
Influence of Synchronized Domain Visualizations on Program Comprehension

Nuno Oliveira
University of Minho

Braga, Portugal
nunooliveira@di.uminho.pt

Maria João Varanda Pereira
Polythecnic Institute of Bragança

Bragança, Portugal
mjoao@ipb.pt

Daniela da Cruz
University of Minho

Braga, Portugal
danieladacruz@di.uminho.pt

Mario Berón
National University of San Luis

San Luis, Argentina
mberon@unsl.edu.ar

Abstract

An effective program comprehension is reached when it
is possible to view and relate what happens when the pro-
gram is executed, synchronized with its effects in the real
world concepts. This enables the interconnection of pro-
gram’s meaning at both problem and program domains.

To sustain this statement we need (i) to develop a tool
which provides and synchronizes views at both domains,
and (ii) to perform an experiment to measure the actual
impact of this approach.

So, in this working session we aim at discussing the ben-
efits of providing synchronized domain visualizations. We
also envisage to discuss the preparation and conduction of
appropriate experiments that will test that benefits.

A case study will be used and the discussion will be sup-
ported by experimental material specially prepared for the
occasion, but adapted from material already used in previ-
ous experiments.

1 Introduction

Brooks [1] and others [5, 6, 11], stated that a complete
understanding of a program is reached when the analyst can
relate the program domain—how statements are executed
(operational semantics)—with the problem domain—what
are the effects caused by the execution of those statements
(logical semantics).

We adhered to such approach and started the systematic
development of tools to help system maintainers to under-
stand programs. The construction of Program Comprehen-
sion (PC) tools involves the use of specific methods and
techniques to: (i) extract data from code, (ii) store the
information gathered, and (iii) explore it to obtain new

knowledge. However, this is not enough to attain the effec-
tiveness of these tools, it is also required to research other
areas, for example, human perception, reasoning and cog-
nitive models. This is used to create specific artifacts for
user interaction like graphic representations, navigation fa-
cilities, animations and other interface features.

Working with generic programming languages (GPLs), it
was possible to develop generic tools to explore the source
code at program level, but it could not be expected the same
possibility concerning the visualization and manipulation at
problem level. Motivated by the hypothesis that in a nar-
rower and well defined domain we could synchronize the in-
ternal program execution and the effects provoked in the ob-
jects of the problem domain, we believe that we should fo-
cus on Domain Specific Languages (DSLs) to study Brooks
theory.

To fire up the discussion around this topic, we will take
as case study Alma2 [9], an upgraded version of Alma [2],
developed to cope with programs written in DSLs. Alma
system only provides program domain visualizations based
on program internal representations. Alma2 takes a pro-
gram, written in a DSL, and animates it (trough an abstract
interpretation), displaying in a synchronized mode what
happens internally during the execution of each statement
and what are the effects of the execution over a graphical
representation of the problem domain.

So, Alma2 enabled us to study the behavior of domain
specific programs, observing the synchronized visualiza-
tions of both domains; it will be used to test the working
hypotheses.

The way we found to do such tests is to design experi-
mental sessions on program understanding with Alma and
Alma2, measuring the user reaction in terms of time and
accuracy of the answers.

In this working session we will take a set of already pre-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153404651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


pared questionnaires related with our case study to discuss
and reason about two main topics: (i) the experiment prepa-
ration and execution; (ii) the effectiveness of that program
comprehension approach.

In section 2 we present motivation for the working ses-
sion, based on previous work. In section 3 we describe the
several parts of the session. In subsection 3.1 we enhance
some of the topics that we would like to discuss about the
preparation of the experimental session. In subsection 3.2
we detail the the final discussion on program comprehen-
sion approach that should be fired by the case study pre-
sented in the first part.

2 Motivation and Previous Work

Program comprehension approaches must be assessed in
practice. In a first moment we may believe that material-
izing such an approach into a program comprehension tool
(PCTool) is the complete way to assess a PC approach.
However this does not provide a full assessment to the ef-
fectiveness of the approach. In the limit this is only a proof
of concept. For a complete assessment we need to measure
the influence of the tool (which embodies the PC approach)
in the comprehension of programs. This means that we need
to use real analysts to test not the usability of the tool, but
the help it offers when they are through traditional compre-
hension tasks.

As was mentioned in the introduction, we conceived an
approach for program comprehension stating that a program
is understood when the analysts are able to connect the pro-
gram and problem domain by means of synchronized visu-
alizations of each one of these domains. Then, we devel-
oped a tool, Alma2, that materializes the idea.

After Alma2 being developed, we prepared and guided
an experiment with real users. In that experiment, there
were involved 20 persons from computer sciences. This
sample was a blend of undergraduate and postgraduate stu-
dents. The undergraduate students were starting their final
year of the B.Sc. degree; about 20% of the master students
were starting their final year, and the remainder were finish-
ing their master’s thesis. All the Ph.D. students were start-
ing their third year of studies. Their areas of specialization
were varied and addressed fields like computer networks,
distributed computing, bioinformatics, data warehousing,
computer graphics and human-computer interaction.

With this experiment we gathered important numerical
data to conclude about the influence of the approach in
the execution of traditional program comprehension tasks.
However, we found some flaws on the execution of the ex-
periment that could compromise the final results. Moreover,
we were not able to receive feedback about the techniques
they used to build their mental models; therefore we were
not able to reason about the relations between the approach

and the cognitive theories.
In this context, we propose a working session to discuss

about the experiment and the approach itself. Section 3 pro-
vides a more detailed explanation of the working session.

3 A Session with Alma2

Briefing up, we plan to divide the working session into
three parts:

1. Case study presentation

2. Discussion about the experiment

3. Discussion about the program comprehension ap-
proach

The last two points are clearly explained below.

3.1 Discussion about the experiment

The preparation and execution of the experiment fol-
lowed the standardized guidelines provided by Di Penta et
al. in [4].

To measure the influence of our approach in the compre-
hension of programs we must answer the following research
question:

Does the synchronized visualization of the pro-
gram and problem domains help users to under-
stand programs?

This research question led us to set the hypothesis H1. We
also consider three sub-hypotheses that are directly related
with H1, but are easier to measure with the answers pro-
vided by the participants in the questionnaire.

• H0 (null hypothesis) — Synchronized visualizations
of problem and program domains, have no influence
on program comprehension.

• H1 — Synchronized visualizations of problem and
program domains, really have influence on program
comprehension.

• H1.1 — Synchronized visualizations of problem and
program domains have influence in the time spent on
the comprehension tasks, decreasing it.

• H1.2 — Synchronized visualizations of problem and
program domains have influence in the correctness of
the comprehension tasks, augmenting it;

• H1.3 — The problem domain visualizations and their
synchronization with the program domain visualiza-
tions are important to the process of comprehension;



To validate these hypotheses, we used a questionnaire
based on two dimensions allowing us to verify: on the one
hand, if the participants perceived the program functionali-
ties; and on the other hand, if the participants were able to
evolve the program.

These dimensions must be assessed both with Alma and
Alma2. The use of Alma would provide base results that
will be compared with those coming from the use of Alma2.
The comparison of results will answer the research ques-
tion. In this context, the tasks of the experiment not only
address details on perceiving and evolving programs, but
also are oriented to answer the research question, by ask-
ing directly the opinion of the participants about the influ-
ence of Alma2 in their performance. Moreover, each task
of the questionnaire provides data to validate the three sub-
hypotheses rose earlier in this section: (i) to gather infor-
mation for H1.1, the participant is required to stamp the
time at the begin and at the end of the task execution; (ii) to
capture information for H1.2, the participants should an-
swer questions about several programs, requiring a partial
or full understanding of their purpose or behavior, and fi-
nally (iii) to gather information for H1.3, the participant is
asked to score the importance of the problem domain visu-
alization and its synchronization with the program domain
visualization, for the resolution of the task. Although this
is a subjective answer for each participant, the overall result
reflects the general opinion.

The questionnaire is divided into two groups: one group
for perceiving questions and another for evolving questions.
We will be using two different DSLs: a well-known im-
perative language to control the Karel robot [8, 10], and a
declarative language, Lavanda, which describes a laundry
ordering list [3, 7]. Perceiving and evolving questions are
associated to each language. Moreover, each one of these
questions are to be answered, alternately, using Alma and
Alma2, and without any time restriction. This will allow
the combination of two languages with two tools and two
types of questions. Questions will require an open answer,
a direct answer, or multiple choice answers. The adoption
of this format, eases the correction of the questionnaire be-
cause the questions are either correct or wrong. The open
answer questions add some difficulty on this matter, be-
cause there are multiple ways to achieve the correct solu-
tion, so, it requires further analysis on its correction.

In this part of the working session and after a brief pre-
sentation of the case study, we will discuss the experi-
ment and the elaborated questionnaire. The realization of
a controlled experiment is not yet standardized. Although
there are works on that direction, like in [4], there are al-
ways experiments not following such standardization and
go through ad-hoc means to achieve the same results. We
tried to prepare a standard experiment, however in some
cases we may have missed it and go through non-standard

ways. So, the objective of this first discussion topic is
to gather some feedback from the experts about what was
good, what was bad, and what was ugly in the way we pre-
pared and conducted the experimental session. The brain
storming on this topic will generate important notes that are
useful to all the participants that may want to prepare an
experiment on program comprehension in the future.

3.2 Discussion about the Program Com-
prehension Approach

In this part of the working session, we will discuss and
reason about the two other topics announced in the intro-
duction:

1. the effectiveness of the approach and

2. the relation between this new approach and the several
models on cognitive theory.

In the first topic the discussion will be about the approach
for program comprehension based on the synchronization
of program and problem domains. Experts on program
comprehension studies are in a good position to discuss the
benefits of our approach. We must remind that the approach
is not the tool but the idea materialized by the tool. So, we
are not evaluating Alma2 but the influence of its visualiza-
tions in the construction of mental models. Summing up,
we are aiming at having feedback about how the approach
was used to comprehend the programs.

Finally, in the second topic we will discuss and reason
about how we can relate the approach with the several cog-
nitive models in the cognitive theory, namely the bottom-up
and top-down strategies. This discussion may be similar or
tangled with the discussion of the previous topic, neverthe-
less, we are convinced that there are some straight relation
between the approach and the adoption of a systematic cog-
nitive strategy for mental model construction.

References

[1] R. Brooks. Towards a theory of the comprehension of
computer programs. International Journal of Man-Machine
Studies, 18(6):543–554, November 1983.

[2] D. da Cruz, P. R. Henriques, and M. J. V. Pereira. Construct-
ing program animations using a pattern-based approach.
ComSIS – Computer Science an Information Systems Jour-
nal, Special Issue on Advances in Programming Languages,
4(2):97–114, 2007.

[3] D. da Cruz, M. J. V. Pereira, M. Beron, R. Fonseca, and P. R.
Henriques. Comparing generators for language-based tools.
In Proceedings of the 1.st Conference on Compiler Related
Technologies and Applications, CoRTA’07 — Universidade
da Beira Interior, Portugal, July 2007.



[4] M. Di Penta, R. E. K. Stirewalt, and E. Kraemer. Designing
your next empirical study on program comprehension. In
ICPC ’07: Proceedings of the 15th IEEE International Con-
ference on Program Comprehension, pages 281–285, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[5] S. Letovsky and E. Soloway. Delocalized plans and program
comprehension. Software, IEEE, 3(3):41–49, 1986.

[6] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway. Mental
models and software maintenance. J. Syst. Softw., 7(4):341–
355, 1987.

[7] N. Oliveira. Improving program comprehension tools for
domain specific languages. Master’s thesis, University of
Minho, Braga, Portugal, October 2009.

[8] N. Oliveira, P. R. Henriques, D. da Cruz, M. J. V. Pereira,
M. Mernik, T. Kosar, and M. Črepinšek. Applying program
comprehension techniques to karel robot programs. In Pro-
ceedings of the International Multiconference on Computer
Science and Information Technology - 2nd Workshop on
Advances in Programming Languages (WAPL’2009), pages
697–704, Mragowo, Poland, October 2009. IEEE Computer
Society Press.

[9] N. Oliveira, M. J. V. Pereira, P. R. Henriques, and
D. da Cruz. Visualization of domain-specific program’s be-
havior. In Proceedings of VISSOFT 2009, 5th IEEE Inter-
national Workshop on Visualizing Software for Understand-
ing and Analysis, pages 37–40, Edmonton, Alberta, Canada,
September 2009. IEEE Computer Society.

[10] R. Pattis. Karel, The Robot: A Gentle Introduction to the
Art of Programming. John Wiley and Sons, Inc., 1st edition,
1981.

[11] A. von Mayrhauser and A. M. Vans. Program understand-
ing - a survey. Technical report, Colorado State University,
August 1994.


