

título 5º Encontro Nacional de Cromatografia Sociedade Portuguesa de Química

comissão organizadora Sílvia M. Rocha, Armando Sílvestre, Ivonne Delgadillo, Jose Manuel F. Nogueira, Manuel A. Colmbra

design e serviços de prépress Gabinete de Imagem Fundação João Jacinto de Magalhães

impressão Grafigamelas

edição Universidade de Aveiro, Campus Universitário de Santiago 3810-193 Aveiro

data Dezembro 2007

tiragem 250 exemplares

depósito legal 268346/07

ISBN 978-972-789-252-5

P.73 Determinação de sulfonamidas no mel por um método de HPLC-fluorescência

Daniela M. Correia^a; Miguel Vilas-Boas^a; António M. Peres^{a,b}, Luís G. Dias^a tif. +351-273 303 318 fax +351-273 325 405 dmatilde@ipb.pt

- a CIMO
- b LSRE, Escola Superior Agraria de Bragança, Instituto Politécnico de Bragança, Portugal

O mel é um produto natural pelo que a sua comercialização a sua comercialização está sujeita à Legislação Europeia, que proíbe a sua comercialização na presença de quaisquer resíduos de antibióticos

Os antibióticos são usados no tratamento de abelhas com o intuito de combater infecções associadas às doenças da *Loque Americana* e *Loque Europeia* que atacam as larvas das abelhas levando à destruição da colmeia. As sulfonamidas são,um dos grupos de antibióticos, mais usados pelos apicultores. Deste modo a implementação de métodos analíticos que permitam a detecção e quantificação destes resíduos afigura-se uma tarefa fundamental.

O presente trabalho teve como objectivo a validação e aplicação de um método de HPLC com detector de fluorescência para a análise de 8 sulfonamidas em amostras de mel: sulfametazina, sulfasoazol, sulfatiazol, sulfamerazina, sulfametoxipiridazina, sulfadoxina, sulfametoxazol e sulfadimetoxina.

A separação foi efectuada numa coluna de fase reversa à temperatura de 32°C. A fase móvel usada consistiu numa solução tampão de acetato:acetonitrilo (70:30) usada em modo isocrático. O tempo da corrida foi de 35 minutos. Os comprimentos de onda de excitação e de emissão usados foram 405nm e 495nm, respectivamente.

Todas as soluções foram sujeitas a uma derivatização com uma solução de fluorescamina. A linearidade do método para cada sulfonamida foi testada no intervalo de concentrações de 1-200ng/mL apresentando repetibilidade e precisão intermédia inferiores a 4,3%. Os limites de detecção e quantificação para cada uma das sulfonamidas analisadas foram da ordem dos 2-5ng/mL e 6-15ng/mL, respectivamente. A exactidão do método foi ainda aferida recorrendo à análise de soluções de controlo de qualidade tendo-se obtido, em geral, erros relativos percentuais inferiores a 5%.

Este método foi aplicado na detecção e quantificação de resíduos de antibióticos em amostras de mel, sendo os resultados comparados com os obtidos pelo método enzimático qualitativo CHARM II (método aprovado pelo US FDA para a análise de resíduos em mel).

Determinação de sulfonamidas no mel por um método de HPLC-fluorescência

Daniela M. Correiaa, Miguel Vilas-Boasa, António M. Peresa,b, Luís G. Diasa aCIMO, bLSRE, Escola Superior Agrária de Bragança, Instituto Politécnico de Bragança, Portugal *Tel +351-273 303 318 Fax +351-273 325 405 e-mail: dmatilde@ipb.pt

Introdução

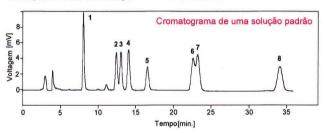
O mel é um produto natural e a sua comercialização está sujeita à Legislação Europeia, que proíbe a sua comercialização na presença de quaisquer resíduos de antibióticos.

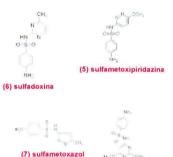
Os antibióticos são usados no tratamento de abelhas com o intuito de combater infecções associadas às doenças da Loque Americana e Loque Europeia que atacam as larvas das abelhas levando à destruição da colmeia. As sulfonamidas são um dos grupos de antibióticos mais usados pelos apicultores. Deste modo a implementação de métodos analíticos que permitam a detecção e quantificação destes resíduos afigura-se uma tarefa fundamental.

Objectivo

Validação e aplicação de um método de HPLC com detector de Fluorescência para a análise de 8 sulfonamidas em amostras de mel.

(8) sulfadimetoxina


Condições Cromatográficas


Validação

Fase móvel em modo isocrático: tampão acetato (pH 5):acetonitrilo (70:30)

Fluxo da fase móvel: 0,5 mL/min Temperatura da coluna: 32 °C

Coluna: Prontosil 120-5 C18 SH (150 x 4,6 mm) Detector: Fluorescência FP-2020 Plus, Jasco Detecção: 405 nm de excitação e 495 nm de emissão

Linearidade: 5 calibrações; 9 soluções padrão de diferentes concentrações (1-200 ppb).

Repetibilidade: 3 soluções de controlo de qualidade analisadas 7 vezes cada: [SCQ1]=3 ppb; [SCQ2]=15 ppb; [SCQ3]=25 ppb.

Precisão intermédia: valores médios das áreas dos antibióticos obtidos em diferentes dias de análise.

Parâmetros da calibração

Substância	Declive	Ord Orig	R
Sulfametazina	10,4	1,66	0,9991
Sulfisoxazol	7,12	-1,18	0,9991
Sulfatiazol	7,83	-2,17	0,9991
Sulfamerazina	7,93	-0,75	0,9992
Sulfametoxipindazina	2,88	-1,04	0,9991
Sulfadoxina	4,36	4,01	0,9992
Sulfametoxazol	6,41	-4,92	0,9989
Sulfadimetoxina	5,05	-3,01	0,9990

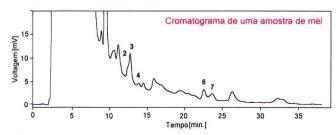
Substância	Solução padrão 1 Sr%	Solução padrão 2 Sr%
Sulfametazina	6,3	3,6
Sulfisoxazol	6,2	4,1
Sulfatiazol	3,7	3,2
Sulfamerazina	4,4	3,4
Sulfametoxipiridazina	6,2	3,8
Sulfadoxina	8,2	5,7
Sulfametoxazol	5,2	3,1
Sulfadimetoxina	2,7	4,2

Repetibilidade

Substância	[SCQ1]=3 (ppb) Sr%	[SCQ2]=15 (ppb) Sr%	[SCQ3]=25 (ppb) Sr%
Sulfametazina	2,9	0,3	0,7
Sulfisoxazol	3,0	0,9	1,0
Sulfatiazol	3,8	0,5	0,5
Sulfamerazina	3,3	0,6	0,4
Sulfametoxipiridazina	3,0	0,4	0,7
Sulfadoxina	6,8	1,6	0,8
Sulfametoxazol	1,9	1,3	0,6
Sulfadimetoxina	2,4	0,3	0,3

Limites de detecção (LD) e de quantificação (LQ)

Substância	LD (ppb)	LQ (ppb)
Sulfametazina	1,9	6,3
Sulfisoxazol	1,9	6,6
Sulfatiazol	1,9	6,3
Sulfamerazina	1,9	6,6
Sulfametoxipiridazina	3,8	12,6
Sulfadoxina	3,7	12,3
Sulfametoxazol	4,1	13,6
Sulfadimetoxina	4,5	14,8


Aplicação em Amostras de

Mel

Conclusão

Extracção em fase sólida
Derivatização com tampão acetato (pH 3,4) + Solução de Fluorescamina a 0,2%

O método de análise de sulfonamidas por HPLC implementado cumpre os requisitos ao nível da repetibilidade e reprodutibilidade.

O método apresenta limites de detecção inferiores aos do método CHARM II (método de referência).