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Abstract: This work presents an algorithm for solving exactly a scheduling problem with identical 
parallel machines and malleable tasks, subject to arbitrary release dates and due dates. The objective is to 
minimize a function of late work and setup costs. A task is malleable if we can freely change the set of 
machines assigned to its processing over the time horizon. We present an integer programming model, a 
Dantzig-Wolfe decomposition reformulation and its solution by column generation. We also developed 
an equivalent network flow model, used for the branching phase. Finally, we carried out extensive 
computational tests to verify the algorithm’s efficiency and to determine the model’s sensitivity to 
instance size parameters: the number of machines, the number of tasks and the size of the planning 
horizon. 

 

1.  PROBLEM DEFINITION 

Given a set of tasks ( 1T , 2T , …, nT ) and a set of machines 

( 1P , 2P , …, mP ), the objective is to find a feasible schedule 

that minimizes a function of the number of setups and the 
amount of late work. The tasks allow for preemptions, 
multiprocessing and are malleable (Blazewicz et al., 2004). 
This last property means that we can freely change the set of 
machines processing a given task over the time horizon, as 
shown in the next machine schedule: 
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Fig. 1. Scheduling of a malleable task 

The task (in shadow) is scheduled in four machines, and the 
number of machines assigned to the task may vary arbitrarily 
over time. 

1.1  Machines 

The problem considers a set of m identical machines, 

{ }1 2, , , mP P P P=  . Each machine can only process one task 

at a time and they can be preempted at arbitrary moments. 
Because of computational complexity issues, in our models 
we will only allow preemptions at integer time units. This 
can be done without loss of generality, because the time unit 
can be freely chosen, according to the problem requirements 
and the available computational resources. 

1.2  Tasks 

For the definition of the task environment, we use a set of n 
tasks, { }1 2, , , nT T T T=  . Each task has a processing time 

( jp ), a release date ( jr ), a due date ( jd ) and a weight for the 

calculation of late work cost ( jw ). 

Although the values of jp , jr  and jd  can be any 

nonnegative numbers, for consistency with the machine 
environment, we limit these values to nonnegative integers. 

A machine schedule can be seen as a sequence of unit 
fragments of different tasks. If two consecutive fragments 
belong to the same task there is no setup cost, otherwise, a 
setup cost is incurred. Although a setup requires, among other 
resources, a certain amount of time, in our models, we 
assume that setup times are very short when compared to 
production runs. Therefore, we will only minimize the total 
number of setups. 

1.3  Objective Function 

Let kc  be the cost of schedule k (a single machine schedule). 

We define kc  in the following way: 

k k kc l s= +  (1) 

In the previous equation kl  is the cost incurred because of 

late work in schedule k and ks  is the number of setups in the 

schedule. The value of kl  is calculated according to the late 

work in the schedule and to the values of the jw  constants. 

The values for jw  must be chosen wisely because there is an 

implicit trade-off with the setup costs. Also, the model for 
calculation of kl  can be subject of discussion. 

For the calculation of kl  we choose a function that linearly 

increases the penalty as the task completion time is more 
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distant from the task due date. The total late work penalty for 
a given machine schedule can be computed as follows: 

( )
1 jk

n

k j l j
j l L

l w C d
= ∈

= −   (2) 

In the above equation, jkL  represents the set of late fragments 

belonging to task jT  present at schedule k and lC  is the 

completion time for each one of those fragments. This 
function can be replaced with any function compatible with 
the subproblem algorithm, which will be presented later on 
this paper. 

Note that the total cost of a given schedule is the sum of costs 
of every machine and that it is possible to calculate the 
contribution of each machine schedule to the total cost 
without knowing the schedules of the other machines. 

2.  PROBLEM FORMULATION 

2.1  A Simple Network Flow Model 

We will show below that the problem presented in the 
previous section can be modeled as a network flow problem 
and solved with a suitable algorithm. Although the network 
flow model always provides valid solutions for the problem, 
it is insensitive to setup costs and an optimal solution cannot 
be directly obtained from it. However, the solutions can be 
improved by heuristics and used as upper bounds in the 
branch-and-price algorithm. 

Essentially, the network flow model is a transportation model 
similar to Horn’s model (Horn, 1973). The problem will have 
j origins (one per task) with supplies equal to the processing 
times, jp . Let us call each origin jT . On the other hand, 

each possible time slot in the schedule will become a 
destination with demand equal to the number of available 
machines, m. We will call each destination tI  and it refers to 

the scheduling period [ ]1,t t− . The index t can vary between 

1 and maxt  (which defines the time horizon for the problem). 

In order to balance the problem, an additional origin must be 
set to supply the idle time in the schedule. Let that origin be 

LT . Its supply is: 

1

n

max j
j

mt p
=

−  (3) 

This value cannot be negative. In that event there would be 
no feasible solutions, because the processing times would 
exceed the available capacity. 

The following figure represents the proposed model: 
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Fig. 2. Network flow model 

Note that arc ( ),j tT I  will only exist if 1jr t≥ − . Otherwise, 

the task is not available for processing at 1t − . The value jtc  

refers to the cost of each arc and is computed in the following 
way: 
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d t
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This computation must agree with the cost function defined 
in section 1.3 and assures that late work costs will be 
minimized. 

Preposition 1: If all tasks have unit processing times, the 
solution obtained from the proposed network flow model is 
optimal. 

Proof: If all processing times are unitary, all tasks are 
scheduled in exactly one scheduling slot, incurring in one 
setup. The total number of setups will be equal to the number 
of tasks and it will be optimal. 

In the next section we discuss an algorithm to transform a 
network flow model solution into a valid scheduling solution 
with minimal number of setups. 

2.2  Obtaining a Valid Scheduling Solution 

Obtaining a valid scheduling solution to our problem from a 
network flow solution is trivial. In this section we propose an 
algorithm that not only achieves a valid solution but also 
minimizes the number of setups for the given network flow 
solution. 

Let jtf  be the flow from jT  to tI  in a given network flow 

solution. The network flow solution will be completely 
defined by the following flow matrix, F: 
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Because all values for demand and supply are integers, it is 
guaranteed that all flow values are also integers. It can easily 

be shown that, for every time slot, 
1

n

jt
j

f m
=

≤ . In fact, this 

sum is the number of machines in use for each time slot. 
Then, for 1t =  the number of incurred setups is equal to 

1
1

n

j
j

f
=
 . 

On subsequent time slots, for any given machine, setups are 
not necessary if the scheduled task is the same task scheduled 
in the previous time slot. In general, at time t, we can avoid, 

at most, a number of setups equal to ( )1
1

min ,
n

jt jt
j

f f +
=
 . The 

proposed algorithm results in a scheduling solution in which 
all the “avoidable” setups are effectively avoided. 



To obtain a solution we first schedule the flows for 1t =  and 
proceed chronologically until maxt t= . For each time slot the 

tF  vector is decomposed into two vectors: the vector of flows 

that can be scheduled without setups, C
tF , and the vector of 

flows that need setups, D
tF . Obviously, C D

t t tF F F= + . The 

two vectors can be calculated as follows: 

( )1min ,C
jt jt jtf f f−=  (6) 
D C
jt jt jtf f f= −

 (7) 

For the initialization, we must admit 0 0jf =  for all tasks. 

This will force 1 0C
jf =  for all tasks and a setup for each 

machine used at time 1t = . 

At 1t =  the choice of machines to schedule flows is 
irrelevant (a setup will be needed for each used slot). In 
subsequent periods the flows in vector C

tF  must be 

scheduled first in machines that have the same task on the 
previous period. The flows in D

tF  are always scheduled last 

and the choice of machine is irrelevant. 

This algorithm is polynomial with respect to n, m and maxt . 

Preposition 2: Applying the algorithm to a given set of flows 
results in a minimal number of setups for that set of flows. 

Proof: For 1t =  a setup is unavoidable for each used 
machine. For subsequent periods and for each task, if 

1jt jtf f −≤  no setups are needed for that task. In that case 
C
jt jtf f=  and no setup will be incurred. If 1jt jtf f −> , at least 

1jt jtf f −−  must be incurred. Now, 1
D
jt jt jtf f f −= −  and only 

the minimal number of setups is incurred. 

In the following section we will present the integer linear 
programming model used to obtain the optimal solution to 
the problem. 

2.3  Integer Programming Model 

As the network flow model presented on the previous 
sections does not provide an optimal solution to the problem, 
we developed an integer programming approach to solve the 
problem. In this section we present the developed model. 

The proposed formulation is based on time indexed variables. 
This kind of variables was first used to solve scheduling 
problems by Sousa et al. (1992). In this context, we use the 
binary variables ijtx  which takes the value 1 if task j is 

scheduled on machine i at time slot t, which represents the 

period [ ]1,t t− . Otherwise, these variables will take the value 

0. 

To account for the number of setups we must also introduce a 
set of binary variables, ijty . If setting 1ijtx =  a setup is 

incurred, and the corresponding variable, ijty , must take the 

value 1. If 0ijtx =  or no setup is incurred, the corresponding 

y variable takes the value 0. 

The complete ILP model is as follows: 

( )
1 1 1 1 1 1

max max

j

t tm n m n

ijt j j ijt
i j t i j t d

min y w t d x
= = = = = = +

+ −    (8) 

1 1

. . ,
maxtm

ijt j
i t

s t x p j
= =

= ∀  (9) 

1

1, ,
n

ijt
j

x i t
=

≤ ∀ ∀  (10) 

1 1, ,ij ijy x i j= ∀ ∀  (11) 

{ }1, , , 2,3, ,ijt ijt ijt maxy x x i j t t−≥ − ∀ ∀ ∀ ∈   (12) 
0,1, , ,ijtx i j t= ∀ ∀ ∀  (13) 
0,1, , ,ijty i j t= ∀ ∀ ∀  (14) 

The objective function (8) follows from section 1.3, in terms 
of the x and y variable meanings. The first term accounts for 
the number of setups and thus, the setup costs. The second 
term accounts for the late work costs. 

Constraints (9) ensure that each task is scheduled in jp  time 

slots and, therefore, the processing times are met. The next 
set of constraints (10) ensures that, at most, one task is 
scheduled at each time slot. Note that they also assure that no 
more that m machines are used in each time unit. 

Constraints (11) ensure that a setup is accounted for any task 
scheduled at time slot 1. Constraints (12) guarantee that, in 
any machine and in every time slot, if the scheduled task is 
different from the task scheduled in the previous time slot the 
appropriate y variable takes the value 1. 

This problem is not amenable for solution with a commercial 
optimization package for two reasons: first, the number of 
variables and constraints rises rapidly with the number of 
machines, the number of tasks or the planning horizon size; 
second, the problem is very symmetric, because the same 
scheduling solution can be implemented with different 
machine indexes. 

For those reasons we implemented a column generation 
approach to solve the problem that is presented in the next 
section. 

3.  COLUMN GENERATION 

In this section we start by presenting a Dantzig-Wolfe 
decomposition of the model and a dynamic programming 
algorithm for solving the resulting subproblem. Later in the 
section we propose a branching scheme and we discuss the 
corresponding implications on the subproblem algorithm. 

3.1  Dantzig-Wolfe Decomposition 

Consider the mathematical model presented in section 2.3. 
For simplicity, the following transformations will be 
performed: 

iZ : a vector of all variables referring to processor i (includes 

all the x and all the y variables); 



iC : a vector of all objective function coefficients referring to 

processor i; 

iA : a matrix with j rows containing all the coefficients 

referring to machine i for the processing times constraints; 

p : the vector of processing times; 

iP : a polyhedron defined by all the constraints (except the 

processing times constraints) that refer to machine i. 

Using these later definitions, the mathematical model can be 
rewritten as follows: 

1

1

. .

,

m
T
i i

i

m

i i
i

i i

min

s t

P i

=

=

=

∈ ∀





C Z

A Z p

Z

 (15) 

The set of constraints with a block angular structure was 
decomposed, leaving the processing times constraints in the 
master problem and defining a subproblem for each iP  

constraint. 

3.1.1  The Master Problem 

Because iP  is a convex region, any point of that region can 

be represented as a convex combination of extreme points. 
Let iK  be the set of extreme points for machine i and let 

ikP  

represent an element of that set. This can be translated to the 
following equality: 

, 1, 0,
i i i i

i i i i

i k k k k i
k K k K

P kλ λ λ
∈ ∈

= = ≥ ∀ Z  (16) 

After variable substitution the master problem is as follows: 

( )

( )
1

1

. .

1,

i i

i i

i i

i i

i

i i

m
T
i k k

i k K

m

i k k
i k K

k
k K

min P

s t P

i

λ

λ

λ

= ∈

= ∈

∈

=

= ∀

 

 



C

A p  (17) 

Because, in our problem, the processors are identical, the 
reference to the specific processor can be removed and the 
convexity constraints can be replaced by their sum: 

( )
( ). .

T
k k

k K

k k
k K

k
k K
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∈

∈

∈
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For simplicity, let k kx λ= , T
k kc P= C  and jka  be the 

elements of kPA . After the necessary substitutions the master 

problem can be written as follows: 
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In this last model a variable can be seen as a schedule for one 
processor, where kc  is the contribution of that schedule to the 

global cost and jka  is the amount of processing done for task 

j in that schedule. The collection of all individual machine 
schedules present in the optimal solution will make up the 
global schedule. Based on this interpretation the following 
conclusion can be drawn. 

Preposition 3: For a solution to be integral, it is sufficient 
that all kx  variables have integer values. 

Proof: The value of each variable is the number of 
processors executing the corresponding schedule. Thus, if all 
variables have integer values the solution can be translated to 
a valid operational plan. 

However, as we will show later, this is not a necessary 
condition to get a valid solution. 

In order to generate new individual machine schedules to 
include in the master problem, each schedule cost must be 
determined without knowing in advance the global schedule. 
As remarked in section 1.3, our objective function complies 
with this requirement. 

It is known that, whenever possible, replacing equality 
constraints with inequalities leads to better computational 
performance because the additional restriction of the dual 
solution space (Desaulniers et al., 2002). As shown next, all 
the equalities in our master problem can be replaced with 
inequalities. 

Preposition 4: All the constraints in the form jk k j
k K

a x p
∈

=  

can be replaced with constraints in the form jk k j
k K

a x p
∈

≥ . 

Proof: If a task processing time is exceeded the extra 
processing can always be removed from the end of the 
schedule without additional setups or late work. 

Preposition 5: The constraint k
k K

x m
∈

=  can be replaced by 

the constraint k
k K

x m
∈

≤ . 

Proof: If allowed by the processing times, machines can be 
left idle. 

Making these two transformations, the resulting master 
problem will be: 

. . ,

k k
k K

jk k j
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k
k K
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3.1.2  The Subproblem 

Let jπ  (for 1, 2, ,j n=  ) be the set of dual variables 

associated with the first n constraints of the master problem 
and let Mπ  be the dual variable associated with the last 

constraint. To find the column with the maximum reduced 
cost for the master problem, the following subproblem is 
solved: 
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(21) 

Note that this problem is still hard to solve with a general ILP 
software package. However it has a special structure that 
allows the development of a specialized algorithm presented 
in the next section. 

In the objective function, jπ  can be seen as a prize for 

including each unit of task j processing in the schedule. The 
constant Mπ  (negative) is the penalty for using the processor 

pool (independently of the schedule). The rest of the 
objective function, as before, deals with the penalties 
incurred for setups and late work. 

In the next section a dynamic programming algorithm that 
takes advantage of the subproblem’s structure is presented. 

3.2  Dynamic Programming Algorithm for the Subproblem 

In order to identify new attractive columns to include in the 
master problem we developed a dynamic programming 
algorithm that takes advantage of the subproblem special 
structure. 

The developed algorithm has 1maxt +  stages, corresponding to 

each integral time instant from 0 to maxt , and 1n +  states, 

representing the last scheduled task (one of the n tasks or 
none). Note that, because of the release dates, not all states 
are available at every stage. 

Let ( )tF j  be the objective function value for state j and 

stage t. For simplicity assume that at time 0t =  (stage 0) the 
machine is not set to any task, i.e., the machine is at state 0. 
We can start up the dynamic programming algorithm by 
setting the initial objective function value: 

( )0 0 MF π=  (22) 

This means that, if no task is scheduled, the reduced cost of 
the new column will be Mπ . For any stage, the objective 

function value can be calculated recursively by the following 
expression: 

( ) ( )( )1maxt t j tj ljF j F l w pπ−= + − − , (23) 

where 1, 2, , maxt t=   and { }0, : jj j r t= <  and 

{ }0, : 1jl j r t= < − . We must also define 0 0π =  and the 

values of tjw  and ljp : 

( )
0, 0
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j

tj
j j j

j or t d
w

w t d j and t d

= ≤=  − > >
 (24) 

0, 0

1, 0lj

j or l j
p

j and l j

= =
=  > ≠  (25) 

These last expressions will account the setup costs (25) and 
the late work costs (24), as explained. 

The iterative solution of the master problem (to obtain a dual 
vector for the subproblem) and of the subproblem (to obtain 
new columns for the master problem) until there are no more 
attractive columns will lead to an optimal solution to the 
linear relaxation of the master problem. Usually, this optimal 
solution will not obey the integral requirements of the master 
problem. To get an optimal integral solution we developed 
the branching scheme presented in the following section. 

3.3  Branching Scheme 

Branching on the restricted master problem variables is not a 
good choice, because it may lead to column regeneration 
(Barnhart, 1998). We do not branch on those variables, but 
rather on the variables of the network flow model. 

Previously we defined jtf  as the network flow model 

variable representing the flow in arc ( ),j tT I . This variable 

represents the number of processors allotted to task j at time 
slot t. A relation between the flow variables and the restricted 
master problem can be established by the following 
expression: 

jt jtk k
k K

f xδ
∈

=   (26) 

The jtkδ  coefficients are equal to 1 if, in processor schedule 

k, the j task is scheduled at time slot t, and are equal to 0 
otherwise. These coefficients must be determined at column 
generation because they cannot be calculated based on the 
master problem technological coefficients. 

Preposition 6: A solution is integer iff all jtf  are integer. 

Proof: The condition is sufficient because, on any integral set 
of flows, we can apply the algorithm described in section 2.2 
to obtain a valid scheduling solution. The condition is 
necessary because any value of jtf  represents the number of 

machines allotted to task j at time slot t, which must be 
integer. 

Note that, in order to obtain a valid integer solution, it is not 
necessary that all kx  are integer. If the resulting flows are 

integer it is possible to obtain a valid scheduling solution. 



If a solution has non-integer flows, one of those flows must 
be chosen for branching. Because this choice may be 
computationally relevant, a method for choosing the flows to 
branch on may be needed. Let us denote the value of the non-
integral flow to branch on by *

jtf . The current problem 

(corresponding to a branch tree node) will originate two child 
problems with a mutually exclusive set of solutions: in one of 

these problems the constraint *
jt jtf f ≤    is added; in the 

other problem we add the constraint *
jt jtf f ≥   . As a result, a 

set of invalid solutions is removed from the solution space. 

3.3.1  Subproblem Consequences 

Adding new constraints to the master problem modifies its 
structure. For the subproblem to identify new attractive 
columns for the modified master problem, those 
modifications must be accounted for in the subproblem. 
Basically, the dual information associated with the new 
constraints must be considered at the subproblem level. 

Every extra constraint respects to the scheduling of a specific 
task in a specific time slot. The dual value associated to an 
extra constraint can be seen as a prize or penalty for 
scheduling such task in such time slot. Therefore, the 
modifications to the subproblem can be easily done because 
they only affects the calculation of the state transition costs in 
the dynamic programming formulation. 

Consider a node in the search tree. At that node, the set of 
added constraints can be divided into two subsets: a subset G 
of constraints in the form 

jtk k g
k K

x fδ
∈

≤ , (27) 

for every g G∈ ; and a subset H of constraints in the form 

jtk k h
k K

x fδ
∈

≥ , (28) 

for every h H∈ .  

Let us denote each dual variable associated with a subset G 
constraints by gμ  and each dual variable associated with 

constraints from subset H by hν . 

The new dynamic programming recurrence equation can be 
written as follows: 

( ) ( )1max
jt jt

t t j g h tj lj
g G h H

F j F l w pπ μ ν−
∈ ∈

 
= + + + − −  

 
  , (29) 

where jtG  and jtH  are subsets containing only the 

constraints referring to task j and time slot t. It can be easily 
seen that the only modification involves adding the values of 
the dual variables associated with a specific task and a 
specific time slot. 

4.  CONCLUSIONS AND RESULTS 

In this work we presented an algorithm for solving exactly a 
scheduling problem with identical parallel machines and 
malleable tasks, subject to arbitrary release dates and due 
dates in order to minimize a function of the late work and 

number of setups. To our knowledge, this kind of problem 
has never been tackled with column generation and branch-
and-price before. 

To get an idea about the size of instances we could solve, we 
made a computational implementation of the algorithm using 
CPLEX and generated some random instances. We 
concluded that the number of tasks was determinant for the 
solution times. With about 10 tasks, we consistently solved 
problems with 40 machines and about 20 time slots. 
Lowering one of these values allowed for the others to be 
increased. 
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