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We study the Magnus effect: deflection of the trajectory of a spinning body moving in a
gas. It is well known that in rarefied gases, the inverse Magnus effect takes place, which
means that the transversal component of the force acting on the body has opposite signs
in sparse and relatively dense gases. The existing works derive the inverse effect from non-
elastic interaction of gas particles with the body. We propose another (complementary)
mechanism of creating the transversal force owing to multiple collisions of particles in
cavities of the body surface. We limit ourselves to the two-dimensional case of a rough
disc moving through a zero-temperature medium on the plane, where reflections of the
particles from the body are elastic and mutual interaction of the particles is neglected.
We represent the force acting on the disc and the moment of this force as functionals
depending on ‘shape of the roughness’, and determine the set of all admissible forces. The
disc trajectory is determined for several simple cases. The study is made by means of
billiard theory, Monge-Kantorovich optimal mass transport and by numerical methods.

Keywords: inverse Magnus effect; free molecular flow; rough surface; billiards;
optimal mass transport

1. Introduction

We are concerned here with the Magnus effect: the phenomenon governing
deflection of the trajectory of spinning bodies (e.g. golf ball or football).
Surprisingly enough, in highly rarefied media (on Mars or in the thin atmosphere
at a height corresponding to low earth orbits, 150 km or more), the inverse effect
takes place; this means that the trajectory deflection has opposite signs in sparse
and in dense media.

There is a vast literature devoted to the Magnus effect, motivated by sports and
technology applications (e.g. Prandtl 1926; Rubinov & Keller 1961; Mehta 1985).
The inverse effect is also well known to the physicists; study of this phenomenon
becomes increasingly important nowadays because of potential applications to
aerodynamics of artificial satellites (Wang 1972; Ivanov & Yanshin 1980; Borg
et al. 2003; Weidman & Herczynski 2004; Borg & Soderholm 2008). Theoretical
studies on the inverse Magnus effect are based on models of non-elastic reflections
of medium particles from convex bodies.
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Actually, all these models ignore roughness, which is always present on the
body’s surface. The kind of the roughness (that is, the shape of microscopic
dimples, hollows, gullies, etc.) depends on the body material; the surface may
also be artificially roughened. Owing to the roughness, particles bounce off the
body surface in directions other than that prescribed by the visible orientation
of the surface, and may also have multiple reflections.

We believe that roughness of the body surface should be incorporated in the
model and propose a new approach to studying the Magnus effect. This approach
is based on examining the shape of the body’s cavities and is applied to a very
idealized case of a two-dimensional rough disc, where all reflections are supposed
to be elastic.

This approach meets evident difficulties: there is a huge variety of shapes
governing the roughness. The existing literature deals with many different kinds
of roughness: Gaussian, non-Gaussian, fractal, etc. Each of them provides the
special kind of reflection law, which may be very hard to determine. The difficulty
of the task seems to be immense.

Fortunately, there is an easier way to get rid of these difficulties. Instead of
calculating the scattering law for each given roughness, a sort of inverse problem
can be considered: determine the set of scattering laws for all possible shapes
of roughness. The main tool for this approach has been developed by Plakhov
(2009a). Having solved this problem, we are in a position to determine the main
characteristic of the effect: the range of forces acting on the body and of the
moments of these forces. Of relatively less importance, but quite illustrative, is
the calculation of forces and trajectories for several special kinds of roughness.

We warn the reader against seeing this paper as directly applicable to real-
life cases. Rather, it provides an insight into studying the cases of complex
surfaces. The next steps in this way would be application of this approach to
three-dimensional bodies and allowing for non-elastic reflections.

Another novelty of our paper consists in applying optimal mass transport
(OMT), a very vivid and rapidly growing field of calculus of variations (see
Rachev & Riischendorf (1998) and Villani (2003) for a review of the progress
in this theory), to the study of the inverse Magnus effect. A sort of wvector-
valued OMT problem naturally appears and is examined here. To the best of our
knowledge, this kind of generalization of OMT has never been considered before.

This paper is a further development of the ideas briefly reported by Plakhov &
Tchemisova (2009).

We now proceed to a detailed description of the problem. A spinning two-
dimensional body moves through a homogeneous medium on the plane. The
medium is extremely rarefied, so that the free path length of particles is much
larger than the body’s size. In such a case, the interaction of the body with the
medium can be described in terms of free molecular flow, where point particles
fall on the body’s surface and each particle interacts with the body, but not with
the other particles. There is no gravitation force. The particles of the medium
remain at rest; that is, the absolute temperature of the medium equals zero. In
a frame of reference moving forward together with the body, we have a parallel
flow of particles falling on the body at rest (figure 1).

Neglecting the angular momentum of particles, each particle is identified with
a mass point that approaches the body, makes several (maybe none) collisions
with its surface and goes away. All reflections are perfectly elastic.
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Figure 1. A rotating rough disc in a parallel flow of particles.

The body under consideration is a rough disc, that is, a set obtained from a
circle by making infinitely small dimples on its boundary. More precisely, consider
a sequence of sets B,,, m=3,4,5,..., inscribed in the circle B,(O) of radius r
centred at a point O. Each set B,, is invariant under the rotation by the angle
2w /m, and the intersection of B, with a certain (2m/m)-sector A,, OC,, formed
by two radii OA,, and OC,, is a set bounded by these radii and by a piecewise
smooth non-self-intersecting curve contained in the triangle A,, OC,, and joining
the points A,, and C,,. These curves are similar for all m.! A rough disc B is
associated with such a sequence of sets B,,. The curve is called the shape of
roughness. All the values related to resistance or dynamics of the rough disc that
are calculated below are understood as limits of the corresponding values for B,,
as m — oQ.

Note in passing that the roughness introduced here is uniform: it is identical
at each point of the circle boundary. In the case of non-uniform roughness, that
is, if the shape of dimples varies along the boundary, periodical oscillations of the
disc along the trajectory may happen, the period being equal to the period of one
turn of the disc. The ‘averaged’ trajectory, however, coincides with the trajectory
of the uniformly rough disc, where the roughness is obtained by ‘averaging’ the
original one.

Denote by ¢(t) the rotation angle at the time ¢, by w(t) the angular velocity of
the disc, w(t) =de/dt, and let v(t) be the velocity of the disc centre of mass. Let
us agree to measure the rotation angle and the angular velocity counterclockwise.

We consider the following problems: (A) determine the force of the medium
resistance acting on the disc, find the moment of this force with respect to the
disc centre of mass and investigate their dependence on the shape of roughness;
(B) determine the set of admissible forces; and (C) analyse the motion of rough
discs in the medium, that is, study the behaviour of the functions w(¢) and wv(t).
Problems (A) and (B) are primary with respect to (C). In the paper, we will
devote the main attention to problems (A) and (B), having just touched upon
problem (C), where we will restrict ourselves to deducing equations of motion
and solving these equations for several simple cases.

IThat is, one curve can be obtained from another one by a homothety and an isometry.



Figure 2. (a) The Magnus effect; (b) the inverse Magnus effect.

With each set B,,, we associate a distribution of mass inside B,, such that the
total mass M is constant and the centre of the mass coincides with the centre O of
the set. We also assume that the moment of inertia I, of B,, about O converges
to a positive value I as m — 0o. One always has I < Mr?. Denote 8= Mr?/I;
that is, 8 is the inverse relative moment of inertia; we have 1 <8 < +o00. In what
follows, we will pay special attention to two particular cases: (i) 6 =1, the mass of
the disc is concentrated near its boundary, and (ii) 8 =2, the mass is distributed
uniformly in the disc.

The resistance force R,,(By,®,w,v) acting on the set B,, and the moment
of this force R (B, ®,w,v) depend on the shape of roughness, the rotation
angle ¢, the angular velocity w and the velocity of translation v. The equations
of dynamics are

dov dw de
ME =R, (Bn,p,w,v), Ima = R (B, w,v) and L=
Taking the limit m — oco, one gets the resistance force acting on the rough disc
R(B,w,v) and the moment of this force R;(B,w,v), which do not depend on ¢
anymore, and the equations for the disc dynamics take the form

Ma:R(B,w,'v) (1.1)
and
d
Id—(;) — Ri(B,w,v). (1.2)

We shall see below that, generally speaking, R = R(B,w,v) is not collinear
to v.

If a transversal component of the resistance force appears, resulting in
deflection of the body’s trajectory, then we encounter the (proper or inverse)
Magnus effect. If the direction of the transversal component coincides with the
instantaneous velocity of the front point of the body, then a proper Magnus effect
takes place. If these directions are opposite, then an inverse Magnus effect occurs
(figure 2a,b).

Note that the limiting case of slow rotation has been studied in detail by
Plakhov (2009a,b). In that case, the mean resistance force is parallel to the
direction of the body’s motion, and therefore the Magnus effect does not appear.



Figure 3. Cavities on the boundary of a non-convex set.

In the next section, to each rough disc B, we assign a measure vp characterizing
the law of billiard scattering on B. The values R and R; are defined to be
functions of the values v, w and v. In §3, we define the set of all possible values of
R, when w and v are fixed and v takes all admissible values. In other words, we
answer the following question: what is the range of values of the force acting on
a rough disc? While we look through all possible shapes of roughness, the vector
R covers a fixed convex two-dimensional set. The problem of finding this set is
formulated in terms of a special vector-valued Monge—Kantorovich problem and
is solved numerically for several fixed values of the parameter A = wr/v. Further,
we calculate R and R; for some special values of vz (and thus for some special
kinds of rough bodies). In §4, we deduce the equations of dynamics in a convenient
form and solve them in several simple particular cases. Finally, in §5, a comparison
of our results with those of the previous works on the inverse Magnus effect in
rarefied media is given.

2. Law of billiard scattering and resistance

(a) Billiard scattering by a non-convex set

Let us first define the measure vp characterizing billiard scattering on a bounded
simply connected set D CR? with a piecewise smooth boundary. The set
d(conv D) \ 0D =U;>11; is the union of a finite or countable family of connected
components I;,1=1,2,.... Each component [; is an open interval. (In figure 3,
the dashed line denotes the intervals [;, i=1,2,3.) Denote Iy = d(conv D) N I D;
in other words, I is the ‘convex part’ of the boundary dD. Thus, dD is the disjoint
union 4D = U;>¢1;.

Further, the set conv D\ D is the union of a finite or countable collection of
its connected components. For any I;, there exists a set Q; from this collection
such that I; C dQ; (figure 3). The pair (L2;, ;) will be called a cavity, and the
interval I;, the opening of the cavity.

Denote by m: the outer unit normal to d(conv D) at the point & € d(conv D).
On the set I; x [-7/2,m/2] with the coordinates (£,¢), define the measure
u; according to the formula du; =cos ¢ dé de, where d§ and d¢ stand for the



one-dimensional Lebesgue measure. Consider the billiard in R?\ D. Fix ¢ € I
and ¢ € [—7m/2,7/2], and take a billiard particle that starts moving at the point
¢ with the velocity forming the angle ¢ with —n;:. The particle makes one or
several reflections at points of dQ; \ I; and then intersects I; once again at the
point £t =£7(&,¢), the velocity at the moment of intersection forming the angle
0" =T (£, ) with the vector nz+, " € [—m/2,7/2]. Notice that one always has
nz = nz+. In figure 3, we have ¢ <0 and ¢+ = ¢ (§,¢) > 0.

Thus, for each i, we have defined the mapping (&,¢) > (£7,¢) from a full
measure subset of I, x [—w/2, w/2] onto itself. This mapping is a bijection
and involution, and preserves the measure u;. In the particular case, where
1=0, it holds ggzg and (paL:—(p. Denote by [; =|I;| the length of I;, and
by =), ,li=10(conv D)| the perimeter of convD. Introduce the notation
O:=[—n/2,7/2] x [-7/2,7/2] and define the measures v, i=0,1,2,... on O
as follows: v, (A):= (1/L)pi({(£,9) : (@, 0] (¢,9)) € A}) for any Borel set A C O.
In particular, the measure »), =: v is supported on the diagonal ¢™ = —¢, and
has the density dvo(@, ™) =cos@ - 6(¢ + ¢T). Finally, define vp:=1/1>" ., liv.
The measure vp is called law of billiard scattering by D.

In a less formal way, the measure vp can be interpreted as follows. Place
the body D in a kind of ‘ether’ and keep it motionless. By ether, we mean a
homogeneous isotropic medium composed of mutually non-interacting particles
moving freely with unit velocity in all possible directions. When colliding with
the body, the particles reflect elastically from its boundary. Thus, the particles
of the ether behave like billiard particles in R? \ D.

For each particle that has reflected from D, fix the pair (¢, ™) of the angle of
incidence ¢ and the angle of reflection ¢*. The angle ¢ is formed by the initial
velocity of the particle and the vector —m;, whereas the angle ¢t is formed by
its final velocity and the vector nz+. Here, £ and £ are the points of the first and
second intersection of the particle’s trajectory with d(conv D). The distribution
of the set of pairs (¢, ™) for all particles that have collided with D in a unit time
pertod is described by the measure vp.

Recall that given a Borel mapping m: X — Y of two sets X CR%, Y C R®,
with the set X being equipped with a Borel measure u, the so-called push-forward
measure 7w on Y is defined by 7% u(A) := u(w~1(A)) for any Borel set A C Y.
Denote by m, and m,+ : 0 — [—m/2, /2] the projections of the square O on its
horizontal and vertical sides, respectively; m,(@,¢") =@, m,+(@,¢") =¢*. The

1>0

push-forward measures va and Wjﬂ are called marginal measures for ». They are
defined on [—7/2, w/2], and for any Borel set A C [—7/2, /2] we have wfv(A) =
V(A x [—m/2, 7/2]), 77211/(/1) =v([—7/2, /2] x A).

Define the transformation of the square m; : O — O exchanging the coordinates
@ and ¢7; that is, m4(¢,¢") = (9T, ¢). The push-forward measure Wﬁv satisfies
the condition Wj&v(A) =v(my(A)) for any Borel set A C O. In other words, the
measures 71'?1/ and v are mutually symmetric with respect to the diagonal ¢ = ¢™.

Finally, define the measure v on [—m/2, w/2] by dy = cos ¢ dg, and denote by
IT™™ the set of measures v on O satisfying the conditions

vazyzwjiv and W?V:v. (2.1)



Figure 4. A particle falling on a cavity.

In other words, a generic measure from IT%™" is symmetric with respect to the
diagonal ¢ = ¢, and both of its marginal measures coincide with y. One has
vt € II™™; this can be easily deduced from the measure preserving and involutive
properties of the mapping (£, ¢) — (§7, @7 ); for details see Plakhov (2004). Hence,
vp € IT™* Moreover, the following fundamental theorem characterizing the set
of scattering laws holds true (Plakhov 2009a).

Theorem 2.1. Whatever the two sets K; C Ky C R? such that dist(dK;,0K5) > 0,
the set of measures {vp: K1 C D C Ks} is everywhere dense in II™™™ ¢n the weak

topology.

Now consider the rough disc B generated by a sequence of sets B,,. All the
cavities of all the sets B,, are similar; therefore, vp does not depend on m and
we can set by definition vp:=vp . We will see later that the resistance of B can
be written down as a functional of vp. The following theorem is obtained by a
slight modification of the proof of theorem 2.1.

Theorem 2.2. Whatever r >0, the set {vp: B is a rough disc of radius r} 1is
everywhere dense in IT*Y™™ in the weak topology.

(b) Resistance of a rough disc

Denote v = |v| and choose the (non-inertial) frame of reference Oz 2, such that
the direction of the axis Ox» coincides with the direction of the disc motion and the
origin O coincides with the disc centre. In this frame of reference, the disc stays
at rest, and the flow of particles falls down on it at the velocity —wvy = (0; —v)™.
Here and in what follows, we represent vectors as columns; for instance, a vector

x will be denoted by [2} or (m;1)".

Let us calculate the force R of the medium resistance and the moment of this
force R; with respect to O. To that end, first we consider the pre-limit body B,,.
Parametrize the opening of each cavity by the variable £ varying from 0 to 1
(recall that all the cavities are identical). Denote by p the flow density, by ¢, the
rotation angle of the cavity (that is, the external normal at the cavity opening
equals n; = (—sin@;cosp)’) and by 'vzrm)(f ,®), the final velocity of the particle

entering the cavity at the point & with the velocity —w, (figure 4). Note that



At =27 /(wm) is the minimal time period between two identical positions of the
rotating set B,,. Then the momentum imparted to B,, by the particles of the flow
during the time interval At equals

1 /2
27“vasz J (—vy — vzrm)(g,(p))%cosmd(p dg, (2.2)
0J—m/2

Consider the frame of reference O having the centre at the midpoint of
the cavity opening [I; the axis O being parallel to I; and O, codirectional
with n;. That is, the frame of reference rotates jointly with the segment /. The
change of variables from = = (z1;2)" to Z=(f;;4)" and the inverse one are
given by z=A_,;& — rcos(m/m) ex2 and & = A, & + 7 cos(m/m)exr 244, Where

cos¢ —sin COs
Ay = (mi cos ¢¢) and ey = [Sin $:|
Suppose now that x(¢) and &(t) are the coordinates of a moving point in the

initial and rotating frames of reference, respectively, and let v = (vy; v9)" = da/dt
and ¥ = (0y;09)T =dz/dt. Then,

I~y

™
=A_ v — wA; -z and v=A,0+ wA; /24, T — WTCOS (—) eut- (2.3)
m

We apply formulae (2.3) to the velocity of the particle at the two moments of its
intersection with 7. At the first moment, it holds wt = ¢ and & = re; /21, + 0o(1) as
m — 00. (Here and in what follows, the estimates o(1) are not necessarily uniform
with respect to & and ¢.) Then the incidence velocity —wvy takes the form

—By=v(A —sing; —cos@)’ + o(1) = —vo(—sin z;cos z)" + o(1), (2.4)

where A =wr/v and

A—sing

0=0(p,A) = V2 —2ising+1 and z= z(e, A) = arcsin —————.
o(@, )

(2.5)

As m — oo, the time spent by the particle in the cavity tends to zero;
therefore, the rotating frame of reference can be considered ‘approximately
inertial’ during that time, and the velocity at the second point of intersection
is given by ¥ =uvg(—siny;cosy)" + o(1), where y=y(&, ¢,2) =" (£, 2(p, 2)).
(Here £7(&,¢), ¢ (§,9) denote the mapping generated by the cavity; §2a)
Applying the second formula in equation (2.3) and taking into account that
x=o0(1) and wt=¢ + o(1), we find the velocity in the initial frame of reference,
vt = 'vzrm)(&, @, A) =voA,(—siny;cos y)T —vie, + o(1) =v"(£,9,1) + o(1), where

(2.6)

vt (E 0 1) =0 [‘Qsm(‘” y) — Acos "’}.

ocos(p + y) — Asing



Letting m — oo in formulae (2.2) for the imparted momentum and dividing it
by At, we get the following formula for the force of resistance acting on the disc:

RT 1 pm/2

R= |:R :| :rpvj J' (—vo — v (£, 0,2)) cos ¢ d& do. (2.7)

L 0J—m/2

The angular momentum transmitted to B,, by an individual particle equals

rve(sin x 4+ sin y) + o(1) times the mass of the particle. Summing the angular

momenta up over all incident particles and passing to the limit m — 0o, one
finds the moment of the resistance force acting on the disc,

1 pm/2
Ri=rtpo| | valo.)(sina(o,2) + siny(E,p ) cospdidp. (28)
0J—m/2

Theorem 2.3. The resistance and the moment of resistance of a rough disc of
radius r moving through a rarefied medium are equal to

8
R= grpv2 - Rlvp, Al (2.9)
and
8
R;= 3 r?pv? - Rilvg, Al (2.10)

Here p is the medium density, v is the velocity of translation, w is the angular
velocity, A= wr/v and the dimensionless values R[v,A] and R;[v,A] are given by
the integral formulas

_ | Brlv, Al| _
Rlv,A] = [RL[V, A]i| = J JD c(z,y,A)dv(z,y), (2.11)
and
Rilv, 2] =JJ ci(z,y,A)dv(z, y), (2.12)
O

with the functions ¢ and c; given by the relations (2.13)—(2.20). Recall
that O=[—m/2,7/2] x [—7/2,7/2]. We also use the notation {={(z,A)=
arcsin v/1 — A2 cos? x and xy = xy(A) = arccos 1/A; x stands for the characteristic

function.
(a) If0 <A <1, then

cos —
A . . 3 . 9
c(z,y,A) = 3 (Asin $.+ sind) cos — 7 (2.13)
4 sin { 2 . T—y
— Si1 (C + T)

and

3 A . . 3
ci,y, ) == ( sm:;:lr;lnl) (sin z + sin y), (2.14)




and in particular,

. cos(2z —y) +cosz
c(z,y,1) = 3sin’ g;|:_ sir(1(2gg _yi) e 33:| Xz=0(T, ) (2.15)
and
cr(z,y,1) = —3sin® 2(sin z + sin y)xu=0(z, ). (2.16)
In the limiting case A— 0T, one has
__3| sin(z—y)
ot ==3 [y Taes ¥ |+ o 2.17)
and
9 . : : 2
cr(z,y) = - sin z(sin z + sin y) + O(A%). (2.18)

(b) If A> 1, then

r—y
3 R CoS
c(a:,y,x):—cos(z_—y)/ (A3sin® 2 4+ 3Asin 2sin” ) cos ¢ 2
2 sin ¢ Ty
—sin
. Ty
sin —
— (3A%sin xsin { + sin® {) sin ¢ . Xosn(Z,y)  (2.19)
CoS Y
2
and
313 sin3x—|—3){sinxsin2c ) )
ci(z,y,A)=—- (sinz + sin y) Xusa (2, ¥)- (2.20)

4 sin

Proof. The theorem will be proved separately for cases A=1, 0<Ai<1
and A > 1.

Case A=1. We have = x(¢,1) =arcsin /(1 —sing)/2=m/4 — ¢/2, and so,
the function @+ z(p,1) is a bijection between the intervals [—m/2,7/2]
and [0, 7/2]. Further, one has ¢ = (¢, 1) =/2(1 — sin ¢) = 2sin x, cos ¢ = sin 2z,

—2sin z cos(2x — y) — sin 2x
2sin zsin(2z — y) — cos 2z |’

and we get from equation (2.6) that 'v+=v[

cos(2z — y) + cosz
—sin(2z — y) —sinx

wherefrom —wvy — v" =2vsinz |: :| Making the change of

variables {€, ¢} — {£, 2} in the integral in equation (2.7) and using equation (2.9),
one gets

1 pm/2
Rlvp,11=3 sin® z cos(2z — y) +cos 7 cosrdédx
B o Jo —sin(2z — y) —sinx '



In this integral, y is the function of £ and z, y = ¢ (£, z). Changing the variables
once again, {§,z} — {z,y}, and taking into account that coszdfdz =dvg(z,y),
we obtain

Rlvp,11=3 J J:- sin? o [ cos(2z — y) + cos @ ] dvg(e,y).  (2.21)

—sin(2x — y) —sinx

Here the symbol [ M stands for the rectangle = € [0, 7/2], y € [—@/2,7/2].
The moment of the resistance force is calculated analogously, resulting in

1 pm/2
Rilvp, 1] :—3J J sin? z(sin z + sin y) cos x d§ dx
0Jo

=-3 JJ sin? z(sin 2 + sin y)dvg(z, y). (2.22)
(m

Case 0 < A < 1. The second relation in equation (2.5) implies that for a fixed
value of A, x = z(¢, A) is a monotone decreasing function of ¢ that varies from
w/2 to —m/2 as ¢ changes from —m/2 to 7/2. From formulae (2.4) and the first
relation in equation (2.5), we have sin ¢ = Acos® z — sin 2+/1 — A2 cos? z, cos ¢ =
cosz(Asinx 4+ +/1 — A2 cos? z), g = Asinx + /1 — A2 cos? z. Recall that

{={(z,A) =arcsiny 1 — A% cos? z; (2.23)

one has cos{=Acosz,z+{=m/2— ¢,{ €arccosA,w/2], and taking into
account equation (2.6), we get —wvy— v =v(Asinz +sin{) - 2cos(z — y)/2
cos(§ + (z — 1)/2)
—sin(C+ (z - y)/2)
= —(Asinz + sin{)/sin {.
Using the obtained formula, making the change of variables {£, ¢} — {£, 2} in
the integral (2.7), and taking into account equation (2.9), one gets

}, cosp/cosx=Asinz +sin{ =¢ and de/dz=—-1 —d{/dx

T —y
3 (L (T2 ()i . N3 B cos <C—|— )
R[VB,/\]:ZJ J (Asin z + sin ) cosx Y x2— y) cos rdé dx.

0 J—m/2 sing 2 | _sin ¢+

2

Finally, the change of variables {£, x} — {z, y} results in

cos (C—I— i y)

. . 3 _

R[VB,A]:§JJ (Asin z + sin {) COSx Y xQ_ / dvp(z, ).
= — sin (C—{— )

4 sin ¢ 2
2

(2.24)
Recall that the symbol O denotes the square [—m/2, /2] x [—7/2, w/2] and

CZ C(CE:A)



In a similar way, from equation (2.8), one gets

3 1 pw/2 Asi : 3
R1=——J J ( Smx.—i—smC) (sin z + sin y) cos x d¢ dz;
8 Jo —7/2 sin §
wherefrom
3 A . . 3
R[[VB,X]=——JJ ( Slnx.—l—smg) (sinx + sin y) dvp(z, y). (2.25)
8J Jo sin {

Formulae (2.21) and (2.22) are the particular cases of equations (2.24) and
(2.25) for A=1. This can be easily verified taking into account that {(z,1) = |z|.

Case A> 1. In this case, z = z(¢p,A) equation (2.5) is not injection any more.
When ¢ varies from —7/2 to ¢g = ¢ (A) := arcsin 1/4, the value of £ monotonically
decreases from m/2 to 1y = 2y(A) = arccos 1/A, and when ¢ varies from ¢, to 7/2,
x monotonically increases from 1y to w/2. Denote by ¢_:=¢_(z,1) and ¢, :=
¢+ (z, ) the functions inverse to (¢, A) on the intervals [—m/2, ¢o] and [¢, 7/2],

respectively. Then, one has sin ¢4 = Acos? z & sin z4/1 — A2 cos? .

Here and in what follows, the signs ‘+’ and ‘—’ are related to the functions
¢+ and ¢_ respectively. The values ¢, ¢_ and { ={(z, 1) equation (2.23) satisfy
the relations 7/2 — @, =2 —{,7/2 — ¢_ =1z + {. The function { is defined for
x € [19,7/2] and monotonically increases from 0 to 7w/2, when x changes in the
interval [z, 7/2].

After some algebra, one gets cos@4/cosx=sin(z F{)/cosz=AsinzF
sin{; +de¢i/dr=d{/dxF1=Asinx Fsin{/sinl; gi=Asinz Fsinl; —vj—
vI=v(Asinz Fsin{)-2cos(z — y)/2 [f(;isr(lgg(vx_—y%?;::s%)}' Here the shorthand
notation  gr =0(¢+(w,4),2), vI=v"(§0s(2,2),2), y=y& es(z,2),4)=
o7 (£,z) is used.

The resistance force takes the form R[vp,A]= R_ + R, where

3 (/2 COS @+ do4
R, =- —vg — vl + déd
* 8 Jo Jay (= vi) CcoS ¥ ( dz )COSJC cda
r—y
3 (1 (™? (Asinz Fsin )3 c—y | O\ Fe
= - - cos v cosrdédx.
4 Jo Jay sin 2 —sin( y?:)
2
Summing the integrals above and making the change of variables, one obtains
r—y
3 — 2 cos
Rlvp, Al = —JJ Cos(x,—y)/ (A3sin® z 4+ 3Asin zsin” ) cos ¢ 1,2_
2))m sin ¢ —sin
.=y
sin
— (3% sin® sin { 4 sin® ) sin ¢ - 2 y dvp(z,y). (2.26)
oS

2
Here the symbol [l stands for the rectangle [xy, 7/2] x [—7/2, w/2].



The moment of the resistance force is calculated analogously. One has
Rilvg,Al= R;_ + Ry, where

3 (1 (/2 d
Rli:__J J 0+ A (:I: ¢i>(sinx+siny)cos:cd§da:

8 Jo Jay CoS T dz
3 (72 (A L3
:——J J ( sm:z:.q:smC) (sin x 4 sin y) cos z d§ dz.
8 Jo Juy sin £
Therefore,
3 1 pm/2 A?) c 3 3] si i 2
Rilvp, Al=—= J J il +, sin zsin” ¢ (sin z 4+ sin y) cos x d§ dz.
4 Jo Ja sin £

Making the change of variables, we have

3 A3 sin’ 3Asi in?
RJ[VB,X]=——JJ i x—i—. TR :(Sinaz+sin y)dvp(z,y). (2.27)
4) Jm sin {
The theorem is proved. |

3. Magnus effect

We are primarily concerned here with determining the two-dimensional set of
admissible normalized forces R, :={R[v,A]: v € IT?¥"™},

Recall that according to the classification theorem 2.1, for each R € R, there
exists a disc equipped with a suitable cavity that experiences a force arbitrarily
close to R when moving at the relative angular velocity A. However, this theorem
gives us no idea how this cavity looks. It may well be too complicated to appear
in nature or be fabricated. Therefore, it makes sense to describe subsets of R;
generated by simple shapes. In this section, we present subsets generated by
triangles and their combinations. Besides, we calculate analytically the resistance
force and its moment for several simple shapes of cavity (rectangle, right isosceles
triangle, etc.).

(a) Vector-valued Monge—Kantorovich problem

Here, we determine the set of all possible resistance forces that can act on a
rough disc, with fixed angular velocity. The force is scaled so that the resistance
of the ‘ordinary circle’ equals (0; —1)T. The problem is as follows: given A, find
the two-dimensional set

R, ={(Rlv, ] :v € ITT¥™). (3.1)

It can be viewed as a restriction of the following more general problem: find the
three-dimensional set

{(R[v,Al; R([v,A]): ve ¥}

The latter problem is more important, but also more time-consuming, and
is mainly postponed to the future. The only exception is the case A=1, where
several ‘level sets’ Ry .= {R[v,1]: v € II*™™ R/[v,1] = c} are depicted in figure 5,
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Figure 5. The ‘level sets’ R .= {all possible values of R[v,1], with R[v,1]=c} are shown for
21 values of ¢, from left to right: ¢=0,—-0.075,—0.15, —0.225,...,—1.425, —1.5. (a) ‘View from
above’ and (b) ‘view from below’ on these sets.

suggesting what the corresponding three-dimensional set looks like. In this case,
R;[v,1] varies between —1.5 and 0, and the level sets are found for 21 values
c=-—1.5,—-1.425,-1.35,...,—0.15,—-0.075, 0.

Note that the functional R, defined on the set IT*™ by formulae (2.11),
will not change if the integrand c is replaced with the symmetrized function
e (z,y, ) = (1/2)(e(z,y,4) + c(y,2,24)): Ry, Al=[[5 V™™ (z,y, 1) dv(z,y).
Denote by II the set of measures v on the square O that satisfy the first
condition in equation (2.1), that is, the set of measures with both marginals
equal to v. For any v € IT, it holds [ [ ¢¥™ dv = [ [ V™ dp™™®, where ™™™ =

(1/2)(v + ij) e I[1%™™, Tt follows that

R, = {”D (5 ) dv(x,y):vel_[}. (3.2)

The problem of finding R, in equation (3.2) is a vector-valued analogue of the
Monge—Kantorovich problem. The difference consists in the fact that the cost
function, and therefore the functional, are vector-valued. The set R, is convex,
since it is the image of the convex set Il under a linear mapping.

Note that, owing to formulae (2.17), ™™™ (z,y,0")=(3/8)(1 + cos(z — y))
(0;1)T; therefore, the problem of finding R¢+ amounts to minimizing and
maximizing the integral 3/8 [[ (1 + cos(z — y))dv(z,y) over all veIl. This
special Monge—Kantorovich problem was solved by Plakhov (2004); the minimal
and maximal values of the integral were found to be 0.9878... and 1.5.

In figures 6 and 7, we present numerical solutions of this problem for the values
A=0.1,0.3 and 1, as well as the analytical solution for A =0%. The case of larger 1
requires more involved calculation and therefore is postponed to the future. The
method of solution is the following: for n equidistant vectors e;, i=1,...,n, on
S1, we find the solution of the Monge-Kantorovich problem inf(R[v, 1], e;) =: 1.
Here (-, -) stands for the scalar product. This problem is reduced to the transport
problem of linear programming and is solved numerically.?

2All the computational tests were performed on a PC Pentium IV, 2.0 GHz and 512 Mb RAM and
using the optimization package XPRESS-IVE, v. 1.19.00 with the modeller MOSEL.
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Figure 6. The convex sets R; with A=07,0.1,0.3 and 1 are shown. The set Rg+ is the vertical
segment with the endpoints (0, —0.9878...) and (0,—1.5).

Next, the intersection of the half-planes (r,e;) > r; is built. It is a convex
polygon approximating the required set R;, and the approximation accuracy
increases as n increases. The value n =100 was used in our calculations.

In figure 6, the sets R; are shown for A=0%,0.1, 0.3 and 1. The set R+ is the
vertical segment {0} x [—1.5, —0.9878], Ry is the thin set with white interior
and R 3 is the set with grey interior. The largest set is R;.

In figure 7, the same sets are shown in more detail. In figure 7b-d, additionally,
we present the regions corresponding to all possible kinds of roughness related to
triangular cavities (and to cavities formed by combinations of different triangles),
with the angles being multiples of 5°. These regions are coloured grey. For A=07,
the corresponding region is the vertical interval {0} x [—-1.42, —1] marked by a
(slightly shifted) dashed line in figure 7a.

The part of the set R, situated to the left of the vertical axis corresponds
to resistance forces producing the proper Magnus effect. The part of R; to the
right of this axis is related to forces that cause the inverse Magnus effect. We
can see that the majority of the set (in the case A=1, approx. 93.6% of the
area) is situated to the right of the axis. This suggests that the inverse effect is a
more common phenomenon than the proper one. Actually, although theorem 2.2
guarantees the existence of an everywhere dense subset of R; generated by shapes
of roughness, we never encountered a shape producing the proper Magnus effect
(and thus corresponding to a point on the left of the vertical axis).

(b) Special cases of rough discs

We present here only the final expressions for the forces and their moments
calculated by formula (2.13)—(2.20) from theorem 2.3; the calculation details
are omitted.

(1) Circle (no cavities). The measure p, corresponding to the circle is given by
dvg(z,y) =cosz - 6(x + y). One has Rr[vy, Al = R/[vg,A]=0 and Rp[vy,A] =—1.
Thus, as one could expect, the resistance does not depend on the angular velocity
and is collinear to the body’s velocity. There is no Magnus effect in this case.
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Figure 7. The sets R; with (a) A=07, (b) 0.1, (¢) 0.3 and (d) 1 are shown here separately. The
values R[v,A], with v = v, v, Vrect, Vv, Vg are indicated by the symbols open circle, filled diamond,
open square, inverse triangle and circumscribed cross, respectively. (a) The region generated by
triangular cavities is marked by a (slightly shifted) vertical dashed line. It is the interval with
the endpoints (0,—1) and (0,—1.42). (b—d) The regions generated by triangular cavities are
painted over.

(2) Retroreflector. There exists a unique measure v, € [I"™ supported on
the diagonal z = y; its density equals dv,(z,y) =cosz - 6(z — y). We believe that
there is no cavity generating this measure; however, according to theorem 2.2,
there do exist cavities approrimating it; that is, there exists a sequence of rough
discs B. such that vp weakly converge to v, (see Plakhov & Gouveia (2007)
for an explicit construction). One has Rr[v.,A] =371/8, Rp[v.,A]l=—3/2 and
R[v., Al = —34/2. Thus, the longitudinal component of the resistance force does
not depend on the angular velocity A, while the transversal component and the
moment of this force are proportional to A.

(3) Rectangular cavity. The rough disc B, is represented by the sequence
of sets B,, that are regular m-gons with m congruent rectangles taken
away (figure 8a). The width of the rectangles is much smaller than their



Figure 8. (a) A rough disc with rectangular cavities. () A rough disc with triangular cavities.

height (width)/(height of the rectangle) =e¢. A smaller side of each rectangle is
contained in a side of the polygon, besides |side of the rectangle|/|side of the
polygon| =1 — . Then v = vyt + 0(1), where vyt = (v9 + v.)/2 and o(1) stands
for a measure weakly converging to zero as ¢ — 0. One can easily calculate that
Ropviect, Al =3mA/16, Rp[viect, Al = —1.25 and Ry[viect, Al = —34/4.

(4) Triangular cavity. The sets B,, representing the rough disc B are
regular m-gons with m right isosceles triangles taken away (figure 8b).
Then the measure vp=:vy has the following support (which looks like
an inclined letter H): {z +y=—-w/2:2x€[—n/2,0}U{y=z:2z€[—7/4,7/4]} U
{r+y=m/2:2€[0,7/2]}. The density of this measure equals dvy(z,y) =cosz -
(X[—r/2—m/m(2)0(z + y + 7/2) + X(—r/am/a1(2) - (2 = Y) + Xzjam/2(2)0(z +y —
7/2)) + |sina| - (X—r/001(2)0(z + y + 7/2) — X(—r/am/1(2)0(z — y) + X(0,7/21(2)0
(t+y—m/2). One has R[vy,0"]=(0;—+2)" and R;[ry,07]1=0; R[vy,1]=
(1/4 + 37/16;37/16 — 2)1. The rest of the values are still unknown.

(5) Cavity realizing the product measure. Consider the measure vg with the
density dvg(z,y) = (1/2) cos z cos y dz dy. Evidently, in this case, vg € IT"™. The
angles of incidence and of reflection are statistically independent; so to speak, at
the moment when the particle leaves the cavity, it completely ‘forgets’ its initial
velocity. Here we have Rr[vg,A]l=(10A+ A%)7/80 for 0 <A<1; Rilvg,1]l=
—3/4 — /b~ —1.378 and Rj[vg,A]=—34/4 for any A. The remaining values
are unknown.

The points in figure 7a—d corresponding to cases 1-5 are indicated by special
symbols: vy is marked by a circle, v, is marked by a diamond; v,.t, by an open
square; vy, by a triangle and vg, by a circumscribed cross.

4. Dynamics of a rough disc

The motion of the spinning rough disc B is determined by the values Rp[vg, Al,
Rylvp, Al and R;[vp, A]. For the sake of brevity, below we omit the fixed argument
v and write R(A) instead of R[v,A]. Recall that the absolute value of the disc
velocity is denoted by v = |v|, and the angular velocity equals w = Av/r. Denote
by 6 the angle the velocity makes with a fixed direction in an inertial frame
of reference.



Using equations (2.9) and (2.10), one rewrites the equations of motion (1.1)
and (1.2) in the form

dv  8rpv?
B Rr(A 4.1
de 8rpv
— = Rr(A 4.2
ALY MO (12)
d(Av)  8r3pv?
d = IR;(A). 4.
an 5 o Bi(d) (4.3)

Recall that 8= Mr?/I is the inverse relative moment of inertia. The special
values that 8 can take are: 8 =1, when the mass is concentrated near the disc
boundary, and =2, when the mass is uniformly distributed inside the disc.
In the intermediate case, when the mass is arbitrarily (generally speaking, non-
uniformly) distributed inside the disc, it holds § > 1.

With the change of variables dr = (8rpv/3M)dt, equations (4.1)—(4.3) are
transformed into the following ones:

L= BRi) — ARu(), (1.4
% —vR,(2) (4.5)
and g — —Rp(2). (4.6)

Denote by s the path length of the disc; thus, ds/dt = v. One readily finds that
s is proportional to 7, s = (3M /8rp)T.

Below, we solve the system of equations (4.4)—(4.6) for cases 1-3 considered in
§3b. Next, we determine the dynamics numerically for some kinds of triangular
cavities. A more detailed study of dynamics in the general case will be
addressed elsewhere.

(1) Circle. One has dA/dr=—4, dv/dr=—v and df/dt=0; therefore the
circle moves straightforward. Solving these equations, one obtains that its centre
moves according to the equation x(t) = (3M/8rp)In(t — ty) e + xy, where t, € R,
ecS' and x,eR? are constants. Thus, having started the motion at some
moment, the circle passes a half-line during infinite time. This equation also
implies that the motion cannot be extended to all ¢ € R.

(2) Retroreflector. Here the system (4.4)—(4.6) takes the form

di 3AB-1) dv  3v d6 3
= —=—— an =——

dr 2 dr 2 dr =~ 8 ° (47)
In the case =1, one evidently has A=const. The disc moves along a
circumference of radius M /(wrpA) in the direction opposite to the angular velocity
of rotation: if the disc rotates counterclockwise, then its centre moves clockwise
along the circumference. The radius of the circumference is proportional to the
disc mass and inversely proportional to the relative angular velocity. The path
length is proportional to the logarithm of time, s(t) = (M /4rp)In(t — ty).



(a) o)) (b) a(l)

(i1) 60°, 60°, 60°

(i) 30°, 120°, 30° 151

(i1) 60°, 60°, 60° 1.0 -

(1) 30°, 120°, 30°
1 . . . . . . . . 0.5 . . . . . . . .

0 1 2 3 4 5 6 71 8 o 1 2 3 4 5 6 7 8

Figure 9. The functions (a) ¢(A) =ARL(A)/Rr(A) and (b) a(A)=4R7(A)/A are shown for the
triangular cavities with the angles (i) 30°, 120°, 30° and (ii) 60°, 60°, 60°.

In the case @>1, we have s(t)=(M/4rp)In(t—1ty), 6=~6,+ const. -
exp(—(6—1)(4rp/M)s) and A= (4/m)(8 — 1)(6 — 6p). The path length once again
depends logarithmically on the time, the relative angular velocity A converges to
zero and the direction 6 converges to a limiting value 6y; thus, the values A and
0 are exponentially decreasing functions of the path length and are inversely
proportional to the (8 — 1)th degree of the time passed since a fixed moment.
The trajectory of motion is a semibounded curve approaching an asymptote as
t— 4o00.

(3) Rectangular cavity. Equations of motion (4.4)—(4.6) in this case
take the form dA/dr=-3A(8—5/3)/4,dv/dr =—bv/4 and df/dr=—3wA/16.
Solving these equations, one obtains 7= (4/5)In(t—t)), v=1voe 7% A=
20 €3O8/ and 0 =6y + (who/4(8 — 5/3)) e37®/3=8)/4 Thus, the path depends
on t logarithmically, and the relative angular velocity and the rotation angle are
proportional to (¢ — #))'™%/% and to exp((2rp(5 — 38)/3M)s).

If 8 <5/3, then A and # tend to infinity, and the trajectory of the disc centre
is a converging spiral. In the case 8> 5/3, A converges to zero,  converges to
a constant value and the trajectory is a semibounded curve approaching an
asymptote as ¢t — +o0o. In the case 8=5/3, A is constant, and the trajectory
is a circumference of radius 2M /(wrpA).

Finally, we examine numerically some triangular cavities. It is helpful to denote
g(A) = AR (A)/R;(A) and rewrite equation (4.4) in the form

dA
7 = R (e(2) - B). (4.8)
.

In figure 9a, the function g¢(1) is shown for two cases where the cavity is
an isosceles triangle with the angles (i) 30°, 120°, 30° and (ii) 60°, 60°, 60°.
We see that ¢g(4) monotonically increases in case (i) and has three intervals of
monotonicity in case (ii). In both cases, R;(1) < 0. This implies, in case (i), that
the disc trajectory is a converging spiral, if 8 < 1.5, and may take the form of a
converging spiral or a curve approaching a straight line, depending on the initial
conditions, if 8 > 1.5.



Figure 10. Three kinds of asymptotic behaviour of a rough disc with roughness formed by equilateral
triangles and with 1.38 < 8 < 1.49: (I) converging spiral (solid line); (II) circumference (dashed line);
(ITT) curve approaching a straight line (dotted line).

The disc behaviour is richer in case (ii) of the equilateral triangle. If 1.38 < 8 <
1.49, then three kinds of asymptotic behaviour may be realized, depending on
the initial conditions: (I) the trajectory is a converging spiral, (II) the trajectory
approaches a circumference, and (III) the trajectory approaches a straight line
(figure 10). If 1.16 < 8 < 1.38, only two asymptotic behaviours of types (I) and
(IT) are possible; if 8> 1.49, then the possible behaviours are (I) and (III); and
if 6 < 1.16, the asymptotic behaviour is always (I).

In the case of triangular cavities, as our numerical evidence shows, the function
g(2) monotonically increases for A sufficiently large and lim;_, ; g(4) = +o0.
This implies that the trajectory is a converging spiral for appropriate initial
conditions (namely, if the initial angular velocity is large enough). If, besides,
B is large enough (that is, the mass of the disc is concentrated near the centre),
the trajectory may also be a curve approaching a straight line. If the function g
has intervals of monotone decrease (as for the case of the equilateral triangle),
then the trajectory may also approach a circumference. The length of the disc
path is always proportional to the logarithm of time.

5. Conclusions and comparison with the previous works

In our opinion, the inverse Magnus effect in highly rarefied media is caused by
two factors:

(i) Non-elastic interaction of particles with the body. A part of the tangential
component of the particles’ momentum is transmitted to the body,
resulting in creation of a transversal force.

(ii) Multiple collisions of particles with the body owing to the fact that the
body’s surface is not convex but contains microscopic cavities.



In the papers by Borg et al. (2003), Ivanov & Yanshin (1980), Wang (1972)
and Weidman & Herczynski (2004), the impact of factor (i) is studied. Moreover,
the body is supposed to be convex and therefore factor (ii) is excluded from
the consideration. In these papers, the force acting on a spinning body moving
through a rarefied gas is calculated, and, additionally, the moment of this force
slowing down the body’s rotation is determined (Ivanov & Yanshin 1980). The
following shapes have been considered: a sphere, a cylinder (Ivanov & Yanshin
1980; Weidman & Herczynski 2004), convex bodies of revolution (Ivanov &
Yanshin 1980) and right parallelepipeds of regular polygon section (Weidman &
Herczynski 2004). The interaction of the gas particles with the body is as follows:
a fraction 1 — «, of the incident particles is elastically reflected according to the
rule ‘the angle of incidence is equal to the angle of reflection’, while the remaining
fraction «, of the particles reaches thermal equilibrium with the body’s surface,
and is reflected as a Maxwellian (Wang 1972; Ivanov & Yanshin 1980; Borg et al.
2003). In the paper by Weidman & Herczynski (2004), a somewhat different model
of interaction is considered, where the reflected particles acquire a fraction a, of
tangential momentum of the rotating body. The transversal force results from
the tangential friction and acts on the body in the direction associated with the
inverse Magnus effect. It is remarkable that for different models and different
shapes of the body, the formula for the transversal force is basically the same. If
the rotation axis is perpendicular to the direction of the body’s motion, then this
force equals

1o My, (5.1)

where M, is the mass of the gas displaced by the body, w is the angular velocity
of the body and v is its translation velocity. (Note that in Borg et al. (2003), this
formula appears in the limit of infinite heat conductivity or zero gas temperature.)
Weidman & Herczynski (2004) found that for parallelepipeds of regular n-gon
section with n odd, the transversal force depends on time, and the value of this
force was determined. It is easy to calculate, however, that the time-averaged
force is equal to equation (5.1).

In the present paper, in contrast, we concentrate on the study of factor (ii). We
suppose that all collisions of particles with the body are perfectly elastic (that
is, a; =0), and therefore there is no tangential friction. We restrict ourselves to
the two-dimensional case and suppose that the body is a disc with small cavities
on its boundary, or a rough disc. The Magnus effect is due to multiple reflections
of particles in the cavities. We study here all logically possible cases of cavities.
According to equation (2.9), the transversal force equals

a(A) Mywv,

NI

where A=wr/v, M, =7r?p is the total mass of gas particles displaced by the
body, a(A) = «a(A,v) =(16/37)Ry[v,A]l/A and v is the measure characterizing the
shape of the cavities. The function a depends on both v and A. In particular, «
varies between —0.409 and 2 for A=0.1, between —0.378 and 2 for A=0.3 and
between —0.248 and 2 for A=1. We conjecture that lim;_, inf, a(4,7) =0 and
lim;_, o sup, @(4,7) =2. The graphs of the function a(A) with » corresponding
to triangular cavities with the angles (i) 30°, 120°, 30° and (ii) 60°, 60°, 60°



are shown in figure 95. We see that this function significantly depends on the
velocity of rotation A; in general, the variation of a(A) with v fixed can be more
than twofold.

We conclude that the impact of both factors (i) and (ii) is unidirectional, and
so they strengthen each other. Moreover, the formulas for the transversal force
are similar; one should just substitute the function «(4,v) for a,. We have seen
that «(A,v) can be significantly greater than 1, while «; < 1. This can be just an
artefact of our model being two-dimensional.

In a forthcoming work, we are planning to extend our consideration to the
three-dimensional case and to media with a positive temperature. This seems to
be more or less straightforward. A more challenging task would be studying the
joint impact of non-elastic multiple collisions in the cavities. Also, it would be
very interesting to study the effect in ‘not so rarefied’ media and find the critical
value of density corresponding to reversal of the Magnus effect.

Apart from its physical meaning, studying the dynamics of a spinning
rough disc (or, more generally, of a non-circular body) in a rarefied medium
represents a nice mathematical problem, which originates in classical mechanics
and has close connection with Newton’s aerodynamic problem (Newton 1687).
According to our numerical simulations, the most part of all possible roughnesses
(93.6% for A=1) correspond to the inverse Magnus effect, and only a small
portion of them corresponds to the proper one. We know that roughnesses
corresponding to the proper Magnus effect do exist, but have no idea how
they should look and not one of such roughnesses has been found. Another
interesting question concerns the description of admissible trajectories and is
closely related to the associated problem of (vector-valued) Monge-Kantorovich
OMT. In particular, the existence, in the same body, of a roughness corresponding
to the proper Magnus effect for some values of A and to the inverse
one for others would imply the existence of a rough disc with a strange
zigzag trajectory.
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