of shar-
ing operations at higher levels. There is a close interdependence between the functions implemented at the
Fabric level, and the sharing operations supported at higher levels. The more richer the fabric function-
ality, the more sophisticated are the sharing operations, and if we place few demands on Fabric elements,
then deployment of Grid infrastructure is simplified. For example, resource-level support for advance
reservations makes it possible for higher-level services to aggregate (coschedule) resources in interesting
ways that would otherwise be impossible to achieve. According to some authors [Foster et al., 2001],
at a minimum, resources should implement discovery mechanisms that allow describing its structure,
status and capabilities (e.g. whether support advance reservation). Moreover, mechanisms for resource
management should provide some quality control of services delivered. Some resource-specific examples
are: computational resources, storage resources, network resources, code repositories and catalogs.

The Connectivity layer defines core communication and authentication protocols required for Grid-
specific network transactions. Communication protocols enable the exchange of data between the re-
sources of the fabric layer, and the authentication protocols provide secure mechanisms to communicate
and to verify the identity of resources and users. Communication requirements include transport, routing,
and naming. Authentication solutions should have the following features: Single Sign On (SSO), delega-
tion, integration with various local security solutions (such as Kerberos and Unix security) and User-based
trust relationships. Grid security solutions should also provide flexible support for communication protec-
tion (e.g. control over the degree of protection, independent data unit protection for unreliable protocols,
support for reliable transport protocols other than Transmission Control Protocol (TCP)) and enable
stakeholder control over authorization decisions, including the ability to restrict the delegation of rights
in various ways [Foster et al., 2001].

The Resource layer builds on Connectivity layer to define protocols (and Application Programming
Interfaces (APIs) and Software Development Kit (SDK)) for the secure negotiation, initiation, moni-
toring, control, accounting, and payment of sharing operations on individual resources. This protocols
implementations call Fabric layer functions to access and control local resources. Resource layer protocols
are only concerned with individual resources and thus ignore the issues of global state and atomic actions
in distributed collections, which are handled by the collection layer. Two primary classes of Resource
layer protocols can be distinguished [Foster et al., 2001]:

• Information protocols are used to obtain information about the structure and state of a resource,
for example, its configuration, current load, and usage policy (e.g. cost).

10 CHAPTER 2. PERFORMANCE OPTIMIZATION

• Management protocols are used to negotiate access to a shared resource, such as resource require-
ments (including advanced reservation and quality of service) and the operation(s) to be performed,
such as process creation, or data access.

The main standards-based of protocols which were adopted by this layer are:

• A Grid Resource Information Protocol (GRIP) (currently based on the LDAP) is used to define a
standard resource information protocol and associated information model.

• The HTTP-based Grid Resource Access and Management (GRAM) protocol is used for allocation
of computational resources and for monitoring and control of computation on those resources.

• An extended version of the FTP, GridFTP, is a management protocol for data access. FTP is
adopted as a base data transfer protocol because of its support for third-party transfers and because
its separate control and data channels facilitate the implementation of sophisticated servers.

• LDAP is also used as a catalog access protocol.

Unlike the Resource layer, the Collective layer contains protocols, services, APIs and SDKs that are
not associated with a specific resource but rather are global in nature and capture interactions across
collections of resources. As Collective layer is built on the Resource layer can implement a variety of
sharing behaviors without placing new demands on the resources shared. For example:

• Directory services;

• Co-allocation, scheduling, and brokering services;

• Monitoring and diagnostics services;

• Data replication services;

• Grid-enabled programming systems;

• Workload management systems and collaboration frameworks;

• Software discovery services;

• Community authorization servers;

• Community accounting and payment services;

• Collaboratory services.

The last layer is the Application layer that contains the user applications. Applications are built by
calling the services defined at any layer. In each layer, we have well defined protocols that guarantee
access to some useful service (resource management, data access, resource discovery, and so on). In
each layer, APIs may also define which implementation (ideally provided by third-party SDKs) exchange
messages with the appropriate service(s) to perform the desired actions.

2.2.2 Implementations

Midleware implementations can provide a set of service solutions, such as data management, resource
management, information discovery and secure comunication infrastrutures, even using the Internet
[Esposito and Tarricone, 2003, Al-Khannak et al., 2007]. There are several projects which implement grid
midleware and the most used are Globus Toolkit, Berkeley Open Infrastructure for Network Computing
(BOINC), Legion, Condor-G, Accessgrid, Alchemi, Sun Grid Engine, Gridbus, and gLite.

2.3. CLOUD COMPUTING 11

2.3 Cloud Computing

Cloud computing is an emerging model which refer to both the applications delivered as services over
the Internet and the hardware and systems software in the data centers that provide those services
[Armbrust et al., 2009]. This services are referred as SaaS and the hardware and software of data center
is called cloud. Some authors [Gens, 2008] divide this into two concepts: cloud computing and cloud
services. Since then the following definitions:

• Cloud Services - Consumer and Business products, services and solutions that are delivered and
consumed in real-time over the Internet

• Cloud Computing - an emerging Information Technology (IT) development, deployment and
delivery model, enabling real-time delivery of products, services and solutions over the Internet
(i.e., enabling cloud services)

2.3.1 Cloud Computing Models

Clouds are commonly classified as public and private. Public clouds are available for anyone, from an
Internet access, which may access and start using almost immediately. On the other hand private clouds
are usually located within a private infrastructure and managed by the users’ organization [Maxey, 2008].
Each orgazination should independently analyze each situation and decide between models public, private
or hybrid. This choice may be important to their users in terms of availability of service(s) application(s),
contract types and prices. A number of factors should be taken into account:

• Initial Investment - The private cloud has an associated initial investment, which depends on
the desired solution, but that is usually higher than the initial investment in a public cloud;

• Amount of Data - Typically, organizations start with small amounts of data and increasing
demand for these will grow. Private clouds typically get a range of a few Terabytes (TBs) and are
easily scalable by adding additional nodes or disks. On the other hand public cloud get a range of
a few Gigabytes (GBs) and can grow lease more capacity and that the cost increases linearly.

• Longevity of Data - The amount of time that we plan to keep the data may have an impact
on decision. Within a public cloud the longer storage is more expensive, so it is good for frequent
publication of short duration or small content. Within private cloud the longevity of data does not
increase the cost of solution, so it is good for archive or content repository applications;

• Required Performance - Private clouds are deployed locally and accessed over Ethernet LAN
at wire speed, tipically at least 100 MB/s per node. Public clouds are accessed over Internet and
limited by the your and provider bandwidth connection. Typically these approaches are around 10
MB/s but to increase the performance can be increased, also increasing the cost.

• Access Paterns and Locations - Public clouds offerings tipically include replication of data to
multiple geographically dispersed locations, but sometimes it is a extra. This can be a beneffit
when yours users are global.Private clouds are usually deployed locally for LAN-based access. Re-
mote users can access using a Wan, but work with Internet type latencies. Major private cloud
deployments can use multiple sites, thus coming closer to the approach of public cloud, but with a
high initial investment;

• Security and Data Isolation - Public clouds as the name suggests, are shared by different
contexts and their security capacity is only achieved by virtualization of resources and the firewall
of the service provider. If the security issue is critical this option is not the right one. Private
clouds are owned, deployed and managed by internal organization employees, so security and data
isolation is based in your internal definitions for that;

12 CHAPTER 2. PERFORMANCE OPTIMIZATION

• Confidentiality and Destruction of Data - In public clouds must be considered matters of
confidentiality to the service provider of storage, as this may be required to keep, disclose or
answer questions about the information they hold and call into question the confidentiality of the
organization, in case of subpoena or legal questions. In private clouds, control and knowledge of
the data and verifying the legality of these is done internally. When you need to delete data at the
discretion of the organization;

• Service Level Agreements (SLA) - Public clouds have contracted SLAs with their customers
with guaranteed availability of service. This alone does not guarantee the absence of faults, in
the case of unavailability of the service may affect critical business activity of the organization. In
addition it must take into account another possible point of failure the Internet provider. In private
clouds are different mechanisms for data availability and access to, such as multiple copies of files
on multiple nodes and treat each node as a failure domain. In case of individual server failures do
not gring down the cloud or create data loss, so the SLA agreements are usually satisfied;

• In House Technical Resources - Public clouds remove the need for allocation of resources of
the organization for the management and maintenance of infrastructure. But with the use of newer
protocols such as WebDav or Rest for access, the applications will have to be adapted, and for
doing will require knowledge and technical stuff.

These factors should be taken into account to choose the model that best fits the organization needs
(public or private). However, the solution may also involve using a hybrid model.

Public Clouds

Public cloud, also know as external cloud, is referred to when its use is made in a pay-as-you-go manner
[Armbrust et al., 2009, Razak, 2009]. The pay-as-you-go billing model applies charges for the actually
used resources per unit of time. This way, a business can optimize its IT investment and improve
availability and scalability.

Private Clouds

Private cloud is reffered when the cloud is not available to the public, like internal data centers of business
or other private organizations [Razak, 2009]. The private clouds provide local users with a flexible and
agile private infrastructure to run virtualized service workloads within the administrative domain. For
organizations with existing data center investments, it allows reducing operating cost while increasing
the agility and reability of their critical information services. In this scenario, internal and external cloud
resources are consumed and controlled centrally by the organization itself.

Hybrid Clouds

A hybrid cloud is an extension of a private cloud to combine local resources with remote resources from
cloud providers. The cloud providers could be a commercial cloud service or a partner infrastruture
running a different instance of a private cloud.

2.3.2 Cloud Computing Architecture

Cloud computing is an emerging paradigm, yet with little maturity, and suffering from a number of
uncertainties, related to approaches and contexts that are not always consistent. Currently there is no
entity that benefits users and providers of cloud computing that has the responsibility to manage, to
organize, and standardize the cloud computing universe. Entities most respected and involved in the
development of solutions, which highlights the Amazon, Google, IBM, Sun, 3Tera, and some entities
from the academic world, have been responsible for some specifications in this area. It is normal to find
different approaches to the taxonomy of structure and architecture of the cloud computing.

2.3. CLOUD COMPUTING 13

Cloud computing is composed of three layers: Software as a Service (SaaS), Plataform as a Service
(PaaS) and Infrastructure as a Service (IaaS) (Figure 2.3) [Keith, 2009].

Figure 2.3: Cloud Computing Taxonomy or Cloud Computing Stack [Keith, 2009]

Infrastructure as a Service (IaaS)

Iaas is the provision of computer infrastructure (typically a platform virtualization environment) as a
service. IaaS clouds provide very easy and affordable access to resources, such as servers, connections,
storage and related tools. However, it is needed to build an application environment from scratch on
demand. This infrastructure is the underlying of PaaS and SaaS clouds. IaaS clouds are very complex
because it is possible to obtain a great degree of flexibility. Servies are, generally, of low-level, which have
to deal with virtual machines, operating systems, patches. For this reason, it may be necessary to have
skilled labor, or resort to outsourcing. The IaaS can be divided into three components: computational
resources, data storage and communication.

The most common form for providing computational resources at IaaS layer it is through VM
[Youseff et al., 2008]. Virtualization is a leading technology in this component of the cloud, enabling users
to with a secure environment and with unprecedented flexibility in configuring their settings, thereby pro-
tecting physical infrastructure of the center of the data provider. This was specifically enabled by two
technologies of virtualization: paravirtualization and hardware-assisted virtualization. However the lack
of strict isolation between the performance of virtual images which share the same physical infrastructure
has resulted in the difficulty in providing assurances of quality of service. Furthermore, the emergence of
multicore machines aggravated this problem. To overcome these problems and to safeguard the providers
use a number of SLA levels that translate into different levels of service with competitive prices. Amazon
Elastic Compute Cloud (EC2), and Enomalism elastic computing infrastructure are undoubtedly the two
most popular examples of commercial systems available in this cloud category. In this category, there
are also several academic open-source cloud projects, such as Eucalythus, which provides a computing
infrastructure for deploying private or hybrid clouds, with support for integration with Amazon EC2.
This is a tool often used to test Cloud Computing solutions in controlled environments.

Data Storage allows users to store their data on remote virtual disks, and once it is stored this data
can be accessed from anywhere. This service is offen called Data Storage as a Service (DaaS), and it
facilitates cloud applications to scale beyond their limited servers. In cloud environments it is required
that Data Storage Systems comply with requisites such as: high availability, reliability, performance, data
replication and consistency, but we ought to contradictory nature of these requisites will not be expected
that the system can meet all at once. For example, availability, scalability and data consistency can be
considered as three conflicting objectives. Although these features are difficult to be satisfied with the
systems of data storage in general, each DaaS provider defines which it implements to the detriment of

14 CHAPTER 2. PERFORMANCE OPTIMIZATION

others, reflecting that choice in their SLA. Some examples of commercial DaaS-systems are Amazon’s
Simple Storage Service (S3) and EMC Storage Managed Service [Youseff et al., 2008].

In the cloud the need to guarantee quality of service increases, and consequently the network compo-
nent and communications becomes vital to the infrastructure. So, cloud systems are required to provide
capacity-oriented communication services, configurable, scalable, predictable and reliable. Given these
needs, the concept of Communication as a Service (CaaS) was created, to support such requirements
as well as network security, dynamic provisioning of virtual overlays for traffic isolation or dedicated
bandwidth, guaranteed message delay, communication encryption, and network monitoring. Voice over
IP (VoIP) phone systems, collaboration videoconferencing applications using fixed and mobile devices,
and instant messaging applications are candidates for cloud applications that can be composed of CaaS
and can in turn provide combinable cloud solutions for other common applications [Youseff et al., 2008].

Plataform as a Service (PaaS)

The users of this layer are cloud applications developers, implementing their applications for and deploying
them on the cloud [Youseff et al., 2008]. PaaS provide developers with a programming environment with
high-level language and a well-defined set of APIs to facilitate interaction between environments and
cloud applications, and to accelerate the deployment and scalability needed to support these applications
cloud.

Two common examples of a system in this category are the Google App Engine and the Salesforce Apex
language. The Google App Engine provides a pynthon runtime environment and APIs for applications
to interact with Google’s cloud platform. Salesforce Apex language allows the design, along with logic
applications, page layout, work flow and customer reports.

Developers have the benefits of automatic scalability, load balancing, and integration with other
services (e.g. authentication services, email services, user interface) provided through the PaaS. This
way much of the overhead of developing cloud applications is simplified, accelerating the time of issuance
or amendment of new solutions and minimizes the problems affecting the business logic of applications.
The use of these proprietary platforms can bring some disadvantages in interoperability and application
migration between them.

Software as a Service (SaaS)

This layer is the most visible to the end-users off cloud, and are know by Cloud Application Layer or
Software as a Service (SaaS). Typically, user access to services provided by this layer is done through
web-portals, and sometimes these services are paid. Recently this model has proved attractive to many
users, because it reduced the burden of software maintenance and support, and export the computational
work of user terminals for data centers where the cloud applications are developed. This last feature
allows the end user to obtain better performance to some of their cpu-intensive and memory-intensive
workloads without the need for massive capital investments in local machines [Youseff et al., 2008].

For SaaS providers, this model allows them to simplify the work of testing and updating the code, thus
protecting their intellectual property. Once the applications are developed under the provider computing
infrastructure, the developers of the application are able to roll smaller patches to the system and add
new features without disturbing the users with requests to install major updates or service packs.

Despite all the advantages of SaaS, several deployment issues hinder its wide adoption. The major
issues in this model are the security, the availability of the cloud applications and the QoS, but that are
usually avoided by using soft SLAs. Apart from these there are other issues with which the end users and
SaaS providers have to deal with, such as service interruptions due to breaks in the network and other
possible faults in the systems, and integration/migration of applications and end-user data to the cloud.
These issues can cause delays in the adoption of SaaS. In order to persuade end users to migrate from
desktop applications to applications cloud, cloud application vendors need to respond to the concerns
of end users on security, QoS, security, storage of confidential data on the cloud, authentication and
authorization users, availability, backup and data recovery in case of need and an SLA of confidence for
their applications in the cloud [Youseff et al., 2008].

2.3. CLOUD COMPUTING 15

The SaaS provider, in addition to being responsible for the provision of applications to end users, is
also responsible for providing computing power, storage, and networking infrastructure necessary to run
the application [Keith, 2009]. It can use a third party IaaS or PaaS vendor or implement the application
themselfs. Figure 2.4 shows the different environments that can be used to host a SaaS Application.

The most common examples of an application in this category are Customer Relationships Management
(CRM) of Salesforce, Google Apps, Microsoft Online Services and LotusLive of IBM.

Figure 2.4: Three ways to host a SaaS Application [Keith, 2009]

2.3.3 Main Suppliers and Services

The early cloud computing suppliers were companies that discovered that they could get an extra return by
making available its infrastructure to third parties, thereby optimizing the use and sharing costs. Google
and Amazon are two examples because due to the volatility of their services had to scale its infrastructure,
and it represented a very high investment. Then there was a second wave which was led by housing
companies, because they also have large data centers and experience in Information Technology (IT)
management. These were the pioneers who traced the course of Cloud Computing, followed by many
others. Nowadays more and more companies have an opportunity for providing services in this market
area. Table 2.1 shows a comparison between the main suppliers/solutions of Cloud Computing focusing
on the main aspects that distinguish them.

Table 2.1: Comparison between suppliers/solutions of Cloud Computing

Supplier/ So-
lution

Focus Business
Model

Infrastruc-
ture

Infrastructure
Control

SLA Notes

Amazon EC2
and S3

IaaS PAYG Own Web, REST API yes A pioneer and mar-
ket reference. Be-
sides EC2 and S3 of-
fers a set of Cloud
Computing services
that makeAWS the
more complete IaaS
solution.

GoGrid IaaS PAYG or mon-
th/annual plans

Own Web, REST API yes Is a Cloud Infras-
tructure Hosting
supplier with ex-
tensive expertise
and experience
running complex,
on-demand cloud,
dedicated and
mixed server infras-
tructures. Public
Cloud.

Continued on next page

16 CHAPTER 2. PERFORMANCE OPTIMIZATION

Table 2.1 – continued from previous page
Supplier/ So-
lution

Focus Business
Model

Infrastruc-
ture

Infrastructure
Control

SLA Notes

RackSpace IaaS PAYG or month
plans

Own Web, REST API yes Like GoGrid is
a Cloud Infras-
tructure Hosting
supplier a hybrid
hosting that is
to combine cloud
computing with
traditional hosting.
Public Cloud

FlexiScale IaaS PAYG Own Web, REST API yes European supplier.
Allows the creation
of virtual datacen-
ter. Public Cloud

Joyent IaaS, PaaS,
SaaS

Month/Annual
plans

Own Web no Joyent implements
IaaS, PaaS and
SaaS. Part of his
platform is open-
source, and can be
used to implement
private clouds.

3Tera App-
Logic

Implements
IaaS

Depends on
the partners
business model

Own, part-
ners to use
the OS Ap-
pLogic

Web, managment
console

yes AppLogic is a
turn-key cloud
computing platform
for running and
scaling distributed
applications.

Layered Tech-
nologies

IaaS Month plans Own Web, scripting con-
sole

yes Using 3Tera App-
Logic OS to impl-
ment grid on cloud.
Allows the creation
of virtual datacen-
ter.

Eucalyptus Implements
IaaS

Free Independent Web, REST API
compatible with
EC2 and S3

yes Is an open-source
software platform
that implements
IaaS-style cloud
computing using
the existing Linux-
based infrastructure
found in the modern
data center. Also
works with most
of the currently
available Linux dis-
tributions including
Ubuntu, Red Hat
Enterprise Linux,
CentOS, SUSE
Linux Enterprise
Server, openSUSE,
Debian and Fedora
[euc, 2010].

Google App
Engine

PaaS Free Own not available no Google App Engine
(GAE) its a market
reference for PaaS.
GAE has an SDK
available for Java
and Python.

Google App
Engine for
Business

PaaS Per user or per
month

Own Administration con-
sole

yes Version for business
of GAE.

Salesforce PaaS, SaaS Month plans Leased -
Equinix

not available yes It provides a plat-
form for developing
and integrating it-
self, the Force.com,
and is assumed as
a reference company
in providing Saas.

Continued on next page

2.3. CLOUD COMPUTING 17

Table 2.1 – continued from previous page
Supplier/ So-
lution

Focus Business
Model

Infrastruc-
ture

Infrastructure
Control

SLA Notes

IBM Lotus-
Live

SaaS Depends on
the partners
business model

- not avaiable yes LotusLive ss a suite
of business network-
ing and collabora-
tion cloud-based
services hosted by
the Lotus Software.
The integrated
services include
social networking
for businesses, on-
line meetings, file
sharing, instant
message, data vi-
sualization and
e-mail.

Microsoft
Azure

SaaS Pay as you
Go (PAYG)
or Depends on
the partners
business model.

Partners
with Mi-
crosoft
Datacenters

.Net Services, REST
API

yes The Windows Azure
platform is a set
of cloud computing
services that can
be used together or
independently. The
main component
is Windows Azure
what is a a cloud
services operating
system that serves
as the development,
service hosting and
service manage-
ment environment
[azu, 2010].

Each of these suppliers/solutions have a set of characteristics that distinguishes them. In the case
of IaaS suppliers there is a big difference in market share among the top three (Amazon, GoGrid and
RackSpace). The Amazon is a leader with a large difference, offering flexibility and potential to control
the infrastructure that leads her to take as a reference in this field. In the past did not offer SLAs, which
was a feature often essential in choosing a supplier. Currently SLAs with guaranteed 99.95% availability
annual for the EC2 and 99.9% monthly for S3 [aws, 2010]. The GoGrid and RackSpace because of his
background have an extensive expertise and experience running complex, on-demand cloud, dedicated
and mixed server infrastructures [gog, 2010, rac, 2010]. Both guarantee strong SLAs to the availability of
their services and have a great flexibility to build solutions with the client for Cloud Computing hybrid at
the infrastructure level. The flexibility with which Amazon Machine Images (AMIs) are defined goes far
beyond the equivalent of its competitors. As for the management of IPs and DNS and GoGrid RackSpace
are leaders in relation to the Amazon Web Services (AWS).

Google positions itself in the market either in the category of SaaS, with Office applications like
Google Docs and Gmail, either as a supplier of PaaS with Google App Engine (GAE). Its use is free until
a certain quota of resource utilization. GAE platform is a somewhat limited because it only supports
applications in Java and Python. Beyond this limitation is added the fact that applications are either
designed specifically for this purpose (GAE offers an SDK that facilitates the process of development
and integration tests), or will have to be processed in order to run on the this computing platform.
Google most recently launched the GAE for business, that offers centralized administration, SLAs, more
security and some other enterprise features like hosted SQL databases, SSL clients company’s domain
for secure communications, and access to advanced Google services [gae, 2010]. Compared to Google,
Joyent with the SmartPlatform only supports Java applications. The Joyent SmartPlatform is recent, it
is open-source and is likely to have much potential.

Microsoft Windows Azure is an OS for cloud computing and aims at the transition between operating
systems to operate in data centers, such as Windows Server and other Microsoft solutions like SQL Server
and .Net, to an environment compatible with the paradigm of cloud computing. Because of that Azure
will be a market reference for all who use developed applications that use Microsoft technology, as this
will ensure their smooth integration. It can be used for construction of public or private clouds and the

18 CHAPTER 2. PERFORMANCE OPTIMIZATION

guarantee of interoperability between different service providers that adopt the Azure.
Today there are several software solutions that implement IaaS and that convert traditional harware

in an infrastructure for providinf IaaS. The comercial reference is the 3Tera AppLogic and the open-
source reference is the Eucalyptus. The strength of AppLogic is the possibility of converting a set of
servers in a distributed system of grid computing in which control of the infrastructure is done centrally.
The Eucalyptus provides an abstraction layer of hardware resources by converting them into virtual
resources. In being able to define private cloud or hybrid due to its compatibility with the API of AWS
causes this to be adopted for test environments or academic. The AppLogic and Eucalyptus run on Linux
operating systems and both allow the installation of virtual images that span different operating systems
and software customized by the programmer. Azure lacks this flexibility.

2.4 E-Mail Service

The implemention of an e-mail service requires taking into account several factors, such as the format for
storing users accounts (mbox or maildir format), the filesystem the mail will be stored in, the computing
platform, and others.

2.4.1 Mail Tranfer Agent (MTA)

In the context of Internet Message Handling Services (MHS), a Message Tranfer Agent or Mail Tranfer
Agent (MTA) or Mail Relay is a computer process or software agent that transfers electronic mail messages
from one computer to another, in single hop application-level transactions. A MTA implements both the
client (sending) and server (receiving) portions of the SMTP. In the context of the DNS, the term Mail
Exchanger (MX) refers to an IP address assigned to a device hosting a mail server, and by extension also
indicates the server itself. The SMTP first definition is in Request for Comments (RFC) 821 Internet
Standard (STD) 15 in 1982 and the last updated by RFC 5321 in 2008, which includes some optional
extensions. The SMTP is the most used protocol today and its objective is to transfer mail reliably
and efficiently. This is independent of the particular transmission subsystem and requires only a reliable
ordered data stream channel [Klensin, 2008]. The RFC 5321 specifically describes transport over TCP,
but other transports are possible (some of them are described in the appendices of the RFC 821. SMTP
mail relaying is usually referred to as an important feature of SMTP, which consists of its capability to
transport mail across multiple networks. Those networks, consisting of mutually-TCP-accessible hosts
on the public Internet or mutually-TCP-accessible hosts on a firewall-isolated TCP/IP Intranet, or hosts
in some other LAN or Wide Area Network (WAN) environment utilizing a non-TCP transport-level
protocol.

Regarding the mode of operation, the MTA works behind the scenes, while the user usually in-
teracts directly with the MUA. Mail Submission Agent (MSA) is the process which accepts message
submissions from Mail User Agents (MUAs), and the TCP port 587 is used for that communication
[Klensin and Gellens, 1998]. The communication between MTAs, or from an MSA to an MTA using the
TCP port 25.

The process of sending an email to the receipt is as follows: it is sent by an e-mail client (Mail User
Agent (MUA)) to a mail server (Mail Submission Agent (MSA)) using SMTP on TCP port 587 (most
email providers also allow sending the standard port 25). Then the MSA forwards the email to his MTA.
In most cases, these two agents are just different instances of the same software released with several
options on the same machine. Local processing can be done on a single machine, or divided among several
units in the first case, the processes involved can share files, in last case the SMTP is used to transfer
messages internally, with each host configured to use the next unit as a smart host. Each process is an
MTA, that is an SMTP server. The edge MTAs to find the target host uses the DNS to find the MX
record to the recipient’s domain (the part of the address on the right of @). The returned MX record
contains the name of the destination host. The MTA then look for the A record to the name in order
to obtain the IP address, then connects to the server as an SMTP client. We may have several MX

2.4. E-MAIL SERVICE 19

records for a single domain, which allows administrators to specify an order in which they should be
tried. Once the target MX accepts the incoming message, it passes it to a Mail Delivery Agent (MDA)
for local mail delivery. The MDA is able to save messages in the format supported (mbox or maildir).
As in the sending, receiving mail can be done using several computers or just two different instances
of the same software released with several options on the same machine. Ended delivered to the mail
server location, the mail is stored so it can be retrived by authenticated MUA. Mail is retrieved by the
end user applications, called e-mail clients using the Internet Message Access Protocol (IMAP), or Post
Office Protocol (POP), or proprietary systems (Exchange, Lotus Domino/Notes), or Webmail clients,
which may use any method, or a non standard protocol.

The IMAP is an application layer internet protocol that allows an e-mail client to e-mail retrieval
from a remote mail server, and is one of the two most prevalent Internet standard protocols for this
function. The last version of this protocol are IMAP4rev1, and permits manipulation of mailboxes (remote
message folders) in a way that is functionally equivalent to local folders [Crispin, 2003]. IMAP4rev1 also
supports both on-line and off-line modes of operation, and provides the capability for an offline client to
resynchronize with the server. Usually e-mail clients that use IMAP leaves the messages on the server
until the user explicitly deletes them. This characteristic of IMAP operation allow multiple clients to
manage the same mailbox. IMAP is used by some Webmail clients, such as Gmail, Atmail, Roundcube.
IMAP server listens on well-known port 143. Encrypted IMAP traffic is either by IMAPS, which connects
to the server using Transport Layer Security (TLS) or SSL on well-known TCP port 993, or requested
after protocol initiation, using the STARTLS command, if supported [Newman, 1999].

The POP is an application layer internet protocol that allows an e-mail client to e-mail retrieval
from a remote mail server, and is one too of the two most prevalent Internet standard protocols for
this function. The last version and current standard of this protocol are POP version 3 (POP3). POP
supports simple download-and-delete requirements for access to remote mailboxes, although most POP
clients have an option to leave mail on server after download. POP is used too by some Webmail clients,
such as Gmail, Yahoo, POP server listens on well-known port 110. Encrypted POP traffic is either by
POPS, which connects to the server using TLS or SSL on well-known TCP port 995, or requested after
protocol initiation, using the STLS command, if supported [Newman, 1999].

2.4.2 E-mail Service Implementations

There are many implementations of email service, some free and open-source, and other proprietary or
open-source that must be paid. Someone can run only in Windows family, and other in Unix/Linux
world. Some services implement SMTP, POP and IMAP, and others only implement SMTP, or SMTP
and POP, or POP and IMAP.

The most popular proprietary and paid e-mail services implementations are Microsoft Exchange
Server, IBM Lotus Domino and GroupWise of Novel. There are some open-source implementations,
although requiring some form of paiment, and the most popular are Zimbra, Scalix and Atmail. The
Zimbra has a open-source version that is free, but has fewer features. The Zimbra Collaboration Suite
(now part of Yahoo!), is an collaboration suite, email and calendar server. This version it is Software
as a Service (SaaS) ready [zim, 2010]. The Scalix Collaboration Platform is owned by Linux distributor
Xandros and is an collaboration platform and an e-mail server implementation SaaS ready too [sca, 2010].

The most popular open-source and free SMTP implementations are: Postfix, Qmail, Exim, and Send-
mail. The Qmail implements POP server too. The most polular open-source and free implementations
of POP and IMAP are: Dovecot, Courier Mail Server and Cyrus IMAP.

Sendmail

Sendmail was written by Eric Allman as a derivative of delivermail early in the year 1980 at University
of California, Berkeley. It was shipped with Berkeley Software Distribution (BSD) 4.1c in 1983, the first
BSD version which included TCP/IP protocol. Allman projected Sendmail to have great flexibility, but
this may be an enemy for beginners. The current version of Sendmail is version 8 and consists of about

20 CHAPTER 2. PERFORMANCE OPTIMIZATION

118k lines of code, plus the M4 scripts used to generate the config file and milters. With M4 much of
the configuration complexity is hiden. The Sendmail milter is an API to enable third-party programs to
access mail messages as they are being processed by the MTA. This allows them to examine and modify
message content and meta-information during the SMTP transaction [mil, 2010]. The goal of the project
in the latest sendmail version is to be compatible with its predecessors. The sendmail has a monolithic
main configuration file. The releases are regular, have many commiters and major contribs, and have a
good documentation. Sendmail is not officially supported to interact with MySQL or LDAP, but only to
use the ldap for aliases database.

Sendmail is known for its lack of security and many bugs. Perhaps because this originates in the
early days of the Internet, an era when considerations of security did not play a primary role in the
development of network software. Since about 2000 it has improved in security and performance, and
has a large number of new features (milters). It is a default MTA on most commercial Unix versions and
some Linux distributions. It has been ported to many systems, including Windows and is probably the
most well-known MTA.

The official site for the open-source community of sendmail is http://www.sendmail.org/. The site
is sponsored by Sendmail, Inc., which provides appliance-based products, business applications and SLA
support and services for the open-source Sendmail MTA [sen, 2010].

Qmail

Qmail was writen, at the end of 1995, by Daniel Julius Bernstein as a more secure replacement for the
popular Sendmail program. The last version of Qmail is version 1.03 and was released on June 15, 1998
[qma, 2010]. Its author has not released since then, and does not permit others to make releases. In
November 2007 Qmail was released to the public domain, but is usable within very tight restrictions.

The main features of Qmail are security, performance, simplicity, modularity and some good inova-
tions. At the first release, qmail was the first security-aware mail transport agent, prior to others who have
appeared. Contrasting with Sendmail, Qmail has a modular architecture composed of mutually untrust-
ing components; for instance, the SMTP listener component of Qmail runs with different credentials than
the queue manager, or the SMTP sender. qmail was also implemented with a security-aware replacement
to the C standard library, and as a result has not been vulnerable to stack and heap overflows, format
string attacks, or temporary file race conditions [qma, 2010]. Qmail’s performance was also superior to
sendmail, particularly for bulk mail tasks such as mailing list servers. The configuration is easy and is
distributed by many simple files. Because it is modular with respect to its main functions is possible
to replace any part of Qmail system with a different module as long as it maintains the same interface.
When Bernstein created Qmail one of his concerns was to solve the problems of the BSD mailbox format,
and thus created the maildir message format. Other innovations were the user-controlled wildcards, the
Quick Mail Transport Protocol (QMTP) and Quick Mail Queuing Protocol (QMQP) protocols and POP3
protocol support. With the user-controlled wildcards, out of the box, mail addressed to “user-wildcard”
on qmail hosts is delivered to separate mailboxes, allowing users to publish multiple mail addresses for
mailing lists and spam management. Other features are supports host and user masquerading, full host
hiding, virtual domains, null clients, list-owner rewriting, relay control, double-bounce recording, arbi-
trary RFC 822 address lists, cross-host mailing list loop detection, per-recipient checkpointing, downed
host backoffs, independent message retry schedules, and qmail also includes a drop-in “Sendmail” wrap-
per. Today those benefits have already been matched and exceeded by some MTAs and and Qmail is not
so good option, because it is not maintained and is impossible someone else maintain it, do not suport
IPv6 protocol and the modern mail standards.

To resolve some of these problems and fill other needs,some communities of users of Qmail, have de-
veloped some patches. With the amount of patches that have appeared, without much scrutiny, it became
necessary to know how to choose them and how to conjugate them. Some group of Qmail experts cre-
ated distributions of sets of patches, and the most popular are: netqmail (http://qmail.org/netqmail/),
qmailrocks (http://qmailrocks.org/) and qmail-ldap (http://www.qmail-ldap.org/). Due to the patches
Qmail supports interaction with some databases such as Mysql, PostgreSQL and Openldap, the latter

2.4. E-MAIL SERVICE 21

being supported by the community qmail-ldap. In addition to the patches there are some applications
that is usually advisable to its installation along with Qmail, such as ezmlm-idx, ucspi-tcp, daemon-
tools, checkpassord. The ezmlm-idx is an easy-to-use, high-speed mailing list manager, the ucspi-tcp
is an application created by Bernstein and implement tcpserver and tcpclient command-line tools, the
daemontools, also created by Bernstein, is a collection of tools for managing UNIX services, and the
checkpassword, also created by Bernstein, provides a simple, uniform password-checking interface to all
root applications, such as pop3d. In last version of qmail-ldap patch the checkpassword is not necessary
because the authentication function of the pop3d is already implemented. There is much documenta-
tion for Qmail and the use of their patches and the best website to start is http://www.qmail.org/, or
netqmail, or qmailrocks or qmail-ldap websites.

The website of Qmail author is http://cr.yp.to/qmail.html, and the website where it is the Qmail
source code, documentation and all the patches is http://www.qmail.org/.

Postfix

As Qmail, Postfix was written by a prolific Unix security software author, Wietse Zweitze Venema. The
first release was in 1997 and this project had as the objectives to be fast, efficient, easy to administer,
and secure. Postfix is a work largely of Wietse, with occasional contributions from isolated areas such as
integration of the TLS libraries. The management of the release is made by Wietse, and these come in
bursts, with some releases containing only very small improvements. The last stable version of Postfix is
2.7.1. The Postfix is under the IBM Public License (IPL).

Postfix fits being Qmail and Exim, consists of several programs (less than qmail), has a monolithic
configuration file, like Exim and Sendmail, handles regular expressions in many contexts, using the Perl
Compatible Regular Expressions (PCRE) developed by Phil Hazel for Exim, and it is table-driven, mean-
ing that everything is a table and that table can be represented in all kinds of ways, from simple text
files to relational databases. It supports databases such as SQLite, PostgresSQL, MySQL,LDAP, DBM,
CDB and Berkeley DB. Other popular features of Postfix are IPv6 support, SASL authentication, TLS
encryption and authentication, QMQP server, Multipurpose Internet Mail Extensions (MIME) (includ-
ing 8BITMIME to 7BIT conversion), DomainKeys Identified Mail (DKIM), DomainKeys and SenderID
authentication (via Milter plug-in), junk mail control, address manipulation, mailbox support (mbox and
maildir) [pos, 2010]. Postfix is a drop-in replacement for Sendmail (it implements the Sendmail command
line interface and is compatible with Sendmail milters).

Postfix has a tiny development community (one commiter and three major contribs), medium-size,
but very active, user community, good documentation, and your website is http://www.postfix.org/.

Exim

The Exim is an MTA used on Unix-like operating systems, and its first version was written in 1995
by Philip Hazel for use in the University of Cambridge Computing Services e-mail systems. The name
initially stood for EXperimental Internet Mailer. It was originally based on an older MTA, Smail-3, but
it has since diverged from Smail-3 in its design and philosophy [Golanski, 2000]. The objective of this
project is to be a general-purpose MTA for Unix machines. The latest version of Exim is 4.72, and is
distributed under the terms of the GNU General Public Licence. Exim has been ported to most Unix-like
systems, as well as to Microsoft Windows using the Cygwin emulation layer. Exim 4 is currently the
default MTA on Debian GNU/Linux systems.

With respect to security Exim3 had some flaws and, consequently, a pair of serious security flaws,
solved with the release of 4.

Exim, like Smail and Sendmail, has a single binary that controls all the facilities of the MTA, a
monolithic configuration file (at version 4.x, the configuration file can be split into several files). Exim
is highly configurable, with features that are lacking in other MTAs. It had always had substantial
facilities for mail policy controls, providing facilities for the administrator to control who may send or
relay mail through the system. Version 4.x included many important control features such as Access
Control List (ACL) based system and the integration of a framework for content scanning. With ACL

22 CHAPTER 2. PERFORMANCE OPTIMIZATION

based system allows very detailed and flexible controls and with framework for content scanning allows
for easier integration of anti-virus and anti-spam measures [exi, 2010]. There are two main schools of
configuration style for Exim. The first and native school, strongly influenced by Philip Hazel, keeps the
Exim configuration in one file and external files are only used as data sources. The second commonly
style is the Debian style which is designed to make it easier to have an installed application automati-
cally provide mail integration support without having the administrator edit configuration files. Due to
differences of approach of the two, is normal to have flat support for the Debian approach in the Exim
mailing lists, but there is Debian-specific list.

The Exim documentation is extensive and exhaustive, and when a feature or some behaviour is not
documented then this is classed as a bug. There are 3 main sets of documentation for exim, all of
which are also available online in HTML, pdf and text-file [exi, 2010]. The Exim Specification which
is the master documentation for exim containing all required detail to install, configure and use Exim,
the Exim Filter Specification which is additional information on the Exim filter language, and HOWTO
Documentation.

With respect to performance, Exim has been deployed in busy environments, often handling thousands
of emails per hour efficiently. Exim is designed to deliver email immediately, without queueing. However,
its queue processing performance is comparatively poor when queues are large (which happens rarely
on typical low-traffic sites, but can happen regularly on high-traffic sites). Qmail and Postfix have a
central queue manager (qmail-send, qmgr), which Exim do not have, which makes it difficult to perform
centralized load balancing, either of queue processing (leading to disproportionate amounts of time being
spent on processing the same queue entries repeatedly) or of system-wide remote transport concurrency
(leading to a “thundering herd” problem when multiple messages addressed to a single domain are
submitted at once) [Wikipedia, 2010].

Like Postfix, Exim is a Sendmail drop-in replacement. In 2007 Philip Hazel was retired from the
University of Cambridge, and the maintenance of Exim transitioned to a team of maintainers. Since then
the release rate has slowed. The Exim website is http://www.exim.org/.

Dovecot

Dovecot is an open-source IMAP and POP3 email server for Linux/UNIX-like systems, written with
security in mind [dov, 2010]. Dovecot was first released in July 2002, and is developed by Timo Sirainen.
A part of code is under Massachusetts Institute of Technology (MIT) license, and everything else is
LGPLv2.1. The last stable version is 2.0.0. Dovecot is an excellent choice for both small and large
installations. It is fast, simple to set up, requires no special administration and it uses very little memory.
The website of Dovecot is http://www.dovecot.org/. Good documentation and source code can be found
in this website.

Its main features are support the standard mbox and Maildir formats, is standards compliant, the
indexes are self-optimized, is self-healing, tries to be admin-friendly, support IMAP4rev1 and POP3, IPv6,
SSL and TLS, as well as multiple commonly used IMAP extensions, plugins (quota and ACLs), plaintext
and non-plaintext (CRAM-MD5, DIGEST-MD5 and others) authentication mechanisms, interaction with
databases (LDAP, PostgresSQL, MySQL, SQLite), works with NFS and clustered filesystems, support
Maildir++ quota.

The design and implementation is highly focused on security. The author offer 1000 EUR of own
money to the first person to find a security hole from Dovecot [dov, 2010].

Courier IMAP

The Courier IMAP server is a module of the Courier Mail server and is distributed under the terms of
the GNU General Public License (GPL). The last stable release is 4.8.0, available at http://www.courier-
mta.org/imap. Good documentation and source code can be found in the same location. This module
implements IMAP and POP protocols. The main features are support IMAP4rev1 and POP3, IPv6
support, IMAP extensions, shared folders, IMAP over SSL and STARTTLS, authentication using SSL
certificates, authenticating mail accounts using the module Courier Authentication Library, ability to

2.4. E-MAIL SERVICE 23

restrict the maximum number of IMAP logins, and the maximum number of logins from the same IP
address, virtual mailboxes, maildir support only, maildir++ quota support, IMAP/POP3 proxying. The
Courier IMAP server do not support maildir++ quota over 2GB - 1 byte.

The module Courier Authentication Library suport plaintext and non-plaintext authentication mech-
anisms. This has various authentication modules such as authpwd(looks up userids and passwords in
your /etc/passwd file), authshadow (use shadow password files), authpam, authuserdb (uses GDBM or
DB database files), authcram (CRAM-MD5 authentication), authldap, authmysql, authpgsql.

Cyrus IMAP

The Cyrus IMAP server is a module of Cyrus Project developed at Carnegie Mellon University, which
prior to 1994 is exclusively used the locally-developed and non-standard Andrew Messaging System
(AMS) for its email communication needs [cyr, 2010]. The last stable version is 2.3.16 and is under
Carnegie Mellon University License. The website of Project Cyrus is http://cyrusimap.web.cmu.edu/.
The Cyrus IMAP server provides access to personal mail and system-wide bulletin boards through the
IMAP protocol. This server is a scalable enterprise mail system designed for use from small to large
enterprise environments using standards-based technologies. This module full implementation allows
a seamless mail and bulletin board environment to be set up across multiple servers. It differs from
other IMAP server implementations in that it is run on ”sealed” servers, where users are not normally
permitted to log in. The mailbox database is stored in parts of the filesystem that are private to the
Cyrus IMAP system. All user access to mail is through software using the IMAP, POP3, or Kerberized
Post Office Protocol (KPOP) protocols. The private mailbox database design gives the server large
advantages in efficiency, scalability, and administratability. Multiple concurrent read/write connections to
the same mailbox are permitted. The server supports ACLs on mailboxes and storage quotas on mailbox
hierarchies, IMAP4rev1 protocol, IMAP extensions, SIEVE(RFC3028) for server side email filtering, any
authentication mechanism available from the Simple Authentication and Security Layer (SASL) library
(KERBEROS V4, GSSAPI, CRAM-MD5, DIGEST-Message-Digest Algorithm 5 (MD5), OTP, PLAIN,
and STARTTLS), IMAP and POP3 over SSL [cyr, 2010].

2.4.3 Mail Storage Format

In the Unix/Linux world there are two ways to store e-mail: mbox and maildir format. Some MTAs
implementations support both ways, such as postfix, qmail, exim.

Mbox Format

Mbox is the traditional way of storing mail messages and is one standard of the Unix world. The mbox
format (figure 2.5) use a regular text file which serves as the mail users mailbox. Mbox is a text based
storage system and is used in a lot of mail clients on a wide variety of platforms. For example Eudora
(Windows, MacOS), Mozilla Thunderbird (Windows, Linux, MacOS) and others, uses this format for
storing its mail. Some MTAs uses this format as well, such as Sendmail and Microsoft Exchange Server.

How Mbox works [mbo, 2009]:

• Receiving and storing a mail

1. Lock the mailbox.

2. Append the header (usually “From [senders email address] [date and time received]”) and the
mail into the mailbox file.

3. Unlock the mailbox.

• Retrieving a mail

1. Lock the mailbox.

24 CHAPTER 2. PERFORMANCE OPTIMIZATION

Figure 2.5: Mbox storage format

2. Locate and read the mail.

3. Update the mail status flag.

4. Unlock the mailbox.

• Deleting a mail

1. Lock the mailbox.

2. Move the contents of the mailbox, beginning from the position right after the mail to be deleted
until the end of the mailbox, into the position of the mail to be deleted.

3. Reduce the size of the mailbox file by the size of the deleted mail.

4. Unlock the mailbox.

• Searching a mail

1. Lock the mailbox.

2. Search the mailbox.

3. Unlock the mailbox.

The main advantages include: universally supported format, the addition of a new mail into the
mailbox file and the search for text inside a single mailbox file are fast. The disadvantages are: file lock
problems, problems when used with network file systems and this format is prone to corruption.

Maildir Format

The Maildir is a more recent format than Mbox, and was created by Bernstein when he created Qmail.
This format creates a directory for each mail user, usually named Maildir. Under this directory there are
three more directories named new, cur and tmp (figure 2.6) [mbo, 2009].

How Maildir works:

• Receiving and storing a mail

1. Create a unique file in the tmp directory.

2. Write the mail into the newly created file.

3. Move the completely written mail into the new directory.

• Retrieving a mail

1. Locate and read the mail.

2.4. E-MAIL SERVICE 25

Figure 2.6: Maildir storage format

2. Move the mail from new into the cur directory and append the mail status flag into the
filename.

• Deleting a mail

1. Delete the file containing the mail.

• Searching a mail

1. Search each and every mail file.

The main advantages are: the locating, retrieving and deleting a specific mail is fast, minimal to no
file locking needed, can be used on network file system and is immune to mailbox corruption (assuming
the hardware will not fail). The disadvantages are: some filesystems may not efficiently handle a large
number of small files, and the searching text, which requires all mail files to be opened is slow [mbo, 2009].

26 CHAPTER 2. PERFORMANCE OPTIMIZATION

Chapter 3

Test Scenarios

The main contribution of this dissertation is related to the analysis of the performance of e-mail services.
To achieve some conclusions, it is necessary to define a test scenarios and to retrieve information about
the behaviour of several e-mail server applications. As such, a set of tests must be defined, as well as
the architectures that are hosting the e-mail servers. We intend to conduct tests to verify the scalability
and performance of the SMTP on different kinds of hosting architecture (single computer, cluster and
cloud) and with different applications (Qmail, Postfix). Since they are related, we also intend to perform
tests to verify the scalability and performance of the POP3 and IMAP on the same architectures (single,
cluster, cloud), whith the applications Qmail, Courier and Dovecot.

3.1 Tests

The tests are performed by measuring the number of sessions per ammount of time, in several test
scenarios. The test period is fixed, thus varying the number of client machines, the number of connections
and the number of e-mail destinations (only for SMTP. For POP3 and IMAP the e-mail address is fixed,
as well). Therefore we have chosen to perform tests with the following scenarios:

• SMTP

– 1C 1S - one client machine and one SMTP sessions injector intance, with 1, 5 and 10 e-mail
address destinations.

– 3C 1S - three clients machines, one SMTP sessions injector intance in each machine, with 1, 5
and 10 e-mail address destinations.

– 3C 2S - three clients machines, two SMTP sessions injector intances in each machine, with 1,
5 and 10 e-mail address destinations.

• POP3 and IMAP

– 1C 1S - one client machine, one POP3 and IMAP sessions injector intance.

– 3C 1S - three clients machines, one POP3 and IMAP sessions injector intance in each machine.

– 3C 2S - three clients machines, two POP3 or IMAP sessions injector intances in each machine.

To inject the traffic SMTP, POP3 and IMAP we used the tool SLAMD Distributed Load Generation
Engine. This application is Java-Based and is designed for stress testing and performance analysis of
network-based applications [sla, 2010]. Initial development of SLAMD was performed at Sun Microsys-
tems, with recent development sponsored primarily by UnboundID Corp [sla, 2010]. It is available under
the terms of the Sun Public License, which is an Open Systems Interconnection (OSI) approved open
source license, and its main site is www.slamd.com [sla, 2010]. It was originally developed for the purpose

27

28 CHAPTER 3. TEST SCENARIOS

of benchmarking and analyzing the performance of LDAP directory servers, however, it is also well-suited
for testing other kinds of network applications and has been used for Web servers and Web-based appli-
cations, relational databases, and e-mail servers stress analysis. It can also be used for non-network based
applications (and in fact, it is used for comparing things like CPU power and memory latency across a
number of different kinds of systems), although it’s distributed nature makes it ideal for systems that
can be accessed remotely [sla, 2010]. It also provides a Java-based API to make it possible to quickly
develop custom workloads, and it also contains an embedded scripting engine that can make it easy to
stress applications using protocols like LDAP, HTTP, SMTP, IMAP, and POP, or any database that
can be accessed via JDBC [sla, 2010]. The SLAMD has a server and a client versions. The server version
has a Web interface for management where tests are defined and where the test results are received. The
client version has two variants: client and monitor client. The client receives the server’s definition of the
tests, executes them and returns the results to the server. The client monitor monitors the client and the
target servers and sends monitoring data to the server. To define a test, called a job in SLAMD, several
parameters must be set. The most important parameters for defining an SMTP job are the following
(those with an * are required):

• Start Time (YYYYMMDDhhmmss)

• Duration (seconds) - the duration will always be 60 seconds

• Number of Clients * - the number of client will be 1, 3 or 6.

• Threads per Client * - the number of threads will always be 20

• Statistics Collection Interval (seconds) - the interval will always be 10 seconds

• SMTP Server Address * - MX IP address

• SMTP Server Port * - 25

• From Address - raposo@ipb.pt

• Recipient Address * - depending on the number of destinations: teste1@wifi.ipb.pt teste[1-5]@wifi.ipb.pt
or teste[1-10]@wifi.ipb.pt

• Minimum Number of Recipients * - equal to the number of destinations

• Maximum Number of Recipients * - equal to the number of destinations

• Message Body Size (bytes) * - will always be 1024

• Time Between SMTP Sessions (ms) - this time will always be 0

• Max Request Rate (Requests/Second/Client) - this value will always be -1, which indicates that
the client should attempt to perform requests as quickly as possible.

• Max Rate Enforcement Interval (Seconds) - this value will be 0, which indicates that it should be
equal to the statistics collection interval.

The most important parameters to define a POP3 job are (those with a * are required):

• Start Time (YYYYMMDDhhmmss)

• Duration (seconds) - the duration will always be 60 seconds

• Number of Clients * - the number of client will be 1, 3 or 6.

• Threads per Client * - the number of threads will always be 20

3.2. APPLICATIONS 29

• Statistics Collection Interval (seconds) - the interval will always be 10 seconds

• POP Server Address * - MX IP address

• POP Server Port * - 110

• User ID * - teste1@wifi.ipb.pt

• User Password * - (password-of-teste1)

• Time Between POP Sessions (ms) * - this time will always be 0

• Max Request Rate (Requests/Second/Client) - this value will always be -1, which indicates that
the client should attempt to perform requests as quickly as possible.

• Max Rate Enforcement Interval (Seconds) - this value will be 0, which indicates that it should be
equal to the statistics collection interval.

The most important parameters to define a IMAP job are (those with a * are required):

• Start Time (YYYYMMDDhhmmss)

• Duration (seconds) - the duration will always be 60 seconds

• Number of Clients * - the number of client will be 1, 3 or 6.

• Threads per Client * - the number of threads will always be 20

• Statistics Collection Interval (seconds) - the interval will always be 10 seconds

• IMAP Server Address * MX IP address

• IMAP Server Port * - 143

• User ID * - teste1@wifi.ipb.pt

• User Password * - (password-of-teste1)

• Time Between IMAP Sessions (ms) * - this time will always be 0

• Max Request Rate (Requests/Second/Client) - this value will always be -1, which indicates that
the client should attempt to perform requests as quickly as possible.

• Max Rate Enforcement Interval (Seconds) - this value will be 0, which indicates that it should be
equal to the statistics collection interval.

Between each test, some maintenance operations are performed:

• Maildirs are cleaned,

• SLAMD clients are restarted,

• Services under test are restarted,

• Caches are erased in all the computers.

3.2 Applications

We will have two main groups of applications, SMTP applications and POP3/IMAP applications. These
applications mentioned above are dependent on other applications, such as openldap, db, daemon-tools,
uscpi-tcp. The description of the steps to install and configure these applications can be found in Appendix
A.

30 CHAPTER 3. TEST SCENARIOS

3.2.1 SMTP Applications

For SMTP, we will install and configure the applications Qmail and Postfix. Qmail will be installed from
source code, so it is necessary to download the source code, configure the Makefile, compile and install.
Before compiling and installing it is necessary to install the dependencies (openldap,daemon-tools, uscpi-
tcp) and create local users and groups that Qmail needs. Once installed it has to be configured. The
configuration is contained in several small text files, housed in the directory /var/qmail/control. It is
also necessary to create a set of scripts needed to manage the service. These scripts are housed in the
directory /var/qmail/supervise and will allow starting, stoping, restarting, checking the status, checking
the queue and logging (more detailed installation and configuration can be found in Appendix A). Postfix
will be installed from the available packages, as its’ dependencies (openldap). The configuration is spread
over two main files (main.cf, master.cf) and two small files that contain settings related to authentication
and LDAP search. Since Postfix has mechanisms that protect against the exceeding of requests coming
from an IP or range of IP addresses, it is necessary to add the test network to the local networks in the
configuration. More details can be found in Appendix A.

3.2.2 POP3/IMAP Applications

For POP3/IMAP, we will install and configure the applications Qmail, Courier and Dovecot. Qmail has
already been installed for the SMTP, so it is only necessary create the scripts to manage this services.
Courier will be installed from the available packages, as its’ dependencies (openldap). The configuration
is spread over four main files (imapd, pop3d, authdaemonrc, authldaprc). The maximum number of
connections per IP was increased to 50. More details can be found in Appendix A. Dovecot will be
installed from source code, so it is necessary to download the source code, configure the Makefile, compile
and install. Before compiling and installing it is necessary to install the dependencies (openldap). Once
installed it has to be configured. The configuration is contained in several small text files, housed in the
directory /usr/local/etc/dovecot. The maximum number of connections per IP was increased to 50. More
details can be found in Appendix A.

3.3 Architecture

In this work, we will address the following architectures:

• single computer – will be the basis for comparison,

• computer cluster,

• cloud computing.

Computers with the following characteristics will be used to build the previous test scenarios, orga-
nizing them in cluster and in cloud, as well as using a single station for comparison:

• CPU - Intel(R) Core(TM)2 Quad CPU Q9400 @ 2.66GHz

• RAM - 4GB

• 100Mbps ethernet connection

• Operating System (OS) Linux Ubuntu Lucid Server - version 64bits

• System partitions with ext4 filesystem

3.3. ARCHITECTURE 31

Figure 3.1: Single Server

3.3.1 Single Computer

In this architecture we will have a single computer and three computers, that will operate as clients in
testing, connected all to the same switch (Figure 3.1).

All computers have one IP address of the same network 193.137.106.0/25. The gateway will be
193.137.106.126, dns servers will be 193.136.195.220 and 193.136.195.219 and the domain search will be
wifi.ipb.pt.

3.3.2 Cluster

In this architecture we will use a load balancing cluster with direct routing. We will have two versions
with different number of nodes: one will have two nodes and the other three (Figure 3.2). In addition,
we also have three computers that will operate as clients. All computers will be connected to the same
switch and share the same IP network (193.137.106.0/25). The gateway will be 193.137.106.126, dns
servers will be 193.136.195.220 and 193.136.195.219 and the domain search will be wifi.ipb.pt.

To implement the load balancer we will use the LVS-DR. The LVS consists of two programs, the
ipvsadm and the ldirectord. Ipvsadm is used to set up, maintain or inspect the virtual server table in the
Linux kernel and the ldirectord which is used to monitor and manage real servers. The ipvsadm makes
load-balancing of services and routing to each node while ldirectord monitors the status of the service
on each real server and in case of service failure in one of us it removes the service/real server in the
ipvs routing table, returning to replace it once it is back up again. LVS-DR will be used, so that each
real server and load balancer will have a Virtual IP (VIP), which is the IP associated with the service(s)
we want to balance. In the load balancer the VIP will be assigned to a virtual interface associated with
the physical interface, while in the real servers will be assigned to a virtual loopback interface. Both
IPs and VIPs need to belong to the same network segment. It is also necessary to disable Address
Resolution Protocol (ARP) for VIP of real servers, because, otherwise, race conditions in ARP response
could happen, causing the load balancer and the real servers to ARP response for VIP simultaneously.
As a consequence, the router might send requests, intended for VIP, to real servers instead of the load

32 CHAPTER 3. TEST SCENARIOS

Figure 3.2: Cluster

balancer. With this architecture (Figure 3.2) when a client tries to contact a service, the request sent to
VIP and is received by load balancer, which will forward the request to one of the real servers. The later
will respond directly to the client thus avoiding the bottleneck effect in the load balancer.

3.3.3 Cloud

For testing the same scenarios in a cloud environment, we chose to use a private cloud, based on a
cluster architecture and on Ubuntu UEC (Eucalyptus). In this architecture we installed four computers
all connected to the same switch. One will be the cloud frontend and the others will be the nodes. The
network cards of nodes are configured in bridge mode. We chose to se a single VMs in each node, with
the following characteristics:

• Four Central Processing Units (CPUs) (QEMU Virtual CPU version 0.12.3 - 2666.220 MHz)

• 2048 Megabytes (MB) of RAM

• 20 GB of Disk

• 100Mbps ethernet connection

• Operating System (OS) Linux Ubuntu Lucid Server - version 64bits

• System partitions with ext4 filesystem

3.3. ARCHITECTURE 33

Figure 3.3: Cloud

34 CHAPTER 3. TEST SCENARIOS

One of the VM will be the load balancer and the other two will be the real servers in the cluster.
Eucalyptus requires a dedicated machine for deploying a private cloud infrastructure. In our scenario

we have four machines: a frontend and three nodes (Figure 3.3). The frontend will host one Cloud
Controller (CLC), one Cluster Controller (CC), one Walrus (the S3-like storage service) and one Storage
Controller (SC). Each node will host a single Node Controller (NC). The NC main functions are
Collection of data related to the resource availability and utilization on the node and reporting the data
to CC, and instance life cycle mangement. The CC main functions include receiving requests from CLC
to deploy instances, deciding which NCs to use for deploying the instances, controling the virtual network
available to the instances, and collecting information about the NCs registered with it. The Walrus main
functions include storing the machine images and snapshots, storing and serving files using S3 API. The
SC main functions include creating persistent Elastic Block Storage (EBS) devices, providing the block
storage over AoE or iSCSI protocol to the instances, and allowing creation of snapshots of volumes. The
CLC main function is to have a knowledge of the availability and usage of resources in the cloud and the
state of the cloud. The nodes must have Intel VT or AMD-V enabled support, because they will run a
hypervisor, which by default is Kernel Based Virtual Machine (KVM). In the configuration of Eucalyptus
VM profiles can be defined and, based on these profiles, each node can run one or more of these VMs.
Since it was not feasible to implement clustering identical to the second scenario, because the frontend
of the cloud is using NAT to associate a Public IP to Private IP of VMs, HAproxy was used to make
the reverse proxy. In this architecture the clients’ requests for services are received by CC and based in
the target public IP and the NAT table is sent to the VM with the private IP corresponding. At that
VM runs the HAproxy which will distribute the requests to the real servers VMs, using a round robin
algorithm, and then they respond back via HAproxy which in turn responds by passing CC.

Chapter 4

Results

To be able to draw some conclusions, the tests presented in the previous chapter where performed and
structured in two groups: SMTP and POP3/IMAP. The values where collected and processed, so that
comparisons could be more meaninglful. The whole set of raw results are not presented in the this
dissertation, because the sheer extension of data would increase the document length to over 600 pages.

4.1 SMTP Results

Production email servers usually have SMTP as well as POP and/or IMAP active. The behaviour of each
protocol in terms of scalability is independent of the others, since it is active in different moments. For
SMTP we are interested to know how it behaves in two ways: how each application perform when the
hosting architecture changes and the differences of server applications in the same hosting architecture.
For this, the following sections will cover:

• Qmail results obtained in the architectures: single, cluster and cloud.

• Postfix results obtained in the architectures: single, cluster and cloud.

• Qmail vs. Postfix results in each architecture: single, cluster and cloud.

As presented on the previous chapter, the tests are performed for 1C 1S for {1D, 5D, 10D}, 3C 1S
for the same number of destination addresses as well as 3C 2S (Section 3.1).

4.1.1 Qmail Results

Qmail was tested for the previous three architectures, starting with the single server scenario. In this set,
traffic generated from a single client with 20 threads, was injected, followed by traffic injected by three
clients with 20 threads each and three clients with 40 threads each (Figure 4.1).

We can see that, in general there is an increase in the number of sessions from the single server scenario
to the cluster based architecture. In the second scenario the introduction of another node in the cluster
in general also led to a rise in the number of SMTP sessions. Increasing the number of destinations in
general decreases the number of SMTP sessions but increase the number of e-mail recipients. Increasing
the number of destinations decreases the number of sessions, but increases the number of emails delivered.
Qmail achieved better results in the cluster environment with three nodes. For the cloud architecture,
results are inferior to the other two. The inferior results for the third scenario (cloud) is due to the fact
that the communications between clients and real servers in both directions pass through the CC and
the load balancer, creating a bottleneck.

In all tests, and in all environments, it was observed that after ending the traffic injection, the server
continued to process the incoming queue. In other words, it was not able to process all the requests,

35

36 CHAPTER 4. RESULTS

Figure 4.1: Qmail - Total SMTP sessions by scenario

continuing to deliver all e-mails to the mailbox for several minutes (from 10 to 25 minutes in the first
scenario, 4 to 20 minutes in the second scenario with two nodes in cluster, 3 to 17 minutes in the second
scenario with three nodes in the cluster and 3 to 15 minutes in the third scenario).

4.1.2 Postfix Results

With Postfix in general there is an increase in the number of sessions from the first to the second scenario.
On the third scenario the results are inferior to the other two (Figure 4.2). This inferior results in the
cloud scenario confirm the same problem found with Qmail – the bottleneck caused by the CC. In the
second scenario the introduction of another node in the cluster in general also led to a rise in the number
of SMTP sessions. Increasing the number of destinations in general decreases the number of SMTP
sessions but increase the number of e-mail recipients. As in the previous case, Postfix achieved better
results in the cluster environment with three nodes.

In all tests, and in all environments, Postfix managed to deliver almost all the e-mails during the
injection time. There was a slight delay in just a few tests, revealing a better performance processing the
queue:

• Single

– 3C 1S 5D - delay of 2 minutes

– 3C 1S 10D - delay of 4 minutes

– 3C 2S 5D - delay of 3 minutes

– 3C 2S 10D - delay of 7 minutes

• Cluster - two nodes

– 3C 1S 10D - delay of 1.5 minutes

– 3C 2S 5D - delay of 2 minutes

– 3C 2S 10D - delay of 3 minutes

4.1. SMTP RESULTS 37

Figure 4.2: Postfix - Total SMTP sessions by scenario

• Cluster - three nodes

– 3C 1S 10D - delay of 0.5 minutes

– 3C 2S 5D - delay of 0.5 minutes

– 3C 2S 10D - delay of 2minutes

• Cloud - two nodes

– 3C 1S 5D - delay of 1 minute

– 3C 1S 10D - delay of 1 minute

– 3C 2S 5D - delay of 1 minute

– 3C 2S 10D - delay of 3 minutes

4.1.3 Qmail vs. Postfix Results

To compare the performance of Qmail and Postfix in the test environments, we compared the results in
each hosting architecture. In the single server environment (Figure 4.3), Postfix achieved better results
for tests with just one destination. In tests with 1C 1S Postfix results where lower, but very close to
Qmail. In tests with 3C 1S for five destinations the Postfix is overcame by Qmail and in tests with 3C 2S
it achieved better results for all number of destinations, probably due to a drop in performance of Qmail.
This was unexpected, due to the fact that Qmail code has been originally designed as a way for manage
large mailing lists [qma, 2010].

In the cluster environment with two nodes (Figure 4.4), in test with 1C 1S compared to the previous
environment there is an increase in the number of sessions, and Postfix is overcame by Qmail for five
destinations. In tests with 3C 1S, there was only an increase in the number of sessions. Qmail has a
better performance for one destination but it is still bellow that of Postfix. In tests with 3C 2S, Qmail
greatly improved by recovering the best results for five and ten destinations, as expected.

In cluster with three nodes environment (Figure 4.5), in test with 1C 1S compared to the previous
environment there is an increase in the number of sessions of Postfix, Qmail managed a lower number of

38 CHAPTER 4. RESULTS

Figure 4.3: Qmail vs. Postfix - Single - Total SMTP sessions

Figure 4.4: Qmail vs. Postfix - Cluster 2 Nodes - Total SMTP sessions

4.1. SMTP RESULTS 39

Figure 4.5: Qmail vs. Postfix - Cluster 3 Nodes - Total SMTP sessions

sessions to five and ten destinations. Postfix achieved better ressults for all number of destinations. In
test with 3C 1S Postfix was less sessions to one destination, but more than Qmail. For five destinations
was better and for ten destinations was Postfix. In tests with 3C 2S Qmail was less sessions to five and
ten destinations. Postfix was better for five destinations, but Qmail is very close to them, and for ten
destinations Qmail was better, but Postfix is very close to them.

In cloud with two nodes environment (Figure 4.6), compared to the previous environments both Qmail
as Postfix had poorer results. Qmail only got better results than Postfix in tests with 1C 1S for one and
five destinations.

40 CHAPTER 4. RESULTS

Figure 4.6: Qmail vs. Postfix - Cloud 2 Nodes - Total SMTP sessions

4.2 POP3/IMAP Results

For POP3/IMAP the results will be based on the server applications Qmail, Courier and Dovecot in the
three architectures (single, cluster and cloud). The presentation of results will be distributed as follows:

• Qmail POP3 results obtained in architectures single, cluster and cloud.

• Courier POP3 results obtained in architectures single, cluster and cloud.

• Courier IMAP results obtained in architectures single, cluster and cloud.

• Dovecot POP3 results obtained in architectures single, cluster and cloud.

• Dovecot IMAP results obtained in architectures single, cluster and cloud.

• Qmail vs. Courier vs. Dovecot POP3 results for each architecture.

• Courier vs. Dovecot IMAP results for each architecture.

4.2.1 Qmail Results

In general, the POP3 results achieved by Qmail reveal an increase in the number of sessions from the first
to the second and to the third scnenario. However, the results of the third scenario are inferior to the
second (Figure 4.7). This inferior results confirm the problem found in SMTP, but, in this case, results
are higher than the baseline scenario. Qmail achieved better POP3 results in the cluster three nodes
environment.

4.2.2 Courier Results

The POP3 results achieved by Courier reveal an increase in the number of sessions from the first to
the second and to third scnenarios. However, the results in the third scenario are inferior to the second
(Figure 4.8). Courier achieved better POP3 results in the cluster three nodes environment.

4.2. POP3/IMAP RESULTS 41

Figure 4.7: Qmail - Total POP3 sessions

Figure 4.8: Courier - Total POP3 sessions

42 CHAPTER 4. RESULTS

Figure 4.9: Courier - Total IMAP sessions

For IMAP, it was necessary to increase the maximum number of connections per IP address from 10
to 50. As expected, Courier performed better for IMAP in the cluster environment (Figure 4.9). Courier
achieved better IMAP results in the cluster three nodes environment.

4.2.3 Dovecot Results

The POP3 results achieved by Dovecot follow the previous patterns (Figure 4.10). Dovecot achieved better
results in the cluster three nodes environment. The same can be said for the IMAPimplementation of
Dovecot (Figure 4.11). Dovecot achieved better IMAP results in the cluster three nodes environment.

4.2.4 Qmail vs. Courier vs. Dovecot POP3 Results

In single environment (Figure 4.12), Dovecot achieved better results than Courier and Qmail for all tests,
but Qmail and Courier with the increasing number of clients increased slightly the number of sessions
while Dovecot slightly decreases the number of sessions.

In cluster with two nodes environment (Figure 4.13), compared to the previous environment there is
an increase in the number of sessions for all. Courier results are very close to the results of Dovecot,
overtaking it slightly in test 3C 1S.

In cluster with three nodes environment (Figure 4.14), compared to the previous environment there
is an increase in the number of sessions for all and the Courier was just better than Postfix in test with
3C 2S, but in other tests is very close to Postfix.

In cloud with two nodes environment (Figure 4.15), compared to the two previous environments there
is an decrease in the number of sessions for all, but Qmail and Courier was better results than in single
environment. Poor results of Dovecot is due to the fact that this defect have as a limitation on the
number of POP3 connections per login. The default is 256. Also all connections come from the same IP,
so it is very easy to reach this limit.

4.2. POP3/IMAP RESULTS 43

Figure 4.10: Dovecot - Total POP3 sessions

Figure 4.11: Dovecot - Total IMAP sessions

44 CHAPTER 4. RESULTS

Figure 4.12: Qmail vs. Courier vs. Dovecot - Single - Total POP3 sessions

Figure 4.13: Qmail vs. Courier vs. Dovecot - Cluster 2 Nodes - Total POP3 sessions

4.2. POP3/IMAP RESULTS 45

Figure 4.14: Qmail vs. Courier vs. Dovecot - Cluster3 Nodes - Total POP3 sessions

Figure 4.15: Qmail vs. Courier vs. Dovecot - Cloud 2 Nodes - Total POP3 sessions

46 CHAPTER 4. RESULTS

Figure 4.16: Courier vs. Dovecot - Single - Total IMAP sessions

4.2.5 Courier vs. Dovecot IMAP Results

In single environment (Figure 4.16), Dovecot achieved better results than Courier for all tests.
In cluster with two nodes environment (Figure 4.17), compared to the previous environment there is

an increase in the number of sessions for all and Dovecot achieved better rresults than Courier for all
tests again. Courier in test with 3C 2S had slightly worse results than int test with 3C 1S.

In cluster with three nodes environment (Figure 4.18), compared to the previous environment there
is an increase in the number of sessions for all and Dovecot continues to get the best results for all tests.
Courier is close to Dovecot in test with 3C 1S, but continues to have worse results in the test 3C 2S.

In cloud with two nodes environment (Figure 4.19), compared to the previous environments there is
an decrease in the number of sessions for all. Courier even though the same number of connections per
IP that Dovecot, had much lower results than Dovecot results.

4.2. POP3/IMAP RESULTS 47

Figure 4.17: Courier vs. Dovecot - Cluster 2 Nodes - Total IMAP sessions

Figure 4.18: Courier vs. Dovecot - Cluster 3 Nodes - Total IMAP sessions

48 CHAPTER 4. RESULTS

Figure 4.19: Courier vs. Dovecot - Cloud 2 Nodes - Total IMAP sessions

Chapter 5

Conclusions

The dependency on communication services, especially, the ones based on Internet technology, has been
changing the way people and organizations work. E-mail is one of the most successful and well known,
for it’s flexibility, availaility and ease of use. Moreover, the prevalence of e-mail service in almost every
kind of device, either for personal use or company use, makes it ubiquitous, in terms of time, place and
opportunity. It is common, for example, for persons to have, simultaneously, several devices with e-mail
access at the same time, for example, the mobile phone, laptop, iPod or others. From the organization
point of view, it is strategic to maintain an e-mail contact address, providing a communication end-point
operational 24/7.

This dissertation allowed a detailed study of the cluster, grid and cloud environments with focus on the
concepts, architecture, infrastructure for hosting e-mail services. In addition to the study of computing
environments, this dissertation also enabled the study of the characteristics of several open-source e-mail
servers focusing on architectural details, platforms and infrastructure.

The main motivation was to gather some knowledge about which of these computing environments,
applications services and email servers, as well as which combinations, are most appropriate in order to
achieve better performance in server-to-server (SMTP) and in server-to-client (POP and IMAP) commu-
nication.

Based on the results we conclude that the best computing environment for implementation of e-mail
services is the cluster environment with a load balancer with direct routing in almost all the scenarios.
However, it is not clear the importance and the limits related to the number of nodes, pointing to a
balance between the performance and associated cost.

On the server application side, Postfix was the application that achieved best overall results for the
SMTP service. Moreover, Postfix also demostrated other advantages, when compared to Qmail, such as
being activelly maintained and showing frequent releases, IPv6 support, multiple scan engines support
and protection against spam.

For IMAP, Dovecot was the application that obtained the overall best results in all computing envi-
ronments tested. For POP3 we can conclude that both the Courier and Dovecot have good results, not
imposing a clear distinction. The choice should be based on features of each one.

5.1 Future Work

For future work, we would like to further study the cluster environment, in terms of the limitations and
the behaviour of the servers in relation to the increase in the number of nodes. It is also not clear how
the parallelization of hardware could be of help when dealing with the replication of e-mail messages in
the same node (for example, for 5D or 10D, in the above scenarios).

Due to poor results obtained in the cloud environment, it is also interesting to think about testing
other approaches, such as SaaS, and other server applications, such Zimbra Collaboration Suite, Gmail,

49

50 CHAPTER 5. CONCLUSIONS

Scalix and Atmail. These suites build on e-mail, extending it with other services such as collaboration
suite, calendar services, and so on.

Bibliography

[lam, 2006] (2006). Lam faq: Heterogenenity and lam/mpi. http://www.lam-
mpi.org/faq/category11.php3#question1.

[clu, 2009] (2009). Cluster suite overview - red hat cluster suite for red hat enterprise 5.

[mbo, 2009] (2009). Mbox vs maildir: Mail storage formats - linux mail server setup and howto guide.
http://www.linuxmail.info/mbox-maildir-mail-storage-formats/. [Online; accessed 10-August-2010].

[top, 2009] (2009). Top500 supercomputers sites. http://www.top500.org/. [Online; accessed 23-January-
2010].

[aws, 2010] (2010). Amazon web services. http://aws.amazon.com/. [Online; accessed 05-August-2010].

[dov, 2010] (2010). Dovecot - secure imap server. http://www.dovecot.org/. [Online; accessed 18-August-
2010].

[euc, 2010] (2010). Eucalyptus systems. http://www.eucalyptus.com/. [Online; accessed 06-August-
2010].

[exi, 2010] (2010). The exim home page. http://www.exim.org/. [Online; accessed 17-August-2010].

[gog, 2010] (2010). Gogrid cloud hosting. http://www.gogrid.com/cloud-hosting/. [Online; accessed
05-August-2010].

[gae, 2010] (2010). Google app engine. http://code.google.com/appengine/. [Online; accessed 05-August-
2010].

[azu, 2010] (2010). Microsoft azure. http://www.microsoft.com/windowsazure/. [Online; accessed 06-
August-2010].

[mil, 2010] (2010). milter.org - an interactive catalog of sendmail filters. http://www.milter.org/. [Online;
accessed 16-August-2010].

[pos, 2010] (2010). The postfix home page. http://www.postfix.org/. [Online; accessed 16-August-2010].

[cyr, 2010] (2010). Project cyrus. http://cyrusimap.web.cmu.edu/. [Online; accessed 20-August-2010].

[qma, 2010] (2010). Qmail: the internet’s MTA of choice. http://cr.yp.to/qmail.html. [Online; accessed
16-August-2010].

[rac, 2010] (2010). Rackspace cloud. http://www.rackspacecloud.com/. [Online; accessed 05-August-
2010].

[sca, 2010] (2010). scalix. http://www.scalix.com/. [Online; accessed 16-August-2010].

[sen, 2010] (2010). Sendmail.org. http://www.sendmail.org/. [Online; accessed 16-August-2010].

51

52 BIBLIOGRAPHY

[sla, 2010] (2010). Slamd distributed load generation engine. http://www.slamd.com/. [Online; accessed
06-October-2010].

[zim, 2010] (2010). Zimbra. http://www.zimbra.com/. [Online; accessed 16-August-2010].

[Al-Khannak et al., 2007] Al-Khannak, R., Bifzer, B., and Hezron (2007). Grid computing by using
multi agent system technology in distributed power generator. In Universities Power Engineering
Conference, 2007, pages 62 – 67, University of Brighton, Brighton, UK.

[Armbrust et al., 2009] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., and Zaharia, M. (2009). Above the clouds: A berkeley view
of cloud computing.

[Bader and Pennington, 2001] Bader, D. and Pennington, R. (2001). Cluster computing: Applications.
The International Journal of High Performance Computing Applications, 15:181–185.

[Baker, 2000] Baker, M. (2000). Cluster computing white paper.

[Betti et al., 2009] Betti, E., Cesati, M., Gioiosa, R., and Piermaria, F. (2009). A global operating system
for HPC clusters. In Cluster Computing and Workshops, 2009, pages 1–10, New Orleans, Louisiana.
IEEE Xplore.

[Bourke, 2001] Bourke, T. (2001). Server Load Balancing. O’Reilly Media.

[Chee-Wei and Chen-Khong, 2007] Chee-Wei, A. and Chen-Khong, T. (2007). Analysis and optimization
of service availability in a HA cluster with load-dependent machine availability. Parallel and Distributed
Systems, IEEE Transactions, 18(9):1307 – 1319.

[Crispin, 2003] Crispin, M. (2003). RFC 3501 - INTERNET MESSAGE ACCESS PROTOCOL - VER-
SION 4rev1. http://tools.ietf.org/html/rfc3501.

[Esposito and Tarricone, 2003] Esposito, A. and Tarricone, L. (2003). Grid computing for electromag-
netics: a beginner’s guide with applications. Antennas and Propagation Magazine, IEEE, 45(2):91 –
100.

[Foster et al., 2001] Foster, I., Kesselman, C., and Tuecke, S. (2001). The anatomy of the grid: Enabling
scalable virtual organizations. Intl J. Supercomputer Applications, 15(3).

[Gens, 2008] Gens, F. (2008). Defining cloud services and cloud computing.
http://blogs.idc.com/ie/?p=190. [Online; accessed 1-February-2010].

[Golanski, 2000] Golanski, Y. (2000). The exim mail transfer agent in a large scale deployment.

[Keith, 2009] Keith, P. (2009). Understanding public clouds: Iaas, paas, & saas. [Online; accessed
25-May-2010].

[Klensin, 2008] Klensin, J. (2008). RFC 5321 - simple mail transfer protocol.
http://tools.ietf.org/html/rfc5321.

[Klensin and Gellens, 1998] Klensin, J. and Gellens, R. (1998). RFC 2476 - message submission.
http://tools.ietf.org/html/rfc2476.

[Kouvatsos and Mkwawa, 2003] Kouvatsos, D. and Mkwawa, I. (2003). Multicast communication in grid
computing networks with background traffic. Software, IEEE Proceedings, 150(4):257 – 264.

[Laine and Midorikawa, 2007] Laine, J. and Midorikawa, E. (2007). Using analytical models to load
balancing in a heterogeneous network of computers. In Parallel Computing Technologies, volume 4671
of Lecture Notes in Computer Science, pages 559 – 568. Springer Berlin / Heidelberg.

BIBLIOGRAPHY 53

[Li-Gu et al., 2006] Li-Gu, Z., De-Zhi, H., Shi-Zheng, Z., and Chang-Sheng, X. (2006). High availability
cluster with combining NAS and ISCSI. In Fifth Internacional Conference on Machine Learning and
Cybernetics, pages 4455 – 4460, Dalian. IEEE.

[Maxey, 2008] Maxey, M. (2008). Cloud computing public or private? how to choose cloud storage.
[http://cloudcomputing.sys-con.com/node/707840?page=0,0 - Online; accessed 24-January-2010].

[Naiouf et al., 2006] Naiouf, M., Giusti, L., Chichizola, F., and Giusti, A. (2006). Dynamic load balancing
on non-homogeneous clusters. In Frontiers of High Performance Computing and Networking - ISPA
2006 Workshops, volume 4331 of Lecture Notes in Computer Science, pages 65 – 73. Springer Berlin /
Heidelberg.

[Newman, 1999] Newman, C. (1999). RFC 2595 - using TLS with IMAP, POP3 and ACAP.
http://tools.ietf.org/html/rfc2595.

[Razak, 2009] Razak, S. (2009). Cloud computing in malaysia universities. In Innovative Technologies
in Intelligent Systems and Industrial Applications, 2009, pages 101 – 106, Malaysia.

[Robertson, 2000] Robertson, A. (2000). The evolution of the Linux-HA project.

[Tarreau, 2006] Tarreau, W. (2006). Making applications scalable with load balancing.

[Wikipedia, 2010] Wikipedia (2010). Exim — wikipedia, the free encyclopedia. [Online; accessed 23-
August-2010].

[Youseff et al., 2008] Youseff, L., Butrico, M., and Silva, D. (2008). Toward a unified ontology of cloud
computing.

[Yves and Patrice, 2008] Yves, L. and Patrice, B. (2008). A technology and networking guide for high
availability clusters extended across multiple data centers.

54 BIBLIOGRAPHY

Appendix A

Appendix - Installations and
Configurations

In this appendix will describe the procedures for installation and configuration of all software used in
three scenarios set out in chapter three.

A.1 Operating System (OS)

The OS chosen for all machines was Linux and the distribution chosen was the Ubuntu Server 10.04 64bits.
During installation of the OS was chosen to install only the base system. We created two partitions, swap
and the system (/), and the system partition is formatted to ext4 filesystem. The range of IPs used belong
to the network 193.137.106.0/25, the gateway of the network is 193.137.106.126 and the used DNS servers
address are 193.136.195.220 and 193.136.195.219. After completing the base installation was installed a
few packages that would be needed, as well as their dependencies. The following commands describe
these procedures:

$ sudo apt-get update
$ sudo apt-get upgrade
$ sudo apt-get install ssh gcc

It was also configured the Network Time Protocol (NTP) service editing the file /etc/default/ntpdate
and change the following lines:

NTPDATE_USE_NTP_CONF=no
NTPSERVERS="ntp.ipb.pt"

Then it was added the following line in crontab so that the NTP service to synchronize the clock
every hour:

@hourly /usr/sbin/ntpdate-debian

.

A.2 LDAP

The LDAP server was installed using the Openldap from sources with version 2.4.21. To install the
openldap first had to also install DB from sources with version 4.7.25. The steps for installing the
DB-4.7.25 were as follows:

55

56 APPENDIX A. APPENDIX - INSTALLATIONS AND CONFIGURATIONS

$ wget http://download.oracle.com/berkeley-db/db-4.7.25.tar.gz
$ tar -xzvf db-4.7.25.tar.gz
$ cd db-4.7.25/build_unix/
$../dist/configure
$ make
$ sudo make install
$ sudo echo ’/usr/local/BerkeleyDB.4.7/lib/’ > /etc/ld.so.conf.d/db.conf
$ sudo ldconfig

The steps for installing openldap-2.4.21 were as follows:

$ wget
ftp://ftp.linux.pt/pub/mirrors/OpenLDAP/openldap-release/openldap-2.4.21.tgz
$ tar -xzvf openldap-2.4.21.tgz
$ cd openldap-2.4.21
$./configure --enable-overlays --enable-crypt --with-tls \
CPPFLAGS=-I/usr/local/BerkeleyDB.4.7/include \
LDFLAGS=-L/usr/local/BerkeleyDB.4.7/lib
$ make depend
$ make
$ sudo make test
$ sudo make install

To configure the LDAP server for the scenarios it was necessary to perform the following steps:

• Copy from Qmail source the file qmail.schema to /usr/local/etc/openldap/schema/.

• Define a root password for Openldap:

$ slappasswd -h {MD5}

• Edit the file /usr/local/etc/openldap/slapd.conf and change the change/add the next lines:

include /usr/local/etc/openldap/schema/core.schema
include /usr/local/etc/openldap/schema/cosine.schema
include /usr/local/etc/openldap/schema/nis.schema
include /usr/local/etc/openldap/schema/inetorgperson.schema
include /usr/local/etc/openldap/schema/qmail.schema

database bdb
suffix "dc=ipb,dc=pt"
rootdn "cn=root,dc=ipb,dc=pt"
rootpw {MD5}FKjYPUvcocJlUdVQvcHNcA==

directory /usr/local/var/openldap-data
index objectClass,member eq
index uid eq
index mailAlternateaddress eq
index mail eq
index cn eq

• Start the openldap service:

A.2. LDAP 57

$ /usr/local/libexec/slapd &

• Create a file base.ldif with the following content:

dn: dc=ipb,dc=pt
objectClass: dcObject
objectClass: organization
o: Instituto Politecnico de Braganca
dc: ipb

dn: ou=users,dc=ipb,dc=pt
ou: users
objectClass: top
objectClass: organizationalUnit
description: Utilizadores

• Load the file base.ldif into openldap server:

$ ldapadd -x -D "cn=root,dc=ipb,dc=pt" -W -f base.ldif

• Create a user creating a file user.ldif with the following content:

dn: uid=teste1,ou=users,dc=ipb,dc=pt
cn: Teste1
gidnumber: 100
homedirectory: /home/teste10
loginshell: /bin/false
mail: teste10@wifi.ipb.pt
mailmessagestore: /home/vmail/teste10/Maildir/
mailquotasize: 0
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
objectclass: qmailUser
objectclass: posixAccount
objectclass: top
objectclass: shadowAccount
shadowexpire: -1
shadowlastchange: 12839
sn: Teste1
uid: teste1
uidnumber: 2001
userpassword: {MD5}qhv0ZG3mf9kIbPbHkAcCbA==

• Load the file user.ldif into openldap server:

$ ldapadd -x -D "cn=root,dc=ipb,dc=pt" -W -f user.ldif

• Repeat last two steps for other nine users.

58 APPENDIX A. APPENDIX - INSTALLATIONS AND CONFIGURATIONS

A.3 Qmail

To install Qmail and first need to install two applications that will give him some support, these appli-
cations are daemon-tools and ucspi-tcp and were developed by the same author of Qmail. To install the
daemon-tools is necessary to perform the following steps:

$ wget http://cr.yp.to/daemontools/daemontools-0.76.tar.gz
$ sudo mkdir -p /package
$ sudo chmod 1755 /package
$ cd /package
$ sudo tar -zxvf /path_to_daemon_tools/daemontools-0.76.tar.gz
$ cd admin/daemontools-0.76
$ sudo package/install

To install ucspi-tcp is necessary to perform the following steps:

$ wget http://cr.yp.to/ucspi-tcp/ucspi-tcp-0.88.tar.gz
$ tar -zxvf ucspi-tcp-0.88.tar.gz
$ cd ucspi-tcp-0.88
$ make
$ sudo make setup check

Before installing Qmail is necessary create the directory /var/qmail, create some local users editing
the file /etc/passwd with the command vipw, create two new groups by editing the file /etc/group, adding
the following lines in each file:

• /etc/passwd

alias:x:503:502::/var/qmail/alias:/bin/bash
qmaild:x:504:502::/var/qmail:/bin/bash
qmaill:x:505:502::/var/qmail:/bin/bash
qmailp:x:506:502::/var/qmail:/bin/bash
qmailq:x:507:501::/var/qmail:/bin/bash
qmailr:x:508:501::/var/qmail:/bin/bash
qmails:x:509:501::/var/qmail:/bin/bash

• /etc/group

qmail:x:501:root:
nofiles:x:502:root:

Before compiling Qmail is necessary download the source of Qmail and Qmail-Ldap patch, and apply
the patch:

$ wget ftp://ftp.ntnu.no/pub/unix/mail/qmail/qmail-1.03.tar.gz
$ wget http://www.nrg4u.com/qmail/qmail-ldap-1.03-20060201.patch.gz
$ tar -zxvf qmail-1.03.tar.gz
$ gunzip qmail-ldap-1.03-20060201.patch.gz
$ cd qmail-1.03
$ patch -p1 < ../qmail-ldap-1.03-20060201.patch

After the patch is applied is necessary edit the file Makefile and modify the following lines to the
values presented below:

A.3. QMAIL 59

LDAPFLAGS=-DQLDAP_CLUSTER -DEXTERNAL_TODO -DDASH_EXT \
-DSMTPEXECCHECK -DALTQUEUE -DIGNOREVERISIGN -DQUOTATRASH

LDAPLIBS=-L/usr/local/lib -lldap -llber

LDAPINCLUDES=-I/usr/local/include

MDIRMAKE=-DAUTOMAILDIRMAKE

HDIRMAKE=-DAUTOHOMEDIRMAKE

SHADOWLIBS=-lcrypt

To compile and install Qmail, just run the following command:

$ sudo make setup check

To configure Qmail is necessary to perform the following steps:

• Add to the control files with the following values:

$ sudo echo mail.wifi.ipb.pt > /var/qmail/control/me
$ sudo echo -e "mail.wifi.ipb.pt\n wifi.ipb.pt\n localhost" >
/var/qmail/control/locals
$ sudo echo -e "mail.wifi.ipb.pt\n wifi.ipb.pt\n localhost" >
/var/qmail/control/rcphosts
$ sudo echo ou=users,dc=ipb,dc=pt > /var/qmail/control/ldapbasedn
$ sudo echo cn=root,dc=ipb,dc=pt > /var/qmail/control/ldaplogin
$ sudo echo password > /var/qmail/control/ldappassword
$ sudo chmod 600 /var/qmail/control/ldappassword
$ sudo echo localhost > /var/qmail/control/ldapserver
$ sudo echo 1001 > /var/qmail/control/ldapuid
$ sudo echo 1001 > /var/qmail/control/ldapgid
$ sudo echo pt > /var/qmail/control/plusdomain

• Create the supervise and log directories and change its permissions:

$ sudo cd /var/qmail
$ sudo mkdir -p supervise/qmail-pop3d/log
$ sudo mkdir -p supervise/qmail-send/log
$ sudo mkdir -p supervise/qmail-smtpd/log
$ sudo cd /var/log
$ sudo mkdir -p qmail/pop3d
$ sudo mkdir qmail/send
$ sudo mkdir qmail/smtpd
$ sudo chown qmaill.qmail -R qmail/

• Create the file /var/qmail/supervise/qmail-pop3d/run with the following content:

#!/bin/sh
QMAILQUEUE="/var/qmail/bin/qmail-queue" export QMAILQUEUE

60 APPENDIX A. APPENDIX - INSTALLATIONS AND CONFIGURATIONS

exec /usr/local/bin/tcpserver -v -R -H -l 0 0 110 \
/var/qmail/bin/qmail-popup mail.wifi.ipb.pt \
/var/qmail/bin/auth_pop /var/qmail/bin/qmail-pop3d ./ 2>&1

• Create the file /var/qmail/supervise/qmail-pop3d/log/run with the following content:

#!/bin/sh
exec /usr/local/bin/setuidgid qmaill /usr/local/bin/multilog t \

s1500000 n100 /var/log/qmail/pop3d

• Create the file /var/qmail/supervise/qmail-send/run with the following content:

#!/bin/sh
QMAILQUEUE="/var/qmail/bin/qmail-queue" export QMAILQUEUE
exec /var/qmail/rc

• Create the file /var/qmail/supervise/qmail-send/log/run with the following content:

#!/bin/sh
exec /usr/local/bin/setuidgid qmaill \
/usr/local/bin/multilog t s1500000 n400 /var/log/qmail/send

• Create the file /var/qmail/supervise/qmail-smtpd/run with the following content:

#!/bin/sh
QMAILDUID=‘id -u qmaild‘
NOFILESGID=‘id -g qmaild‘
LOCAL=‘head -1 /var/qmail/control/me‘
QMAILQUEUE="/var/qmail/bin/qmail-queue" export QMAILQUEUE
if [-z "$QMAILDUID" -o -z "$NOFILESGID" -o -z "$LOCAL"]; then

echo QMAILDUID, NOFILESGID, or LOCAL is unset in
echo /var/qmail/supervise/qmail-smtpd/run
exit 1

fi
if [! -f /var/qmail/control/rcpthosts]; then

echo "No /var/qmail/control/rcpthosts!"
echo "Refusing to start SMTP listener because it’ll create an open relay"
exit 1

fi
exec /usr/local/bin/tcpserver -v -R -H -P -l "$LOCAL" \
-x /etc/tcp.smtplocal.cdb -c 100 -u "$QMAILDUID" -g "$NOFILESGID" 0 smtp \
/var/qmail/bin/qmail-smtpd mail.wifi.ipb.pt /var/qmail/bin/auth_smtp /bin/true 2>&1

• Create the file /var/qmail/supervise/qmail-smtpd/log/run with the following content:

#!/bin/sh
exec /usr/local/bin/setuidgid qmaill /usr/local/bin/multilog \
t s1500000 n100 /var/log/qmail/smtpd

A.3. QMAIL 61

• Create the file /var/qmail/rc with the following content:

#!/bin/sh
Using splogger to send the log through syslog.
Using qmail-local to deliver messages to ~/Mailbox by default.
exec env - PATH="/var/qmail/bin:$PATH" \
qmail-start ./

• Create the file /var/qmail/bin/qmailctl with the following content:

#!/bin/sh
PATH=/var/qmail/bin:/bin:/usr/bin:/usr/local/bin:/usr/local/sbin
export PATH

QMAILDUID=‘id -u qmaild‘
NOFILESGID=‘id -g qmaild‘

case "$1" in
start)
echo "Starting qmail"
if svok /service/qmail-send ; then

svc -u /service/qmail-send /service/qmail-send/log
else
echo "qmail-send supervise not running"

fi
if svok /service/qmail-smtpd ; then
svc -u /service/qmail-smtpd /service/qmail-smtpd/log

else
echo "qmail-smtpd supervise not running"

fi
if svok /service/qmail-pop3d ; then

svc -u /service/qmail-pop3d /service/qmail-pop3d/log
else

echo qmail-pop3sd supervise not running
fi
if [-d /var/lock/subsys]; then
touch /var/lock/subsys/qmail

fi
;;

stop)
echo "Stopping qmail..."
echo " qmail-smtpd"
svc -d /service/qmail-smtpd /service/qmail-smtpd/log
echo " qmail-send"
svc -d /service/qmail-send /service/qmail-send/log
echo " qmail-pop3d"
svc -d /service/qmail-pop3d /service/qmail-pop3d/log
if [-f /var/lock/subsys/qmail]; then
rm /var/lock/subsys/qmail

fi
;;

62 APPENDIX A. APPENDIX - INSTALLATIONS AND CONFIGURATIONS

stat)
svstat /service/qmail-send
svstat /service/qmail-send/log
svstat /service/qmail-smtpd
svstat /service/qmail-smtpd/log
svstat /service/qmail-pop3d
svstat /service/qmail-pop3d/log
qmail-qstat
;;

doqueue|alrm|flush)
echo "Flushing timeout table and sending ALRM signal to qmail-send."
/var/qmail/bin/qmail-tcpok
svc -a /service/qmail-send
;;

queue)
qmail-qstat
qmail-qread
;;

reload|hup)
echo "Sending HUP signal to qmail-send."
svc -h /service/qmail-send
;;

pause)
echo "Pausing qmail-send"
svc -p /service/qmail-send
echo "Pausing qmail-smtpd"
svc -p /service/qmail-smtpd
echo "Pausing qmail-pop3d"
svc -p /service/qmail-pop3d
;;

cont)
echo "Continuing qmail-send"
svc -c /service/qmail-send
echo "Continuing qmail-smtpd"
svc -c /service/qmail-smtpd
echo "Continuing qmail-pop3d"
svc -c /service/qmail-pop3d
;;

restart)
echo "Restarting qmail:"
echo "* Stopping qmail-smtpd."
svc -d /service/qmail-smtpd /service/qmail-smtpd/log
echo "* Sending qmail-send SIGTERM and restarting."
svc -t /service/qmail-send /service/qmail-send/log
echo "* Restarting qmail-pop3d."
svc -t /service/qmail-pop3d /service/qmail-pop3d/log
;;

cdb)
/usr/local/bin/tcprules /etc/tcp.smtplocal.cdb \
/etc/tcp.smtplocal.tmp < /etc/tcp.smtplocal \
chmod 644 /etc/tcp.smtplocal.cdb echo "Reloaded /etc/tcp.smtplocal."
;;

A.4. POSTFIX 63

help)
cat <<HELP
stop -- stops mail service (smtp connections refused, nothing goes out)
start -- starts mail service (smtp connection accepted, mail can go out)
pause -- temporarily stops mail service (connections accepted, nothing leaves)
cont -- continues paused mail service
stat -- displays status of mail service
cdb -- rebuild the tcpserver cdb file for smtp

restart -- stops and restarts smtp, sends qmail-send a TERM & restarts it
doqueue -- schedules queued messages for immediate delivery
reload -- sends qmail-send HUP, rereading locals and virtualdomains
queue -- shows status of queue
alrm -- same as doqueue
flush -- same as doqueue
hup -- same as reload

HELP
;;

*)
echo "Usage: $0 {start|stop|restart|doqueue|flush|reload|stat|pause
|cont|cdb|queue|help}"

exit 1
;;

esac

exit 0

• Create the following symlinks:

$ sudo cd /usr/local/sbin
$ sudo ln -s /var/qmail/bin/qmailctl
$ sudo cd /service
$ sudo ln -s /var/qmail/supervise/qmail-pop3d
$ sudo ln -s /var/qmail/supervise/qmail-send
$ sudo ln -s /var/qmail/supervise/qmail-smtp

A.4 Postfix

To install Postfix with LDAP support just run the following command:

$ sudo apt-get install postfix postfix-ldap

To configure Postfix is necessary to perform the following steps:

• Create the file /etc/postfix/accountsmap.cf with the following content:

server_host = localhost
search_base = ou=users,dc=ipb,dc=pt
query_filter = (&(objectClass=qmailUser)(|(mail=%s)(mailAlternateAddress=%s)))
result_attribute = mailMessageStore
bind = yes
bind_dn = cn=root,dc=ipb,dc=pt
bind_pw = teste

64 APPENDIX A. APPENDIX - INSTALLATIONS AND CONFIGURATIONS

• Create the file /etc/postfix/ldap-aliases.cf with the following content:

server_host = 127.0.0.1
search_base = ou=users,dc=ipb,dc=pt
query_filter = (&(objectClass=*)(uid=%u))
result_attribute = mail
bind = yes
bind_dn = cn=root,dc=ipb,dc=pt
bind_pw = teste

• Edit the file /etc/postfix/main.cf and modify the following lines:

myhostname = mail.wifi.ipb.pt
mydestination = wifi.ipb.pt, mail.wifi.ipb.pt, localhost.wifi.ipb.pt, localhost
mynetworks = 127.0.0.0/8 [::ffff:127.0.0.0]/104 [::1]/128 193.137.106.0/25
local_transport = virtual
local_recipient_maps = $virtual_mailbox_maps
virtual_mailbox_base = /
virtual_mailbox_maps = ldap:/etc/postfix/accountsmap.cf
virtual_minimum_uid = 100
virtual_uid_maps = static:1001
virtual_gid_maps = static:1001

A.5 Courier

To install Courier with LDAP authentication support, just run the following command:

$ sudo apt-get install courier-authdaemon courier-authlib-ldap \
courier-imap courier-pop

To configure Courier is necessary to perform the following steps:

• Edit the file /etc/courier/authdaemonrc and modify the following line:

authmodulelist="authldap"

• Edit the file /etc/courier/authldaprc and modify the following lines:

LDAP_URI ldap://localhost
LDAP_PROTOCOL_VERSION 3
LDAP_BASEDN ou=users, dc=ipb, dc=pt
LDAP_AUTHBIND 1
LDAP_MAIL uid
LDAP_GLOB_UID vmail
LDAP_GLOB_GID vmail
LDAP_HOMEDIR mailMessageStore
LDAP_MAILDIR mailMessageStore
LDAP_CRYPTPW userPassword

A.6. DOVECOT 65

• Edit the file /etc/courier/imapd and modify the following line:

MAXPERIP=50

• Edit the file /etc/courier/pop3d and modify the following line:

MAXPERIP=50

A.6 Dovecot

To compile and install Dovecot with LDAP authentication support, just run the following commands:

$ wget http://www.dovecot.org/releases/2.0/dovecot-2.0.1.tar.gz
$ tar -zxvf dovecot-2.0.1.tar.gz
$ cd dovecot-2.0.1
$./configure --with-ldap=yes --without-vpopmail --without-mysql \
--without-pgsql --with-storages=maildir --without-nss --without-shadow \
--without-pam --without-sqlite
$ make
$ sudo make install
$ cp -vrf doc/example-config/conf.d/ /usr/local/etc/dovecot
$ cp -vrf doc/example-config/dovecot.conf /usr/local/etc/dovecot
$ cp -vrf doc/example-config/dovecot-ldap.conf.ext /usr/local/etc/dovecot

To configure Courier is necessary to perform the following steps:

• Edit the file /usr/local/etc/dovecot/dovecot.conf and modify the following line:

protocols = imap pop3

• Edit the file /usr/local/etc/dovecot/dovecot-ldap.conf.ext and modify the following lines:

hosts = localhost
auth_bind = yes
ldap_version = 3
base = ou=users,dc=ipb,dc=pt
scope = subtree
user_attrs = mailMessageStore=home,qmailUID=vmail,qmailGID=vmail
user_filter = (&(objectClass=qmailUser)(uid=%u))
pass_attrs = uid=user,userPassword=password

• Edit the file /usr/local/etc/dovecot/conf.d/10-auth.conf and modify the following line:

!include auth-ldap.conf.ext

• Edit the file /usr/local/etc/dovecot/conf.d/10-mail.conf and modify the following line:

66 APPENDIX A. APPENDIX - INSTALLATIONS AND CONFIGURATIONS

mail_location = maildir:./:LAYOUT=fs
mail_uid = vmail
mail_gid = vmail

• Edit the file /usr/local/etc/dovecot/conf.d/10-master.conf and comment the following lines:

##inet_listener imaps {
#port = 993
#ssl = yes

##}
##inet_listener pop3s {
#port = 995
#ssl = yes

##}

• Edit the file /usr/local/etc/dovecot/conf.d/20-imap.conf and modify the following line:

mail_max_userip_connections = 50

• Edit the file /usr/local/etc/dovecot/conf.d/20-pop3.conf and modify the following line:

mail_max_userip_connections = 50

• Edit the file /usr/local/etc/dovecot/conf.d/auth-ldap.conf.ext and modify the following lines:

userdb {
driver = ldap
args = /usr/local/etc/dovecot/dovecot-ldap.conf.ext

}

A.7 LVS-DR

To install the LVS-DR is necessary install in load balancer the following packages:

$ sudo apt-get install ipvsadm ldirectord nagios-plugins

To configure the LVS-DR load balancer is required to perform the following steps:

• Create the file /etc/ha.d/ldirectord.cf with the following content:

autoreload=no
quiescent=no

virtual=193.137.106.100:25
real=193.137.106.8:25 gate
real=193.137.106.5:25 gate
real=193.137.106.6:25 gate
service=smtp

A.7. LVS-DR 67

scheduler=rr
protocol=tcp
checktype=external
checkcommand="/usr/local/sbin/check-smtpd"

virtual=193.137.106.100:110
real=193.137.106.5:110 gate
real=193.137.106.6:110 gate
real=193.137.106.8:110 gate
scheduler=rr
protocol=tcp
checktype=external
checkcommand="/usr/local/sbin/check-pop3"

virtual=193.137.106.100:143
real=193.137.106.5:143 gate
real=193.137.106.6:143 gate
real=193.137.106.8:143 gate
scheduler=rr
protocol=tcp
checktype=external
checkcommand="/usr/local/sbin/check-imap4"

• Create the file /usr/local/sbin/check-smtpd with the following content:

#!/bin/bash

args=("$@")
/usr/lib/nagios/plugins/check_smtp -H ${args[2]} -p ${args[3]}

• Create the file /usr/local/sbin/check-pop3 with the following content:

#!/bin/bash

args=("$@")
/usr/lib/nagios/plugins/check_pop -H ${args[2]} -p ${args[3]}

• Create the file /usr/local/sbin/check-imap4 with the following content:

#!/bin/bash

args=("$@")
/usr/lib/nagios/plugins/check_imap ${args[2]}

• Add the VIP address to network configuration in file /etc/network/interfaces:

auto eth0:0
iface eth0:0 inet static

68 APPENDIX A. APPENDIX - INSTALLATIONS AND CONFIGURATIONS

address 193.137.106.100
netmask 255.255.255.128
broadcast 193.137.106.127

• Disable the IP forwarding address:

$ echo 0 > /proc/sys/net/ipv4/conf/eth0/forwarding

In real servers is necessary to configure the VIP address and disable ARP, adding the following lines
to the file /etc.rc.local :

echo 1 > /proc/sys/net/ipv4/conf/eth0/arp_ignore
echo 2 > /proc/sys/net/ipv4/conf/eth0/arp_announce
echo 1 > /proc/sys/net/ipv4/conf/all/arp_ignore
echo 2 > /proc/sys/net/ipv4/conf/all/arp_announce
ifconfig lo:0 193.137.106.100 netmask 255.255.255.255 broadcast 193.137.106.100 up

A.8 Eucalyptus

To install the frontend components of eucalyptus (CLC,CC,SC, Walrus) is necessary to run the following
commands:

$ sudo apt-get install eucalyptus-cloud eucalyptus-cc eucalyptus-walrus \
eucalyptus-sc

During installation is necessary to answer the debconf questions:

• Configure postfix for internet delivery

• Name the cluster: cluster1

• Add a list of available IP addresses on test network: 193.137.106.60 - 193.137.106.70

To install the node components of eucalyptus (NC), is necessary to run the following command in all
nodes:

$ sudo apt-get install eucalyptus-nc

After instalation is necessary to change the network configuration, the NIC will be in bridge mode.
To do this simply run the following script:

interface=eth0
bridge=br0
sudo sed -i "s/^iface $interface inet \(.*\)$/iface $interface inetmanual\n\n
auto br0\niface $bridge inet \1/" /etc/network/interfaces

sudo tee -a /etc/network/interfaces <<EOF
bridge_ports $interface bridge_fd 9

bridge_hello 2
bridge_maxage 12
bridge_stp off

EOF
sudo /etc/init.d/networking restart

A.9. MANAGEMENT OF VM IMAGES ON EUCALYPTUS 69

After is necessary to configure the file /etc/eucalyptus/eucalyptus.conf with the name of the bridge,
and restart the NC:

$ sudo sed -i "s/^VNET_BRIDGE=.*$/VNET_BRIDGE=$bridge/"
/etc/eucalyptus/eucalyptus.conf

$ sudo /etc/init.d/eucalyptus-nc restart

After, is necessary to install the CLC’s eucalyptus user’s public ssh key into the NC’s eucalyptus user’s
authorized keys file. The easiest way to do this is:

• On the NCs, temporarily set a password for the eucalyptus user:

$ sudo passwd eucalyptus

• Then, on the CLC:

$ sudo -u eucalyptus ssh-copy-id -i ~eucalyptus/.ssh/id_rsa.pub
eucalyptus@<IP_OF_NODE>

• Remove the password of the eucalyptus account on the Nodes:

$ sudo passwd -d eucalyptus

Finaly is necessary to register the Walrus, CC, SC, and the NCs. To do this just starting the
publication services:

$ sudo start eucalyptus-walrus-publication
$ sudo start eucalyptus-cc-publication
$ sudo start eucalyptus-sc-publication
$ sudo start eucalyptus-nc-publication
$ sudo start uec-component-listener

For users interact with the cloud is required to obtain credentials. To obtain the credentials from the
command line and for that is necessary to perform the following steps:

$ mkdir -p ~/.euca
$ chmod 700 ~/.euca
$ cd ~/.euca
$ sudo euca_conf --get-credentials mycreds.zip
$ unzip mycreds.zip
$ ln -s ~/.euca/eucarc ~/.eucarc
$ cd -

To validate that everything is working correctly, is just necessary to get the local cluster availability
details:

. ~/.euca/eucarc
euca-describe-availability-zones verbose

A.9 Management of VM images on Eucalyptus

After install eucalyptus environment is necessary to create the VM images, integrate them with Euca-
lyptus, registering with eucalyptus and finally running a VM image on eucalyptus.

70 APPENDIX A. APPENDIX - INSTALLATIONS AND CONFIGURATIONS

A.9.1 Create Image

To create a VM image is necessary to perform the following steps:

• Create a new disk Image:

$ kvm-img create -f qcow2 image.img 20G

• Install OS:

$ sudo kvm -m 256 -cdrom ubuntu-10.04-server-amd64.iso \
drive file=image.img,if=scsi,index=0 -boot d -net nic -net user \
-nographic -vnc :0

• Access by vnc client to follow the installation:

$ vncviewer A.B.C.D:0

A.B.C.D is the IP address of the computer where is being create the VM image.

• After finishing the installation, is necessary to relaunch the VM by executing the following com-
mand:

$ kvm -m 256 -drive file=image.img,if=scsi,index=0,boot=on -boot c -net nic \
-net user -nographic -vnc :0

At this point is necessary add all the packages required for VM.

A.9.2 Integrate image with eucalyptus

An instance running under Eucalyptus needs to know what IP it has and also, it needs to have the public
key of the user allowed to do a passwordless access through SSH. This is accomplished by using a restful
interface provided by the cloud. The interface is available under http://169.254.169.254/latest/meta-data
and is accessible from within the instance. Eucalyptus node controller is set up to prevent automatic key
injection if the system is in MANAGED-NOVLAN mode. Instead, it is assumed that the instance will
use the above metadata service to retrieve the public keys when running in this mode. Is necessary to
facilitate this by installing curl package and adding a script that will run on each boot. To install the
curl :

$ sudo apt-get install curl

To add the script that will run on each boot, edit the file /etc/rc.local and add the following lines
before the exit 0 :

depmod -a
modprobe acpiphp
mkdir -p /home/user/.ssh
echo >> /home/user/.ssh/authorized_keys
curl -m 10 -s
http://169.254.169.254/latest/meta-data/public-keys/0/openssh-key |

A.9. MANAGEMENT OF VM IMAGES ON EUCALYPTUS 71

grep ’ssh-rsa’ >> \
/home/user/.ssh/authorized_keys

echo "AUTHORIZED_KEYS:"
echo "************************"
cat /home/user/.ssh/authorized_keys
echo "************************"

Before finish the VM installation is necessary to remove the network persistent rules from /etc/ude-
v/rules.d, so that the instance always comes up with eth0 as the interface name as expected by eucalyptus:

$ sudo rm -rf /etc/udev/rules.d/70-persistent-net.rules

A.9.3 Register image with eucalyptus

For upload to eucalyptus in addition to the image file, other two files are required: vmlinuz-2.6.32-22-
server, initrd.img-2.6.32-22-server. To upload this files and register the images is necessary to perform
the following steps:

• Register the kernel image

$ euca-bundle-image -i vmlinuz-2.6.32-22-server --kernel true
$ euca-upload-bundle -b mybucket -m \
/tmp/vmlinuz-2.6.32-22-server.manifest.xml
$ euca-register mybucket/vmlinuz-2.6.32-22-server.manifest.xml

Is necessary to ave the output produced by the last command above (eki-XXXXXXXX), which will
be needed while registering the disk image.

• Register the ramdisk image

$ euca-bundle-image -i initrd.img-2.6.32-22-server
$ euca-upload-bundle -b mybucket -m \
/tmp/initrd.img-2.6.32-22-server.manifest.xml
$ euca-register mybucket/initrd.img-2.6.32-22-server.manifest.xml

Is necessary to ave the output produced by the last command above (eri-XXXXXXXX), which will
be needed while registering the disk image.

• Register the disk image

$ euca-bundle-image -i image.img --kernel eki-XXXXXXXX --ramdisk eri-XXXXXXXX
$ euca-upload-bundle -b mybucket -m \

/tmp/image.img.manifest.xml
$ euca-register mybucket/image.img.manifest.xml

A.9.4 Running a VM image on eucalyptus

To running a VM image on eucalyptus is necessary to perform the following steps:

• Create a keypair (Secure Shell (SSH) key) necessary to use to log into instance as root, once it
boots.

72 APPENDIX A. APPENDIX - INSTALLATIONS AND CONFIGURATIONS

if [! -e ~/.euca/mykey.priv]; then
mkdir -p -m 700 ~/.euca
touch ~/.euca/mykey.priv
chmod 0600 ~/.euca/mykey.priv
euca-add-keypair mykey > ~/.euca/mykey.priv

fi

• Allow access to port 22 for instances:

$ euca-authorize default -P tcp -p 22 -s 0.0.0.0/0

• Create a instance of image created:

$ euca-run-instances $EMI -k mykey -t c1.xlarge

• Monitor the state of instance:

$ watch -n5 euca-describe-instances

• When the instance is fully started, the above state will become ’running’. To connect to an instance
is necessary, using the IP address assigned to instance in the output, with the following command:

$ IPADDR=$(euca-describe-instances | grep $EMI | grep running | tail -n1 |
awk ’{print $4}’)
$ ssh -i ~/.euca/mykey.priv ubuntu@$IPADDR

• To terminate a intance is necessary run the following command:

$ INSTANCEID=$(euca-describe-instances | grep $EMI | grep running | tail -n1
| awk ’{print $2}’)
$ euca-terminate-instances $INSTANCEID

A.10 HAproxy

To install and configure de HAproxy is necessary to perform the following steps:

• Install HAproxy from the available packages:

$ sudp apt-get install haproxy

• Edit and modify the file /etc/haproxy :

A.10. HAPROXY 73

global
log 127.0.0.1 local0
log 127.0.0.1 local1 notice
maxconn 32000
ulimit-n 65536
user haproxy
group haproxy
daemon
nbproc 4
noepoll
nopoll

defaults
log global
mode http
option httplog
option dontlognull
retries 3
option redispatch
maxconn 2000
contimeout 5000
clitimeout 50000
srvtimeout 50000

listen smtp 172.19.1.4:25
mode tcp
option tcplog
balance roundrobin
server smtp 193.137.106.60:25 check inter 50000
server smtp1 193.137.106.61:25 check inter 50000

	Preface
	Acknowledgments
	Abstract
	Resumo
	Introduction
	Objectives
	Structure of this Document

	Performance Optimization
	Cluster Computing
	 High-Availability (HA) Clusters
	Load-Balancing Clusters
	 High-Performance Computing (HPC) Clusters

	Grid Computing
	Architecture
	Implementations

	Cloud Computing
	Cloud Computing Models
	Cloud Computing Architecture
	Main Suppliers and Services

	E-Mail Service
	Mail Tranfer Agent (MTA)
	E-mail Service Implementations
	Mail Storage Format

	Test Scenarios
	Tests
	Applications
	SMTP Applications
	POP3/IMAP Applications

	Architecture
	Single Computer
	Cluster
	Cloud

	Results
	SMTP Results
	Qmail Results
	Postfix Results
	Qmail vs. Postfix Results

	POP3/IMAP Results
	Qmail Results
	Courier Results
	Dovecot Results
	Qmail vs. Courier vs. Dovecot POP3 Results
	Courier vs. Dovecot IMAP Results

	Conclusions
	Future Work

	Bibliography
	Appendix - Installations and Configurations
	Operating System (OS)
	LDAP
	Qmail
	Postfix
	Courier
	Dovecot
	LVS-DR
	Eucalyptus
	Management of VM images on Eucalyptus
	Create Image
	Integrate image with eucalyptus
	Register image with eucalyptus
	Running a VM image on eucalyptus

	HAproxy

