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Abstract
In a multiglobal optimization problem we aim to find all the global solutions of a constrained nonlinear
programming problem where the objective function is multimodal. This class of global optimization
problems is very important and frequently encountered in engineering applications, such as, process syn-
thesis, design and control in chemical engineering. The most common method for solving this type of
problems uses a local search method to refine a set of approximations, which are obtained by comparing
objective function values at points of a predefined mesh. This type of method can be very expensive nu-
merically. On the other hand, the success of local search methods depends on the starting point being at
the neighbourhood of a solution. Stochastic methods are appropriate alternatives to find global solutions,
in which convergence to a global solution can be guaranteed, with probability one. This is the case of the
simulated annealing (SA) method. To compute the multiple solutions, a function stretching technique
that transforms the objective function at each step is herein combined with SA to be able to force, step
by step, convergence to each one of the required global solutions. The constraints of the problem are
dealt with a penalty technique. This technique transforms the constrained problem into a sequence of
unconstrained problems by penalizing the objective function when constraints are violated. Numerical
experiments are shown with three penalty functions.
Keywords: nonlinear optimization; multiglobal optimization; simulated annealing.

1. Introduction
The purpose of this paper is to present a penalty framework and compare the practical behavior of three
penalty functions for solving constrained multiglobal optimization problems (MGOP) formulated in the
following form

max
x∈Rn

f(x)

subject to gj(x) ≤ 0, j = 1, . . . ,m
l ≤ x ≤ u

(1)

where at least one of the functions f, gj : Rn → R is nonlinear, and F = {x ∈ R
n : l ≤ x ≤ u, gj(x) ≤

0, j = 1, . . . ,m} is the feasible region. Since we do not assume convexity, f may possess many global
maxima inside F . Here, we aim to find all points x∗ ∈ F such that f(x∗) ≥ f(x) for all x ∈ F . We also
assume that the problem (1) has a finite number of global maximizers. This class of global optimization
problems is very important and frequently encountered in engineering applications (e.g. [2, 3, 4]). Some
algorithms for solving this type of problem require substantial gradient information and aim to improve
the solution in a neighborhood of a given initial approximation. When the problem has more than one
global solution, the probability of convergence to an already detected global solution is very high, and
depends very closely on the provided initial approximation. Techniques for detecting all global solutions
represent an area of intense research. See [6, 11] and the references therein included.

The most well-known category of methods to handle constraints in nonlinear optimization problems
depends on a penalty function and a positive penalty parameter. Techniques based on penalty functions
transform the constrained problem into a sequence of unconstrained subproblems by penalizing f when
constraints are violated and then maximizing the penalty function using methods for unconstrained
problems. In general, the penalty parameter ought to be updated along the iterative process, so that
convergence to the solution can be accelerated. However, the updating should not be too quick since
numerical instability arises in the unconstrained optimization problem. The choice of the initial penalty
value and its updating scheme are crucial issues that affect the algorithm performance. Large values of
the penalty parameter give feasible solutions that have low accuracy, since search around the boundary
tends to be avoided, while small values generate infeasible solutions with good accuracy.
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This paper aims to assess the practical behavior of three penalty functions when solving constrained
multiglobal optimization problems with a penalty approach. We test a L2-exponential penalty function
[14], the hyperbolic penalty function [16] and compare them with a penalty function that penalizes
infeasible solutions dynamically using L1 or L2 terms, herein denoted by L1/2. To compute all the
global maximizers, the paper presents a Simulated Annealing (SA) algorithm combined with a function
stretching technique. At each iteration, this technique is applied to a small neighbourhood of a detected
solution in order to escape from that particular solution and converge to another one. The performance
of the algorithm is illustrated on a selected set of small problems.

This paper is organized as follows. In Section 2, we introduce the penalty framework and describe
the penalty functions that were used in our study. Section 3 presents the stretched simulated annealing
method which has the ability to avoid previously computed solutions and thus detect all global solutions
of the problem and Section 4 contains the numerical results. Finally, we conclude with Section 5.

2. Penalty techniques

The basic penalty approach defines a fitness for each point x, herein denoted by φ(x;µ), by adding to
the objective function value a penalty term that aims to penalize infeasible solutions as follows:

φ(x;µ) = f(x)− P (g(x), µ, .) (2)

where the penalty term P depends on the constraint functions gj(x), j = 1, . . . ,m and on at least one
positive penalty parameter µ. Our implementation of the penalty framework aims to penalize only the
inequality constraints. Each subproblem of the sequence that is solved for a fixed value of the penalty µ

is a multiglobal optimization problem with simple bounds:

max
x∈Rn

φ(x;µ)

subject to l ≤ x ≤ u.
(3)

Conceptually, this penalty framework is an iterative process, herein indexed by k, that computes for each
value of the penalty parameter µk, the solution of subproblem (3). This solution is denoted by x∗(µk). It
follows that, under certain appropriate conditions, the maximizer of the function φ, in (2), that satisfies
l ≤ x ≤ u for a fixed value of the parameter µk, converges to the solution of the given problem (1) as µk

increases [1].
Previous experiments with a penalty strategy has shown that this well-known constraint-handling

procedure is worth pursuing in the multiglobal optimization context [15]. Below we describe three penalty
functions.

2.1. The L1/2 penalty function
The L1/2 penalty function has been widely used with stochastic methods [7, 8]. This is a non-smooth
function and a non-derivative method should be applied when solving problem (3). The corresponding
penalty term is defined as

P1/2(x, µ) = µ

m∑

j=1

(max {0, gj(x)})
γ(gj(x)), (4)

where the power of the constraint violation, γ(.), may be a violation dependent constant. The simplest
approach sets γ(z) = 1 if z ≤ 0.1, and γ(z) = 2, otherwise. To define an appropriate updating scheme for
µ one has to consider a safeguarded scheme to prevent the subproblems (3) from becoming ill-conditioned.
An upper bound µmax is then defined and the update is as follows:

µk+1 = min{cµk, µmax}, for c > 1 and µmax >> 1

for a given initial value µ0 > 0, where k represents the iteration counter.

2.2. L2-exponential penalty function
Here, we extend the use of a continuous L2-exponential penalty function to the constrained multiglobal
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optimization problem. This penalty function was previously incorporated into a reduction-type method
in a semi-infinite programming context [14].

P
exp
2 (x, ν1, ν2, µ) =

ν1

µ
(eµθ(x) − 1) +

ν2

2
(eµθ(x) − 1)2 , (5)

where θ(x) = maxj=1,...,m[gj(x)]+ and the [gj(x)]+ represents max{0, gj(x)} and ν1, ν2 are positive pa-
rameters. Clearly θ(x) is the infinity norm of the constraint violation.

2.3. Hyperbolic penalty function
Another proposal uses the 2-parameter hyperbolic penalty function [16]. This is a continuously differ-
entiable function that depends on nonnegative penalty parameters λj and σj , j = 1, . . . ,m, in general
different for each constraint of the set

Phyp(x, λ, σ) =
m∑

j=1

λjgj(x) +
√
λ2
j [gj(x)]

2 + σ2
j . (6)

The parameters λj and σj are updated, for each j = 1, . . . ,m, as below

{
λk+1
j = rλk

j and σk+1
j = σk

j , if maxl=1,...,m gl(x) ≥ 0

σk+1
j = qσk

j and λk+1
j = λk

j , otherwise
and r ≥ 1, q ≥ 1.

3. Stretched simulated annealing

Here, we use the following notation: N is the number of global solutions of problem (1), X∗ =
[x∗

1, x
∗
2, . . . , x

∗
N ] is the n×N matrix whose columns contain the global solutions.

In general, each implementation of a global optimization method finds just one global solution. To be
able to compute multiple solutions, deflection, stretching or/and repulsion techniques, have to be incorpo-
rated in the algorithm. Our proposal relies on a stretched simulated annealing algorithm in the sense that
a sequence of global optimization problems with stretched objective functions is iteratively defined and
solved by the SA algorithm. The SA is a point-to-point stochastic algorithm that does not require deriva-
tive information and is able to guarantee convergence to a global solution with probability one. After the
computation of a global solution, the objective function of the current problem is transformed using a
function stretching technique. The main steps of the SA algorithm, as well as the crucial ideas behind the
proposed local application of the stretching technique, are presented in the remaining part of this section.

3.1. The simulated annealing method
The Adaptive Simulated Annealing (ASA) algorithm is a well-known variant of the simulated annealing
method [5]. The main steps of the ASA algorithm are shown in Algorithm 1. Details of each step follow.

Algorithm 1: (ASA algorithm)

Given: x0, N0
c and the initial control parameter values. Set k = 0.

While the stopping condition is not verified do

1. Set j = 1

2. Based on xk, generate a trial point y such that l ≤ y ≤ u

3. Verify the ”acceptance criterion”

4. If j < Nk
c then j = j + 1 and go to 2.

5. Update Nk
c (if adequate)

6. Update control parameters

7. Set k = k + 1
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End while

End Algorithm

To simplify the notation we use φ(x) = φ(x;µ). Let xk be the current approximation to the solution
of the problem (3). The ASA algorithm generates a trial point y, for at most Nk

c iterations, applying
component by component this simple strategy

yi =





2 li − ȳi if ȳi < li
ȳi if li ≤ ȳi ≤ ui

2ui − ȳi if ȳi > li

,

where ȳi is given by
ȳi = xk

i + di (ui − li) for i = 1, . . . , n

and

di = sign

(
ui −

1

2

)

(
1 +

1

ckGi

)|2ui−1|

− 1


 ckGi

, ui ∼ U [0, 1]

where ”sign” represents the well-known sign function and each ckGi
is a parameter that controls the

generating probability density function and should decrease as iterations proceed. The ”acceptance
criterion” is based on the Metropolis criterion, which accepts points that improve over xk, i.e., that
have larger than or equal function values, φ(y) ≥ φ(xk), and is also able to accept points with a smaller
function value according to a certain probability τ , as follows:

xk+1 =





y if τ ≤ min



1, e

φ(y)−φ(xk)
ck
A





xk otherwise

being ckA a positive parameter that is associated to the ”acceptance criterion” and τ ∼ U(0, 1). The
updating of the control parameters c0Gi

and c0A depend on the iteration counters kGi
, i = 1, . . . , n and kA

respectively, and are defined by:

{
kGi

= kGi
+ 1

ckGi
= c0Gi

e−κ(kGi)
1
n

for i = 1, . . . , n

and {
kA = kA + 1

ckA = c0Ae
−κ(kA)

1
n κ > 0

The ASA variant allows a redefinition of the control parameters kG, c
0
Gi
, kA and c0A [5].

3.2. Function stretching technique
The function stretching technique aims to prevent the convergence of the ASA algorithm to a previously
computed global solution. Let x∗

l be that particular solution. Thus, the function stretching technique
is applied only locally, in order to transform φ(x) in a neighbourhood of x∗

l , say Vε(x
∗
l ), ε > 0. So,

φ(x) is reduced only on the region Vε(x
∗
l ) leaving all the other maxima unchanged. The maximum φ(x∗

l )
disappears but all other maxima are left unchanged. Each global optimization problem of the sequence is
solved by ASA, using the Algorithm 1 previously presented. The multiglobal procedure terminates when
for a predefined set of consecutive iterations no other solution is encountered [12, 13].

This stretched simulated annealing algorithm solves a sequence of global optimization problems whose
objective function is obtained by applying a function stretching technique, as proposed in [9, 10, 11], to
the penalty objective function of the previous problem in the sequence. The mathematical formulation
of the algorithm together with the transformations that are carried out are the following:

max
l≤x≤u

Φl(x) ≡

{
φ̂(x) if x ∈ Vεl(x

∗
l ), l ∈ {1, . . . , N}

φ(x) otherwise
(7)
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where φ̂(x) is defined as

φ̂(x) = φ̄(x)−
δ2[sign(φ(x

∗
l )− φ(x)) + 1]

2 tanh(κ(φ̄(x∗
l )− φ̄(x))

(8)

and

φ̄(x) = φ(x)−
δ1

2
‖x− x∗

l ‖[sign(φ(x
∗
l )− φ(x)) + 1] (9)

with δ1, δ2 and κ positive constants. Transformations (9) and (8) stretch the neighbourhood of x∗
l , with

ray εl, downwards assigning smaller function values to those points to prevent the convergence of the
global optimization method to that previously computed solution [13].

To illustrate the effect of these transformations we plot in Figure 1 the function

f(x) = − cos2(x1)− sin2(x2) , where x ∈ [−5, 5]2

which has 12 global maxima in the set [−5, 5]2, and in Figure 2 the function f̂ that comes out after
applying transformations (9) and (8) to the previously computed global maximizer (π2 , 0).

Figure 1: Plot of f .

Figure 2: Plot of f̂ after transformations.

3.3. The penalty algorithm
Incorporating the stretched simulated annealing algorithm into a penalty approach results in the proposed
penalty stretched simulated annealing (PSSA) algorithm for MGOP. The main steps of the algorithm are
presented below:
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Algorithm 2: (PSSA algorithm)

Given: µ0, µmax >> 1, τ > 1, ν1, ν2, λ
0, σ0, r, q. Set k = 0.

While the stopping conditions are not met do

1. Given δ0, ε0, εmax, set L
k = 0 and l = 0

2. While inner stopping conditions are not met do

2.1. Set j = 0 and l = l + 1

2.2. Compute x∗
l (µ

k) = argmaxl≤x≤u Φl(x)

2.3. While
∣∣∣Φl

(
x∗
l (µ

k)
)
− Φ̃max

∣∣∣ ≤ δ0 or εj > εmax do

Set j = j + 1 and εj = jε0

Randomly generate x̃i ∈ Vεj (x
∗
l ), i = 1, . . . , 2m

Find Φ̃max = maxi=1,...,2m{Φl(x̃i)}

End while

2.4. Let Lk = Lk + 1 and εl = εj

End while

3. Update the penalty parameters.

4. Update the optimal set X∗ and k = k + 1

End while

Apply a local search procedure to the optimal set X∗.

End Algorithm

The stopping conditions for the PSSA algorithm are:

‖x∗
l (µ

k)− x∗
l (µ

k−1)‖ ≤ εx for l = 1, ..., N or k > kmax

and the inner iterative process terminates if Lk does not change for a specified K iterations. The im-
plemented local search is a simple procedure that aims to improve accuracy and searches along each
coordinate, in the neighbourhood of the solution, for a better point.

4. Numerical experiments

The herein proposed multiglobal optimization method based on a penalty technique for constraint-
handling was implemented in the C programming language on a Pentium II, Celeron 466 Mhz with 64Mb
of RAM. To evaluate the performance of the herein proposed penalty stretched simulated annealing
algorithm for constrained MGOP a set of six benchmark problems, described in full detail in the Appendix
of [17], is used. In this preliminary study, small dimensional problems (n ≤ 10 and m ≤ 13) with a
nonlinear objective function, simple bounds and inequality constraints were tested. They are known in
the literature as g04, g06, g08, g09, g12 and g18. Details of the selected problems are displayed in the
Table 1, where P refers to the problem number, ”type of f” describes the type of objective function,
fglobal is the known global solution (all are minimization problems), n is the number of variables, m is
the number of inequality constraints.

Table 1: Details of the problems

P type of f fglobal n m

g04 quadratic −3.0665e+ 04 5 6
g06 cubic −6.9618e+ 03 2 2
g08 general −9.5825e− 02 2 2
g09 general 6.8063e+ 02 7 4
g12 quadratic 1.0000e+ 00 3 9
g18 quadratic −8.6603e− 01 9 13
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4.1. Parameters setting
The values for the user defined parameters are: c = 10, µmax = 108, µ0 = 10, N0

c = 2n , δ0 = 10−3,
ν1 = 100, ν2 = 100, r = 2, q = 2, ε0 = 0.15, εmax = 5, kmax = 10 and εx = 10−3, and K = 5. When
using the hyperbolic penalty, the initial values of the penalty parameters are λ0

j = 10 and σ0
j = 10, for

j = 1, ...,m. The other parameters are fixed after a previous analysis of the problem. Each problem was
solved by PSSA five times with randomly generated initial approximations.

4.2. Penalty-based comparison
Table 2 contains the results obtained with L1/2 penalty function. In Table 2, f∗

PSSA is our best solution
obtained after the five runs, NPSSA is the average number of iterations required by the penalty stretched
simulated annealing method, Nfeval is the average number of function evaluations and Nloc gives the
average number of obtained global/local solutions. Table 3 displays the results obtained by the L2-
exponential penalty function and Table 4 the results of the hyperbolic penalty function.

Table 2: Results obtained with the L1/2 penalty function

P f∗
PSSA NPSSA Nfeval Nloc

g04 −3.2549e+ 04 43 156154 12
g06 −6.9618e+ 03 9 27550 1
g08 −9.5825e− 02 24 79771 5
g09 6.7868e+ 02 6 309719 1
g12 1.0000e+ 00 24 202219 1
g18 −8.6603e− 01 10 945000 2

Table 3: Results obtained with the L2-exponential penalty function

P f∗
PSSA NPSSA Nfeval Nloc

g04 −3.3038e+ 04 8 62337 1
g06 −6.9618e+ 03 4 6472 1
g08 −9.5825e− 02 30 67753 8
g09 6.7868e+ 02 5 183806 1
g12 1.0000e+ 00 21 302134 1
g18 −8.6603e− 01 23 845375 4

We observe that the L2-exponential penalty function reaches a solution with good accuracy and, in
general, requires few iterations to identify the region of the global solution when compared with the other
penalty functions. As we already expected, the number of iterations and objective function evaluations
are directly related with the number of detected solutions.
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Table 4: Results obtained with the hyperbolic penalty function

P f∗
PSSA NPSSA Nfeval Nloc

g04 −3.2837e+ 04 4 18352 1
g06 −6.9618e+ 03 4 15766 1
g08 −9.0057e− 03 8 8624 1
g09 6.7868e+ 02 4 117638 1
g12 1.0000e+ 00 10 313211 1
g18 −8.6603e− 01 4 339213 4

5. Conclusions

We have presented a penalty framework for solving constrained multiglobal optimization problems.
The penalty term used in our strategy aims to penalize the inequality constraints of the problem. The
subproblems solved in this penalty framework are optimization problems with simple bounds since they
are easy to solve by derivative-free stochastic algorithms. To compute all the global solutions of each
subproblem, our algorithm combines the ASA variant of the simulated annealing method with a function
stretching technique. This technique aims to transform, at each iteration, the objective function of
the current global subproblem into another one that does not have the current global solution. The
technique prevents the algorithm from converging to a previously computed solution. Our experience
with this approach shows that more than one global solution are successfully computed, although we are
not able to guarantee yet that all global solutions will be detected.

The preliminary numerical tests with a set of small problems indicate that the penalty approach is
efficient and worth pursuing. The ASA variant is good at detecting promising regions of the search space
but needs a local search refinement to improve solutions accuracy. This will be further explored in the
future. Further experiments, in particular with high dimensional problems and large number of global
solutions, are also required.
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