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Abstract 
 
A novel numerical-experimental technique is developed in order to minimise some 
of the difficulties exhibited by others damage localisation approaches. The present 
technique relies on the computation of undamaged rotation fields using the Ritz 
method and the Timoshenko beam theory, while the measurement of damaged 
rotation fields is performed by speckle shear interferometry. Two damage 
localisation indicators are also presented, which, instead of being based on the 
second derivative of displacement fields, are based on the first spatial derivative of 
rotation fields. These damage localisation indicators, the modified curvature 
difference (MCD) and the modified damage index (MDI), were applied successfully 
in the localisation of damage in two clamped-clamped aluminium beams. 
 
Keywords: damage detection, Ritz method, Timoshenko beam theory, rotation 
field, spatial derivative, shear interferometry. 
 
1  Introduction 
 
Structural damage identification methods have attracted the interest of mechanical, 
civil and aerospace engineering communities for the past decades. This interest is 
attested by the extensive number of papers, reviews and conferences dedicated to 
this area [1]. The underlying idea amongst most of these methods is that whenever 
there is damage in a structure, its stiffness, mass and damping properties change, 
therefore changing its dynamic behaviour.  

Pandey et al. [2] developed the mode shape curvature, which allows the 
localisation of damage, since the curvatures are local properties, contrary to, for 
instance, natural frequencies. In their work the curvatures are computed by 
differentiating the displacement field using second order central finite differences. 
However, this numerical differentiation can lead to false localisations of damage, in 
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particular with sparse and noisy displacement fields. Indeed, with few measured 
points, the intrinsic error of the finite difference technique originates curvatures that 
can be far from the real ones. On the other hand, if the measurements are 
contaminated with noise, this noise is amplified by the differentiation. Instead of 
applying the second order central difference, Guan and Karbhari [3] proposed the 
use of a fourth order central difference method, therefore improving the results for 
sparse fields. Stubbs [4] presented the damage index method formulation which 
is based on mode shapes curvatures information. This damage index relates the 
second spatial derivative of the undamaged and damaged displacement fields in each 
segment or element of the structure. Over the years, several researchers have 
improved and applied curvature based methods to damage localisation in beam-like 
structures [5-16]. Usually, in these works, the curvatures are computed through the 
differentiation of relatively sparse displacement fields, and the damage indicators 
generally describe the state of damage in areas of the structures, i.e. the damage 
localization is performed element-by-element or segment-by-segment. Also, in most 
of these works, the beams were described assuming the Euler-Bernoulli 
assumptions, therefore limiting the applicability to thin beams.  

This paper is a contribution to minimise three of the main problems that mode 
shape curvature based methods present: (1) ineffective differentiation schemes, (2) 
lower spatial resolution, and (3) presence of noise in measurements.  The first 
contribution is related to the first two problems. By using the Ritz method and the 
Timoshenko theory, one is able to compute the undamaged rotation field as a 
function series, and, therefore, the differentiation can be performed analytically. The 
damaged rotation field is obtained experimentally by speckle shear interferometry, 
which is a full-field technique, and the differentiation is performed through an 
efficient Gaussian function derivative. By combining both techniques, i.e. the Ritz 
method with the speckle shear interferometry, a point-by-point correlation of 
rotation fields and their spatial derivatives can be performed.  The last problem, i.e. 
the present of noise in the measurements, is coped by applying filters to the 
experimental data. 

Two new damage localisation indicators are also presented in this paper. They are 
inspired on the mode shape curvature method, developed by Pandey et al. [2], and 
the damage index, proposed by Stubbs et al. [4]. However, instead of using the 
second spatial derivative of displacement fields, these novel indicators rely on the 
first spatial derivative of rotation fields. These indicators are applied to several cases 
of saw-cut damage in two aluminium beams. It is shown that most damages are 
successfully located and that both indicators values increase as the damage 
increases.  

 
2  Methodology 
 
2.1 Ritz method and Timoshenko beam theory  
 
The Hamilton’s principle, which is a generalisation of the principle of virtual work 
to dynamics, for the free vibration analysis of a Timoshenko beam in pure bending 
is given by [17] 
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where Am ρ=0  and 12/2

2 Ahm ρ= , being ρ  the density, A the area, and h the beam 
thickness.  

Since 
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and the constitutive relations are 
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where M is the bending moment, Q is the transverse (shear) force, E is the Young’s 
modulus, I is the second moment of area, Ks is the shear correction factor, and G is 
the shear modulus, equation (1) can be written in terms of the displacement and 
rotation fields ),( txw , and ),( txφ , respectively: 
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 Note that the first constitutive relation in Equation (3) shows that the flexural 
rigidity EI is associated, not with the second derivative of the displacement field 

22 / xw ∂∂ , as in a Euler-Bernoulli beam, but with the first spatial derivative of the 
rotation field x∂∂ /φ . 
 In the Ritz method for free vibration of a Timoshenko beam one seeks a 2N 
parameter periodic analytical approximate solution of the form 
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where 1−=i , )(xwj  and )(xjφ  are assumed functions, jW  and jΦ  are 
coefficients to be determined, and ω is the natural frequency associated with the 
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mode shape described by the displacement field ),( txw  and the rotation field 
),( txφ . As can be seen, and contrary to the Euler-Bernoulli beam theory, in the 

present case we obtain directly the rotation field (Equation (6)), with no need to 
differentiate the displacement field (Equation (5)). 
 Substituting Equations (5) and (6) into Equation (4) results in an eigenvalue 
problem of order 2N: 
 
  0MQKQ =Λ−  (7) 
 
where Q  and Λ  contain the eigenvectors and the eigenvalues, respectively. 
Matrices K and M are partitioned by grouping the terms )()( xwxw ji , )()( xxw ji φ , 

)()( xx ji φφ  and their partial derivatives, such that 
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In this work, the assumed functions )(xwj  for the six different boundary 
conditions are the characteristic polynomials and are listed below [17]. 
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• Clamped - Free (C-F): 
 [ ])cos()cosh()sinh()sin()( xxxxxw iiiiii λλαλλ −+−=  (17) 
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• Simply supported - Free (S-F): 
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For most boundary conditions the roots iλ  of the characteristic equation must be 

computed using, for instance, the Newton-Raphson method. Since the present work 
relies on the Timoshenko beam theory, a set of assumed functions for the rotation 
field is also necessary. An appropriate set is given by  
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so that for beams with high length to thickness ratios the Euler-Bernoulli solution is 
recovered. This set of assumed functions also respects the boundary conditions 
relative to the mode shape slope. 
 
 
2.2 Spatial derivatives of displacement and rotation fields 
 
In this work we make use of higher order derivatives of displacement and rotation 
fields. Attending to Equations (5) and (6), the displacement and rotation fields n-th 
order spatial derivatives of the undamaged beam are given, respectively, by  
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It should be noted that since the undamaged structure fields are described by an 
analytical expression, the differentiation does not involve any kind of numerical 
technique. This is not the case if these fields were, for instance, obtained by the 
finite element method.  
 The damage beam rotation field n-th order spatial derivatives are obtained 
through the one-dimensional n-th order Gaussian derivative: 
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and )(xHn  are the Hermite polynomials: 
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 This differentiation scheme has also the capability to smooth the measured data, 
therefore decreasing the influence of noise. A comprehensive description of this 
technique can be found in references [18-19].  
 

 
2.3 Shear interferometry 
 
The digital shearography technique is a powerful tool that allows non-contact and 
full-field measurements of surface out-of-plane spatial gradients of displacement 
fields. The shear interferometer technique proposed by [18-19] granted the direct 
measurement of modal rotation fields in a free-free plate excited acoustically at its 
natural frequencies by using a loudspeaker. In this set-up a spatial carrier is 
introduced in the hologram primary fringes in order to perform the phase map 
calculation [20]. However, it produces high levels of speckle noise in the 
measurements. The use of image processing techniques allows the elimination of 
this speckle noise, but the perturbations due to damage in the modal response fields 
are also eliminated in this process. This is one of the reasons why this technique 
presents some difficulties in localising damage.  

To overcome this drawback, a Michelson shearography interferometer with a 
temporal phase modulation technique was presently developed for the modal field 
measurement of clamped-clamped aluminium beams. In this case, the phase shifting 
technique is used for the phase maps evaluation [21]. In this set-up, the speckle 
pattern is frozen by introduction of stroboscopic illumination of continuous wave 
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laser using an acousto-optic modulator [22]. Any point of the beam vibration cycle 
is illuminated with short stroboscopic pulses synchronized with its vibration 
excitation. The beam modal rotation fields are obtained by filtering and unwrapping 
the measurement phase maps. Afterwards, these fields are post-processed in order to 
obtain the modal rotation spatial derivatives. Dedicated image processing algorithms 
proposed by [18-19] were used in this process.  

The measurements used in this work were performed in two aluminium beams. 
The beams were fixed at both ends by using two rigid blocks. A general view of the 
experimental set-up, used for modal rotation field measurement on the beam with 
different damages severities are shown in Figure 1. 
 

Shearography
interferometer

Detailed view  of 
acoustic excitation

Doubly clamped beam

Time phase 
modulation

Acousto‐optic 
modulator

Synchronization 
system

 
Figure 1: General view of experimental set-up for the measurement of rotation 

fields. 
 

 
3  Preliminary analysis 
 
This section presents a preliminary analysis of the rotation fields and their spatial 
derivatives of an undamaged beam obtained using the Ritz method. The objective is 
to show that, for relatively thick beams, the spatial derivative of the displacement 
field is not equal to the rotation field, and the same applies for higher derivatives. In 
order to do that, beams with 1 m x 0.25 m, E = 210 GPa,  ν = 0.3, ρ = 7800 kg/m3,  
Ks = 5/6, and different thicknesses and boundary conditions were studied. 

The spatial derivatives were compared by computing the relative difference 
between a vector )(kφ  and a vector )1( +kw , whose entries are, respectively,  

k
l

k xtx ∂∂ /),(φ  and )1()1( /),( ++ ∂∂ k
l

k xtxw , for Lxl ,,0 …=  with an increment of 
NPL / ,  where NP  is the number of points: 
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Figure 2 shows the relative differences between rotation fields and displacement 

fields first derivative for beams with different boundary conditions and aspects 
ratios of the first mode. As expected, for relatively high aspect ratios the differences 
are minimal. One sees that the C-C beam is the beam presenting the greatest 
differences, while the C-F beams has the minor differences. This trend is also 
observed in differences of higher order derivatives of w  and φ , such as those 
between 22 / x∂∂ φ and 33 / xw ∂∂ , and between 33 / x∂∂ φ  and 44 / xw ∂∂ . Note that the 
comparative results here presented, for vectors with length 101=NP , do not depend 
on the size of )(kφ  and )1( +kw .  

 
 
 
 
 
 

 
 

Figure 2: Relative differences between )(xφ and xw ∂∂ /  of the first mode as 
function of aspect ratio L/h for different boundary conditions. 

 
 
 
 
 
 

Since the influence of the shear deformation and rotary inertia becomes more 
pronounced for higher modes, these relative differences increase as one considers 
higher mode shapes. Figure 3 illustrates this phenomenon, where the relative 
difference of a C-C beam fourth mode, for an aspect ratio L/h  = 10, is larger than 
50%.  
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Figure 3: Relative differences between )(xφ and xw ∂∂ /  of a C-C beam as function 
of aspect ratio L/h and mode shape. 

 
 

4  Damage localisation 
 
Two aluminium clamped-clamped beams with 351 mm x 40 mm were studied in 
this work. The beams are 2.1 mm and 8 mm thick. Both beams were subjected to 
several cases of damaged characterised by performing a cut trough the beams width 
at coordinate x = 90 mm (Figure 4). Table 1 presents the depths of the cuts 
performed. All the cuts are 1 mm length (c = 1 mm).  
 

 
Figure 4: Damage dimensions 

 
 

Damage Depth, p (Beam 1) Depth, p (Beam 2)  
case (mm) (mm) 

1 0.3 0.8 
2 0.5 1.2 
3 1.0 1.6 
4 — 2.0 
5 — 4.0 

 
Table 1: Damage dimensions 

 
In order to locate the damage two damage indicators were used: (1) the modified 
curvature difference (MCD), and (2) the modified damage index (MDI), defined, 
respectively, by 
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where i denotes the mode shape, lx  is the coordinate where the first spatial 
derivative of the maximum amplitudes of the undamaged and damaged of rotation 
fields ),( txφ and ),(~ txφ , respectively, are  computed and NP  is the number of 
measured points. Since both beams have the same in-plane dimensions, the number 
of measured points is also the same and equal to 2158. This high number of 
measured points is only possible because we are using shear interferometry to 
measure the experimental damaged rotation field and analytically computing the 
equivalent undamaged field. Recall that most works on damage localisation reported 
in the literature rely on techniques that use accelerometers or laser vibrometers. In 
general, these techniques only allow the measurement of sparse displacement fields 
and are very time consuming. Also, the undamaged rotation fields are usually 
obtained using finite elements, which implies that their derivatives must be 
computed using some kind of numerical differentiation scheme. The standard mode 
shape curvatures differences (e.g. [2]) and damage index (e.g. [4]) are recovered if 
we consider the Euler-Bernoulli assumption dxdwx /)( =φ . In other words, the 
standard damage indicators are function of the second derivative of the displacement 
field, not the first derivative of the rotation field.  
 
 

 
 
4.1 Beam 1 
 

Figures 5(a) and (b) show the first mode rotation fields of Beam 1 in the 
undamaged and damaged states, respectively. Although the values have different 
magnitudes we see that the undamaged and damaged shapes are similar and that 
only for a high damage slight perturbations are observed in the damaged rotation 
field. These perturbations are not necessarily located at the damage position.  

The different magnitudes of the undamaged and damage rotation fields requires a 
normalisation before the computation of MCD. The normalisation is such that the 
vectors containing the first derivative of the rotation fields have a Euclidean norm 
equal to 1. This normalisation is not necessary in the computation of MDI.  
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Figure 5: First mode (a) undamaged rotation field, (b) damaged rotation fields,          

(c) MCD, and (d) MDI of Beam 1 
 
 
 
 
 
The first mode MCD and MDI are presented in Figures 5(c) and (d), respectively. 

We see that near the borders the MCD and MDI present maximum or minimum 
values. This is also observed in the second and third modes (Figures 6 and 7) thus 
indicating that this is a systematic behaviour and can not be justified by the presence 
of damage. This is due, among other factors, to difficulties in accomplishing a 
perfect clamping of the beam and errors in the computation of the experimental 
derivatives of the rotation fields [19]. There is another systematic presence of 
stationary points of both damage indicators at coordinates where 0)( =xφ . This is 
particularly clear in the third mode and MDI (Figures 7(d)). Therefore, one can 
conclude that lower modes yield better damage localisations than higher modes, 
since these stationary points may be mistaken for damage locations. At a coordinate 

09.0≈x  m we observe an increase of both damage indicators with the increase of 
the cuts depth. This pattern denotes a correlation between the MCD and MDI values 
and the amount of damage. 



12 

0 0.0775 0.155 0.2325 0.31
-40

-30

-20

-10

0

10

20

30

40

50

x (m)

φ(
x)

0 0.0775 0.155 0.2325 0.31
-6

-4

-2

0

2

4

6

8

x (m)

φ(
x)

 

 

p = 0.3 mm

p = 0.5 mm

p = 1.0 mm

 
(a)              (b) 

 

0 0.0775 0.155 0.2325 0.31
-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

x (m)

M
C

D

 

 

p = 0.3 mm

p = 0.5 mm

p = 1.0 mm

0 0.0775 0.155 0.2325 0.31
0.998

0.9985

0.999

0.9995

1

1.0005

1.001

x (m)

M
D

I

 

 

p = 0.3 mm

p = 0.5 mm

p = 1.0 mm

 
 (c)              (d) 

 
Figure 6: Second mode (a) undamaged rotation field, (b) damaged rotation fields,      

(c) MCD, and (d) MDI of Beam 1 
 
 
 
4.2 Beam 2 
 
To verify the appropriateness and reproducibility of the proposed approach a second 
beam was studied. The first mode alone was considered and its undamaged and 
damaged rotation fields are shown in Figure 8(a) and (b). Like was found in Beam 1, 
we see that most damaged shapes are similar to the undamaged one. Only the larger 
damage presents a rotation field with a noticeable perturbation between coordinates 

0775.0=x  m and 155.0=x  m. However, there are also other perturbations, since, 
for instance, the amplitude near coordinate 25.0=x m decreases substantially as the 
damage increases. Similarly to what was observed in Beam 1, this beam presents 
maximum or minimum values of damage indicators near its borders, as can be seen 
in Figures 8(c) and (d). There are, nevertheless, clear peaks on both damage 
indicators at a coordinate 09.0≈x  m (Figures 8(c) and (d)), thus implying a 
successful damage localisation. Furthermore, we see that as the damage increases, 
the values of both MCD and MDI also increase in this particular coordinate. 
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Figure 7: Third mode (a) undamaged rotation field, (b) damaged rotation fields,         
(c) MCD, and (d) MDI of Beam 1 

 
5  Conclusions 
 
A new numerical-experimental technique for damage localization in beams is 
presented in this paper. This technique minimises some of the problems exhibited by 
the usual mode shape curvature based methods. The proposed technique relies on a 
combination of the Ritz method and the Timoshenko beam theory to directly 
compute the undamaged rotation fields and the speckle shear interferometry for the 
measurement of the associated damaged ones. Since the Ritz method describes the 
displacement and rotation fields analytically, contrary, for instance, to the finite 
element method, the spatial derivatives are also obtained analytically. The measured 
damaged rotation fields are also obtained efficiently, mainly due to its full-field 
characteristic.  Two new damage localisation indicators, based on the mode shape 
curvature method and the damage index, are also proposed. These indicators, which 
rely on the first spatial derivative of rotation fields instead of the second spatial 
derivative of displacement fields, are applied to damage localisation in two clamped-
clamped aluminium beams.  It was found that the several cases of damages in these 
beams are located successfully using only the first mode. Furthermore, the proposed 
indicators present values that correlate well with the damage severity, showing that 
they may be used to relatively quantify the damage. 
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Figure 8: First mode (a) undamaged rotation field, (b) damaged rotation fields,      

(c) MCD, and (d) MDI of Beam 2 
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