
Solving a Multiprocessor Problem by Column Generation
and Branch-and-price

António J. S. T. Duarte*, J. M. Valério de Carvalho**

*Polytechnic Institute of Bragança, Bragança, Portugal (e-mail: aduarte@ipb.pt)
**University of Minho, Braga, Portugal (e-mail: vc@dps.uminho.pt)

Abstract: This work presents an algorithm for solving exactly a scheduling problem with identical
parallel machines and malleable tasks, subject to arbitrary release dates and due dates. The objective is to
minimize a function of late work and setup costs. A task is malleable if we can freely change the set of
machines assigned to its processing over the time horizon. We present an integer programming model, a
Dantzig-Wolfe decomposition reformulation and its solution by column generation. We also developed
an equivalent network flow model, used for the branching phase. Finally, we carried out extensive
computational tests to verify the algorithm’s efficiency and to determine the model’s sensitivity to
instance size parameters: the number of machines, the number of tasks and the size of the planning
horizon.

1. PROBLEM DEFINITION

Given a set of tasks (1T , 2T , …, nT) and a set of machines

(1P , 2P , …, mP), the objective is to find a feasible schedule

that minimizes a function of the number of setups and the
amount of late work. The tasks allow for preemptions,
multiprocessing and are malleable (Blazewicz et al., 2004).
This last property means that we can freely change the set of
machines processing a given task over the time horizon, as
shown in the next machine schedule:

P1

P2

P3

P4

Fig. 1. Scheduling of a malleable task

The task (in shadow) is scheduled in four machines, and the
number of machines assigned to the task may vary arbitrarily
over time.

1.1 Machines

The problem considers a set of m identical machines,

{ }1 2, , , mP P P P= . Each machine can only process one task

at a time and they can be preempted at arbitrary moments.
Because of computational complexity issues, in our models
we will only allow preemptions at integer time units. This
can be done without loss of generality, because the time unit
can be freely chosen, according to the problem requirements
and the available computational resources.

1.2 Tasks

For the definition of the task environment, we use a set of n
tasks, { }1 2, , , nT T T T= . Each task has a processing time

(jp), a release date (jr), a due date (jd) and a weight for the

calculation of late work cost (jw).

Although the values of jp , jr and jd can be any

nonnegative numbers, for consistency with the machine
environment, we limit these values to nonnegative integers.

A machine schedule can be seen as a sequence of unit
fragments of different tasks. If two consecutive fragments
belong to the same task there is no setup cost, otherwise, a
setup cost is incurred. Although a setup requires, among other
resources, a certain amount of time, in our models, we
assume that setup times are very short when compared to
production runs. Therefore, we will only minimize the total
number of setups.

1.3 Objective Function

Let kc be the cost of schedule k (a single machine schedule).

We define kc in the following way:

k k kc l s= + (1)

In the previous equation kl is the cost incurred because of

late work in schedule k and ks is the number of setups in the

schedule. The value of kl is calculated according to the late

work in the schedule and to the values of the jw constants.

The values for jw must be chosen wisely because there is an

implicit trade-off with the setup costs. Also, the model for
calculation of kl can be subject of discussion.

For the calculation of kl we choose a function that linearly

increases the penalty as the task completion time is more

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153404608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

distant from the task due date. The total late work penalty for
a given machine schedule can be computed as follows:

()
1 jk

n

k j l j
j l L

l w C d
= ∈

= − (2)

In the above equation, jkL represents the set of late fragments

belonging to task jT present at schedule k and lC is the

completion time for each one of those fragments. This
function can be replaced with any function compatible with
the subproblem algorithm, which will be presented later on
this paper.

Note that the total cost of a given schedule is the sum of costs
of every machine and that it is possible to calculate the
contribution of each machine schedule to the total cost
without knowing the schedules of the other machines.

2. PROBLEM FORMULATION

2.1 A Simple Network Flow Model

We will show below that the problem presented in the
previous section can be modeled as a network flow problem
and solved with a suitable algorithm. Although the network
flow model always provides valid solutions for the problem,
it is insensitive to setup costs and an optimal solution cannot
be directly obtained from it. However, the solutions can be
improved by heuristics and used as upper bounds in the
branch-and-price algorithm.

Essentially, the network flow model is a transportation model
similar to Horn’s model (Horn, 1973). The problem will have
j origins (one per task) with supplies equal to the processing
times, jp . Let us call each origin jT . On the other hand,

each possible time slot in the schedule will become a
destination with demand equal to the number of available
machines, m. We will call each destination tI and it refers to

the scheduling period []1,t t− . The index t can vary between

1 and maxt (which defines the time horizon for the problem).

In order to balance the problem, an additional origin must be
set to supply the idle time in the schedule. Let that origin be

LT . Its supply is:

1

n

max j
j

mt p
=

− (3)

This value cannot be negative. In that event there would be
no feasible solutions, because the processing times would
exceed the available capacity.

The following figure represents the proposed model:

1T

2I

maxtI

2T

LT

1I

jtc

Fig. 2. Network flow model

Note that arc (),j tT I will only exist if 1jr t≥ − . Otherwise,

the task is not available for processing at 1t − . The value jtc

refers to the cost of each arc and is computed in the following
way:

()
0,

,

j

jt
j j j

d t
c

w t d d t

≥= − <
 (4)

This computation must agree with the cost function defined
in section 1.3 and assures that late work costs will be
minimized.

Preposition 1: If all tasks have unit processing times, the
solution obtained from the proposed network flow model is
optimal.

Proof: If all processing times are unitary, all tasks are
scheduled in exactly one scheduling slot, incurring in one
setup. The total number of setups will be equal to the number
of tasks and it will be optimal.

In the next section we discuss an algorithm to transform a
network flow model solution into a valid scheduling solution
with minimal number of setups.

2.2 Obtaining a Valid Scheduling Solution

Obtaining a valid scheduling solution to our problem from a
network flow solution is trivial. In this section we propose an
algorithm that not only achieves a valid solution but also
minimizes the number of setups for the given network flow
solution.

Let jtf be the flow from jT to tI in a given network flow

solution. The network flow solution will be completely
defined by the following flow matrix, F:

11 12 1

21 22 2

1 2

max

max

max

t

t

n n nt

f f f

f f f
F

f f f

 =

 (5)

Because all values for demand and supply are integers, it is
guaranteed that all flow values are also integers. It can easily

be shown that, for every time slot,
1

n

jt
j

f m
=

≤ . In fact, this

sum is the number of machines in use for each time slot.
Then, for 1t = the number of incurred setups is equal to

1
1

n

j
j

f
=
 .

On subsequent time slots, for any given machine, setups are
not necessary if the scheduled task is the same task scheduled
in the previous time slot. In general, at time t, we can avoid,

at most, a number of setups equal to ()1
1

min ,
n

jt jt
j

f f +
=
 . The

proposed algorithm results in a scheduling solution in which
all the “avoidable” setups are effectively avoided.

To obtain a solution we first schedule the flows for 1t = and
proceed chronologically until maxt t= . For each time slot the

tF vector is decomposed into two vectors: the vector of flows

that can be scheduled without setups, C
tF , and the vector of

flows that need setups, D
tF . Obviously, C D

t t tF F F= + . The

two vectors can be calculated as follows:

()1min ,C
jt jt jtf f f−= (6)
D C
jt jt jtf f f= −

 (7)

For the initialization, we must admit 0 0jf = for all tasks.

This will force 1 0C
jf = for all tasks and a setup for each

machine used at time 1t = .

At 1t = the choice of machines to schedule flows is
irrelevant (a setup will be needed for each used slot). In
subsequent periods the flows in vector C

tF must be

scheduled first in machines that have the same task on the
previous period. The flows in D

tF are always scheduled last

and the choice of machine is irrelevant.

This algorithm is polynomial with respect to n, m and maxt .

Preposition 2: Applying the algorithm to a given set of flows
results in a minimal number of setups for that set of flows.

Proof: For 1t = a setup is unavoidable for each used
machine. For subsequent periods and for each task, if

1jt jtf f −≤ no setups are needed for that task. In that case
C
jt jtf f= and no setup will be incurred. If 1jt jtf f −> , at least

1jt jtf f −− must be incurred. Now, 1
D
jt jt jtf f f −= − and only

the minimal number of setups is incurred.

In the following section we will present the integer linear
programming model used to obtain the optimal solution to
the problem.

2.3 Integer Programming Model

As the network flow model presented on the previous
sections does not provide an optimal solution to the problem,
we developed an integer programming approach to solve the
problem. In this section we present the developed model.

The proposed formulation is based on time indexed variables.
This kind of variables was first used to solve scheduling
problems by Sousa et al. (1992). In this context, we use the
binary variables ijtx which takes the value 1 if task j is

scheduled on machine i at time slot t, which represents the

period []1,t t− . Otherwise, these variables will take the value

0.

To account for the number of setups we must also introduce a
set of binary variables, ijty . If setting 1ijtx = a setup is

incurred, and the corresponding variable, ijty , must take the

value 1. If 0ijtx = or no setup is incurred, the corresponding

y variable takes the value 0.

The complete ILP model is as follows:

()
1 1 1 1 1 1

max max

j

t tm n m n

ijt j j ijt
i j t i j t d

min y w t d x
= = = = = = +

+ − (8)

1 1

. . ,
maxtm

ijt j
i t

s t x p j
= =

= ∀ (9)

1

1, ,
n

ijt
j

x i t
=

≤ ∀ ∀ (10)

1 1, ,ij ijy x i j= ∀ ∀ (11)

{ }1, , , 2,3, ,ijt ijt ijt maxy x x i j t t−≥ − ∀ ∀ ∀ ∈ (12)
0,1, , ,ijtx i j t= ∀ ∀ ∀ (13)
0,1, , ,ijty i j t= ∀ ∀ ∀ (14)

The objective function (8) follows from section 1.3, in terms
of the x and y variable meanings. The first term accounts for
the number of setups and thus, the setup costs. The second
term accounts for the late work costs.

Constraints (9) ensure that each task is scheduled in jp time

slots and, therefore, the processing times are met. The next
set of constraints (10) ensures that, at most, one task is
scheduled at each time slot. Note that they also assure that no
more that m machines are used in each time unit.

Constraints (11) ensure that a setup is accounted for any task
scheduled at time slot 1. Constraints (12) guarantee that, in
any machine and in every time slot, if the scheduled task is
different from the task scheduled in the previous time slot the
appropriate y variable takes the value 1.

This problem is not amenable for solution with a commercial
optimization package for two reasons: first, the number of
variables and constraints rises rapidly with the number of
machines, the number of tasks or the planning horizon size;
second, the problem is very symmetric, because the same
scheduling solution can be implemented with different
machine indexes.

For those reasons we implemented a column generation
approach to solve the problem that is presented in the next
section.

3. COLUMN GENERATION

In this section we start by presenting a Dantzig-Wolfe
decomposition of the model and a dynamic programming
algorithm for solving the resulting subproblem. Later in the
section we propose a branching scheme and we discuss the
corresponding implications on the subproblem algorithm.

3.1 Dantzig-Wolfe Decomposition

Consider the mathematical model presented in section 2.3.
For simplicity, the following transformations will be
performed:

iZ : a vector of all variables referring to processor i (includes

all the x and all the y variables);

iC : a vector of all objective function coefficients referring to

processor i;

iA : a matrix with j rows containing all the coefficients

referring to machine i for the processing times constraints;

p : the vector of processing times;

iP : a polyhedron defined by all the constraints (except the

processing times constraints) that refer to machine i.

Using these later definitions, the mathematical model can be
rewritten as follows:

1

1

. .

,

m
T
i i

i

m

i i
i

i i

min

s t

P i

=

=

=

∈ ∀

C Z

A Z p

Z

 (15)

The set of constraints with a block angular structure was
decomposed, leaving the processing times constraints in the
master problem and defining a subproblem for each iP

constraint.

3.1.1 The Master Problem

Because iP is a convex region, any point of that region can

be represented as a convex combination of extreme points.
Let iK be the set of extreme points for machine i and let

ikP

represent an element of that set. This can be translated to the
following equality:

, 1, 0,
i i i i

i i i i

i k k k k i
k K k K

P kλ λ λ
∈ ∈

= = ≥ ∀ Z (16)

After variable substitution the master problem is as follows:

()

()
1

1

. .

1,

i i

i i

i i

i i

i

i i

m
T
i k k

i k K

m

i k k
i k K

k
k K

min P

s t P

i

λ

λ

λ

= ∈

= ∈

∈

=

= ∀

C

A p (17)

Because, in our problem, the processors are identical, the
reference to the specific processor can be removed and the
convexity constraints can be replaced by their sum:

()
(). .

T
k k

k K

k k
k K

k
k K

min P

s t P

m

λ

λ

λ

∈

∈

∈

=

=

C

A p (18)

For simplicity, let k kx λ= , T
k kc P= C and jka be the

elements of kPA . After the necessary substitutions the master

problem can be written as follows:

. . ,

k k
k K

jk k j
k K

k
k K

min c x

s t a x p j

x m

∈

∈

∈

= ∀

=

 (19)

In this last model a variable can be seen as a schedule for one
processor, where kc is the contribution of that schedule to the

global cost and jka is the amount of processing done for task

j in that schedule. The collection of all individual machine
schedules present in the optimal solution will make up the
global schedule. Based on this interpretation the following
conclusion can be drawn.

Preposition 3: For a solution to be integral, it is sufficient
that all kx variables have integer values.

Proof: The value of each variable is the number of
processors executing the corresponding schedule. Thus, if all
variables have integer values the solution can be translated to
a valid operational plan.

However, as we will show later, this is not a necessary
condition to get a valid solution.

In order to generate new individual machine schedules to
include in the master problem, each schedule cost must be
determined without knowing in advance the global schedule.
As remarked in section 1.3, our objective function complies
with this requirement.

It is known that, whenever possible, replacing equality
constraints with inequalities leads to better computational
performance because the additional restriction of the dual
solution space (Desaulniers et al., 2002). As shown next, all
the equalities in our master problem can be replaced with
inequalities.

Preposition 4: All the constraints in the form jk k j
k K

a x p
∈

=

can be replaced with constraints in the form jk k j
k K

a x p
∈

≥ .

Proof: If a task processing time is exceeded the extra
processing can always be removed from the end of the
schedule without additional setups or late work.

Preposition 5: The constraint k
k K

x m
∈

= can be replaced by

the constraint k
k K

x m
∈

≤ .

Proof: If allowed by the processing times, machines can be
left idle.

Making these two transformations, the resulting master
problem will be:

. . ,

k k
k K

jk k j
k K

k
k K

min c x

s t a x p j

x m

∈

∈

∈

≥ ∀

≤

 (20)

3.1.2 The Subproblem

Let jπ (for 1, 2, ,j n=) be the set of dual variables

associated with the first n constraints of the master problem
and let Mπ be the dual variable associated with the last

constraint. To find the column with the maximum reduced
cost for the master problem, the following subproblem is
solved:

()

{ }

1 1 1 1 1 1

1

1 1

1

. . 1,

,

, , 2,3, ,

0,1, ,

0,1, ,

max max max

j

t t tn n n

j jt M jt j j jt
j t j t j t d

n

jt
j

j j

jt jt jt max

jt

jt

max x y w t d x

s t x t

y x j

y x x j t t

x j t

y j t

π π
= = = = = = +

=

−

+ − − −

≤ ∀

= ∀
≥ − ∀ ∀ ∈
= ∀ ∀
= ∀ ∀

(21)

Note that this problem is still hard to solve with a general ILP
software package. However it has a special structure that
allows the development of a specialized algorithm presented
in the next section.

In the objective function, jπ can be seen as a prize for

including each unit of task j processing in the schedule. The
constant Mπ (negative) is the penalty for using the processor

pool (independently of the schedule). The rest of the
objective function, as before, deals with the penalties
incurred for setups and late work.

In the next section a dynamic programming algorithm that
takes advantage of the subproblem’s structure is presented.

3.2 Dynamic Programming Algorithm for the Subproblem

In order to identify new attractive columns to include in the
master problem we developed a dynamic programming
algorithm that takes advantage of the subproblem special
structure.

The developed algorithm has 1maxt + stages, corresponding to

each integral time instant from 0 to maxt , and 1n + states,

representing the last scheduled task (one of the n tasks or
none). Note that, because of the release dates, not all states
are available at every stage.

Let ()tF j be the objective function value for state j and

stage t. For simplicity assume that at time 0t = (stage 0) the
machine is not set to any task, i.e., the machine is at state 0.
We can start up the dynamic programming algorithm by
setting the initial objective function value:

()0 0 MF π= (22)

This means that, if no task is scheduled, the reduced cost of
the new column will be Mπ . For any stage, the objective

function value can be calculated recursively by the following
expression:

() ()()1maxt t j tj ljF j F l w pπ−= + − − , (23)

where 1, 2, , maxt t= and { }0, : jj j r t= < and

{ }0, : 1jl j r t= < − . We must also define 0 0π = and the

values of tjw and ljp :

()
0, 0

, 0

j

tj
j j j

j or t d
w

w t d j and t d

= ≤= − > >
 (24)

0, 0

1, 0lj

j or l j
p

j and l j

= =
= > ≠ (25)

These last expressions will account the setup costs (25) and
the late work costs (24), as explained.

The iterative solution of the master problem (to obtain a dual
vector for the subproblem) and of the subproblem (to obtain
new columns for the master problem) until there are no more
attractive columns will lead to an optimal solution to the
linear relaxation of the master problem. Usually, this optimal
solution will not obey the integral requirements of the master
problem. To get an optimal integral solution we developed
the branching scheme presented in the following section.

3.3 Branching Scheme

Branching on the restricted master problem variables is not a
good choice, because it may lead to column regeneration
(Barnhart, 1998). We do not branch on those variables, but
rather on the variables of the network flow model.

Previously we defined jtf as the network flow model

variable representing the flow in arc (),j tT I . This variable

represents the number of processors allotted to task j at time
slot t. A relation between the flow variables and the restricted
master problem can be established by the following
expression:

jt jtk k
k K

f xδ
∈

= (26)

The jtkδ coefficients are equal to 1 if, in processor schedule

k, the j task is scheduled at time slot t, and are equal to 0
otherwise. These coefficients must be determined at column
generation because they cannot be calculated based on the
master problem technological coefficients.

Preposition 6: A solution is integer iff all jtf are integer.

Proof: The condition is sufficient because, on any integral set
of flows, we can apply the algorithm described in section 2.2
to obtain a valid scheduling solution. The condition is
necessary because any value of jtf represents the number of

machines allotted to task j at time slot t, which must be
integer.

Note that, in order to obtain a valid integer solution, it is not
necessary that all kx are integer. If the resulting flows are

integer it is possible to obtain a valid scheduling solution.

If a solution has non-integer flows, one of those flows must
be chosen for branching. Because this choice may be
computationally relevant, a method for choosing the flows to
branch on may be needed. Let us denote the value of the non-
integral flow to branch on by *

jtf . The current problem

(corresponding to a branch tree node) will originate two child
problems with a mutually exclusive set of solutions: in one of

these problems the constraint *
jt jtf f ≤ is added; in the

other problem we add the constraint *
jt jtf f ≥ . As a result, a

set of invalid solutions is removed from the solution space.

3.3.1 Subproblem Consequences

Adding new constraints to the master problem modifies its
structure. For the subproblem to identify new attractive
columns for the modified master problem, those
modifications must be accounted for in the subproblem.
Basically, the dual information associated with the new
constraints must be considered at the subproblem level.

Every extra constraint respects to the scheduling of a specific
task in a specific time slot. The dual value associated to an
extra constraint can be seen as a prize or penalty for
scheduling such task in such time slot. Therefore, the
modifications to the subproblem can be easily done because
they only affects the calculation of the state transition costs in
the dynamic programming formulation.

Consider a node in the search tree. At that node, the set of
added constraints can be divided into two subsets: a subset G
of constraints in the form

jtk k g
k K

x fδ
∈

≤ , (27)

for every g G∈ ; and a subset H of constraints in the form

jtk k h
k K

x fδ
∈

≥ , (28)

for every h H∈ .

Let us denote each dual variable associated with a subset G
constraints by gμ and each dual variable associated with

constraints from subset H by hν .

The new dynamic programming recurrence equation can be
written as follows:

() ()1max
jt jt

t t j g h tj lj
g G h H

F j F l w pπ μ ν−
∈ ∈

= + + + − −

 , (29)

where jtG and jtH are subsets containing only the

constraints referring to task j and time slot t. It can be easily
seen that the only modification involves adding the values of
the dual variables associated with a specific task and a
specific time slot.

4. CONCLUSIONS AND RESULTS

In this work we presented an algorithm for solving exactly a
scheduling problem with identical parallel machines and
malleable tasks, subject to arbitrary release dates and due
dates in order to minimize a function of the late work and

number of setups. To our knowledge, this kind of problem
has never been tackled with column generation and branch-
and-price before.

To get an idea about the size of instances we could solve, we
made a computational implementation of the algorithm using
CPLEX and generated some random instances. We
concluded that the number of tasks was determinant for the
solution times. With about 10 tasks, we consistently solved
problems with 40 machines and about 20 time slots.
Lowering one of these values allowed for the others to be
increased.

Acknowledgements
This work was supported by the European Union through the
European Social Found and the Portuguese project Prodep
III.

5. REFERENCES

Barnhart, C., Johnson, L., Nemhauser, G.L., Savelsbergh,
M.W. and Vance, P.H. (1998). Branch-and-Price:
Column Generation for Solving Huge Integer Problems,
Operations Research, 46, 316-329.

Blazewicz, J., Kovalyov, M.Y., Machowiak, M., Trystram,
D. and Weglarz, J. (2004). Scheduling Malleable Tasks
on Parallel Processors to Minimize the Makespan,
Annals of Operations Research, 129, 65–80.

Desaulniers, G., Desrosiers, J. and Solomon, M.M. (2002).
Accelerating strategies in column generation methods for
vehicle routing and crew scheduling problems. In:
Ribeiro, C. and Hansen, P. (eds.) Essays and Surveys in
Metaheuristics. Norwell, MA: Kluwer, 309-324.

Horn, W.A. (1973). Minimizing Average Flow Time with
Parallel Machines, Operations Research, 21, 846-847.

Sousa, J.P., Wolsey, L.A. (1992). A time indexed formulation
of non-preemptive single machine scheduling problems,
Mathematical Programming, 54, 353-367.

