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Abstract. The motion of the red blood cells (RBCs) flowing in microvessels and microchannels depend on several effects,
such as hematocrit (Hct), geometry, and temperature. According to our knowledge, the effect of the temperature on RBC
motion was never investigated at a microscale level. Hence, the aim of the present work is to determine the effect of the
temperature on the RBC’s trajectories and to investigate the best approximation of the trajectories through a nonlinear
optimization. In vitro human blood was pumped through a 100µm circular microchannel and by using a confocal micro-
PTV system the RBC’s trajectories were measured at different temperatures, i.e., 25◦C and 37◦C. In this study we measured
the motion of forty cells flowing in the middle of the microchannel and applied different functions to approximate its behavior.
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INTRODUCTION

Blood is a fluid composed of a suspension of cells, proteins and ions in plasma. In normal blood, three types of cells
comprise about 46% of its volume. These cells are the red blood cells (also known as erythrocytes), white blood cells
(also known as leukocytes) and platelets (also known as thrombocytes). Figure 1 shows different kinds of human blood
cells.

FIGURE 1. Scanning electron microscope image of human blood cells (adapted from[13]).

In the microcirculation, the flow behavior of RBCs plays a crucial role in many physiological and pathological
phenomena. For example, the random-like transverse motionand rotation of RBCs in shear flow is believed to play
an important role in thrombogenesis [3, 10]. As a consequence, many rheological studies have been performed on
both microvessels and microchannels to investigate the effect of the hematocrit (Hct), geometry, and temperature on
the RBCs flowing behavior [2, 3, 10]. Recently Lima and his colleagues measured the red blood cells (RBCs) radial
dispersion (Dyy) in both glass [6, 7] and polydimensiloxane(PDMS) [8] microchannels by using a confocal micro-
PTV system. By comparing Lima et al. results with the measurements performed by Goldsmith and his colleagues
[3] several quantitative deviations were observed betweenboth experimental results. One possible reason for observed
discrepancies may due to the different temperatures used inthe two cases, i.e., Lima et al. used body temperatures
(37◦C) whereas Goldsmith et al. used room temperatures. Hence, itis important to investigate the effect of the
temperature on the RBC motion. The experiments were performed in the middle of 100µm glass capillaries at
temperatures of 25◦C and 37◦C, by using a confocal micro-PTV system. In the present study,the trajectories of forty



RBCs were measured and different functions were applied with the purpose to find the one that best approximate to
its flow behavior.

MATERIALS AND METHODS

In the present study we used Dextran 40 (Dx-40; Otsuka Medicine, Tokyo, Japan) containing 12± 2% (12Hct) of
human RBCs. The RBCs were labeled with a lipophilic carbocyanime derivative, chloromethylbenzamido (CM-Dil, C-
7000, Molecular Probes, Eugene, OR, USA). A detailed description about the procedure for labeling the human RBCs
can be found elsewhere [7]. Additionally, we used a 100µm circular borosilicate glass microchannel fabricated by
Vitrocom (Mountain Lakes, NJ, USA). The microchannel was mounted on a slide glass with a thickness of 80±20µm
and was immersed in glycerol to minimize the refraction fromthe walls.

The confocal micro-PTV system used in this study consists ofan inverted microscope (IX71; Olympus, Japan)
combined with a confocal scanning unit (CSU22; Yokogawa, Japan), a diode-pumped solid-state (DPSS) laser (Laser
Quantum, UK) with an excitation wavelength of 532nm and a high-speed camera (Phantom v7.1; Vision Research,
USA) (see Figure2). The microchannels were placed on the stage of the inverted microscope and by using a syringe
pump (KD Scientific, USA) a pressure-driven flow was kept constant (Re≈ 0.008). Additionally, by using a thermo
plate controller (Tokai Hit) it was possible to apply different temperatures to the surrounding environment, i.e.,
25◦C±1 and 37◦C±1. More detailed information about this system can be found elsewhere [4, 5, 7].

FIGURE 2. Confocal micro-PTV experimental set-up and trajectory of labeled RBCthrough a circular glass microchannel.

The confocal images were captured in middle of the capillarythrough a dry 40× objective lens at a rate of 100
frames/s. A manual tracking plugin (MTrackJ) [11] of an image analysis software (Image J, NIH) [1] was used to
track individual RBC. By using MTrackJ plugin, the bright centroid of the selected RBC was automatically computed
through successive images for an interval of time of 10 ms. After obtaining series of x and y positions, data were
exported for the determination of each individual RBC trajectory and to analyse the best mathematical function that
approximates to the RBCs experimental flow behavior.

In this study it was observed and analyzed forty cells: twenty at temperature 25◦C and other twenty cells at the
temperature 37◦C. For each celli, and using MTrackJ plugin system, we obtain

{

(x j ,y j), j = 1, ...,ki
}

data. In this
experienceski can assume values between 23 and 195. The aim of this work is toobtain a better approximation
for the data using nonlinear optimization [12]. For that we consider three different functions (polynomials, sum of
trigonometric functions and a sum of exponential functions) defined as:
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wherep ∈ IR10, a ∈ IR9, b, c, d, g ∈ IR8 are the function parameters and the vectorx ∈ IRki , wherei represents the
cell number. To identify the functions parameters it was used the toolcftool present in Curve Fitting Toolbox from
Matlab [9].

RESULTS AND DISCUSSION

The error of nonlinear least squares approximation of the selected cells are listed in the Table 1, whereCell refers to

the cell number,Fi =
ki

∑
j=1

(y j − fi(x j))
2 is the nonlinear least squares approximation error of the function fi(x), with

i = 1,2,3, Av refers the error average, ands corresponds to the standard deviation of the errors.

The results, from Table 1, indicate that the functionf2(x,a,b) (sum of trigonometric functions) was the best
approximation to the motion of the cells in the microchannel. Only in five cells (three in the with temperature 25◦C
and two with the temperature 37◦C) we have obtained a better performance with the functionf3(x,a,b,c). This is
confirmed by the value of the error average. Another important aspect is the fact that the standard deviation of the



TABLE 1. Numerical Results obtained usingcftool.

Cells with temperature 25◦C Cells with temperature 37◦C

Cell F1 F2 F3 Cell F1 F2 F3

1 3.453 2.537 2.701 21 0.792 0.199 0.485
2 1.707 0.834 2.363 22 0.994 0.497 0.985
3 3.258 2.282 1.644 23 2.898 1.664 1.230
4 1.484 0.720 1.066 24 0.222 0.099 0.217
5 1.146 0.117 1.121 25 0.660 0.328 0.409
6 3.937 0.938 3.677 26 0.876 0.331 0.513
7 1.756 1.256 1.565 27 2.072 0.569 1.243
8 2.521 1.005 1.343 28 0.175 0.116 0.157
9 0.237 0.056 0.189 29 1.999 1.030 1.769
10 1.757 0.820 1.028 30 1.572 0.849 0.629
11 1.868 0.865 0.941 31 7.461 3.477 4.180
12 1.400 0.482 0.631 32 1.703 0.789 1.070
13 1.574 0.899 1.342 33 7.486 2.832 7.572
14 3.684 2.421 2.772 34 2.855 0.569 2.123
15 0.514 0.222 0.255 35 1.089 0.659 1.667
16 1.321 0.597 0.808 36 5.204 1.949 2.004
17 4.010 3.342 2.169 37 3.223 0.712 9.552
18 2.426 1.782 2.017 38 1.729 0.585 0.761
19 0.650 0.354 1.061 39 1.318 0.605 0.828
20 4.353 2.391 1.95 40 1.963 0.862 1.864

Av 2.153 1.196 1.532 Av 2.315 0.936 1.963
s 1.240 0.936 0.891 s 2.114 0.892 2.454

errors is small when we use the functionf2. Two examples of the calculated functions,f1, f2 and f3 can be observed
in the Figure 3.

FIGURE 3. Cell number 15 at T=25◦C and cell number 2 at T=37◦C.

The preliminary results, suggest that the movement of RBCs along the microchannel follow a behavior equivalent
to the sum of trigonometric functions.

CONCLUSIONS

In this work we measure the motion of RBCs along the middle of amicrochannel. The results were approximated by
three different types of functions applying nonlinear least squares theory.

The results obtained from this preliminary study, indicates that the function that has a better approximation to the
data is based on trigonometric functions. In future work we will consider different type of functions and a bigger
amount of cells with different temperatures and Hcts.



An on going study to obtain more detailed quantitative measurements of the blood flow behavior through a glass
microchannel is currently under way.
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