
Process Optimization of Service-Oriented

Automation Devices Based on Petri Nets

J. Marco Mendes
1
, Paulo Leitão

2,4
, Francisco Restivo

1,4
, Armando W. Colombo

3

1
University of Porto - Faculty of Engineering, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

2
Polytechnic Institute of Bragança, Quinta S

ta
 Apolónia, Apartado 134, 5301-857 Bragança, Portugal

3
Schneider Electric Automation GmbH, Steinheimer Str. 117, D-63500 Seligenstadt, Germany

4
LIACC – Artificial Intelligence and Computer Science Laboratory, University of Porto, Portugal

E-mails: {marco.mendes,fjr}@fe.up.pt, pleitao@ipb.pt, armando.colombo@de.schneider-electric.com

Abstract – This paper introduces a novel method for the
specification and selection of criteria-weighted operation modes

for the orchestration of services in industrial automation using
Petri nets. The objective is to provide to the internal decision
support system of a service-oriented automation device or of

another applicable computational system the capability to select
the best path in a Petri net orchestration model considering
different criteria to evaluate the quality of services, such as the

time, energy efficiency and reliability. The transition-invariants
obtained from the Petri net represent the set of possible modi
operandi and these are then weighted with decision criteria. The

result will be afterwards evaluated in order to select the optimal
modus operandi to be executed by the device. Based on the
experiments, this method permits the dynamic optimization of

processes in real-time, considering available parameters from
devices and other resources.

I. INTRODUCTION

Service-orientation principles are pointed out as a

promising solution to address the current challenges in

industrial automation and production systems design and

operation, namely the modularity, flexibility and re-

configurability. Standardized services and the advanced

separation of interfaces and implementation, enhance the

abstraction of component-based development and thereby

pave the way for non-technical software engineers to develop

complex, process-oriented software systems [1].

In order to reach a level of availability and integration of

this technology, services must also be available in industrial

controllers. Some of the first steps were done by the

definition of Devices Profile for Web Services (DPWS) [2]

and its implementation into industrial devices. DPWS defines

a profile over a specific set of web services protocols to

enable secure web service capabilities on resource-constraint

devices [3]. Therefore, simple or complex services can be

called directly by other devices or enterprise information

systems [4].

However, it is not expected that such devices be only able

to provide services representing their resources, but also a

source of multi-functional actions concerning service-

orientation. Particularly, composition and orchestration have

been seen as the form of engineering of service-oriented

architectures, and the inclusion of these features in industrial

devices is still a major effort. The representation of the work-

plan associated to services, to be interpreted and executed by

orchestration engines, can be defined using different methods

[5], namely the Business Process Execution Language

(BPEL) [6] and the Petri nets formalism (see the work of

Hamadi and Benatallah [7] and Deng et al. [8]). In this work,

the selected modeling language is Petri nets taking advantage

of its powerful mathematical foundation that will support,

among others, the analysis and validation during the design

phase and the decision-making for conflict resolution.

Most research works have been concerned with the co-

ordination of services, specially the automatic way of creating

new orchestrations based on available services and some rules

on how to compose them and to generate new forms of

services. There are several methodologies for that purpose,

since the use of semantic services [9-11] to the application of

intelligent systems (such as multi-agent systems [12]) to

support the construction of workflows from services (e.g.

using BPEL [13]). Evaluation of services and the use of

quality of service (QoS) is also used when generating

orchestrations and selecting the best possible service [14-15].

Once workflows are available to be executed and since

they describe mostly all possible combinations of available

processes (modi operandi), there are still decisions required in

selecting the best process (modus operandi) in a specific

circumstance. For instance, a pallet has the option to be

conveyed straight ahead or to the right (requesting the

corresponding service from the transport system). The answer

can be given based on required manufacturing services,

energy consumption, speed, and other quality parameters.

Consequently, the decision of the best modus operandi is a

key issue to improve the system performance that depends

always on current situation of the automation system.

This paper addresses this issue by introducing a novel

approach to the real-time decision making in service-oriented

systems, considering the structural knowledge extracted from

the Petri nets models (in this case transition-invariants),

combined with a flexible set of decision criteria. This permits

that at runtime the device or another computational device

used in industrial automation is able to analyze a defined

workflow of services and select the best possible modus

operandi based on the specified decision criteria.

The reminder of this paper is organized as follows: first,

section 2 overviews the basic concepts of service-orientation

related to automation devices and Petri net-based

978-1-4244-7299-4/10/$26.00 ©2010 IEEE 274

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153404516?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

orchestration engines. Section 3 introduces the proposed

procedure for the process optimization based on the Petri nets

knowledge combined with a flexible set of decision criteria,

and section 4 illustrates the application of the proposed

method into an experimental case study. Finally, section 5

rounds up the paper with conclusions.

II. SERVICE-ORIENTED AUTOMATION DEVICES WITH PETRI
NET-BASED ORCHESTRATION ENGINE

Service-oriented architecture (SOA) was seen as a new

ground for experimentations in industrial automations since it

relative success in the business chapter from the beginnings

of the 21
st
 century. The emergence of SOA in automation

domain and the use web services standards became notorious

after the successful application in automation devices and as a

new form of engineering (see SIRENA [16] and SOCRADES

[17] projects). However, a major industrial acceptance,

besides the research projects scope, is needed, due to the lack

of demonstrated features of both automation devices and

supporting applications.

The main difference to the other technologies does not only

rely on the implementation of the basic resources (in SOA

these resources are called atomic services), but in the way

that they are used and composed into complex applications. A

main requirement is the richness description of a service, so

that it can be correctly used afterwards by a client. Therefore,

Web Services Description Language (WSDL) [18] is the main

protocol that is used to define the interface of the service by

its elements (e.g. operations, types, inputs, outputs). On top of

the description, model-based orchestration defines a work-

plan made of services to be executed.

The modeling language used along this paper to describe

service processes derives from Petri net specifications (see

[19] for more information). The developed Petri net

orchestration engine has several features, including:

- Lightweight alternative to BPEL and similar to what

automation engineers are used to;

- Service invocation and exposition;

- Design time and run-time composition of orchestration

models;

- Analysis possibilities of models at design time;

- Conflict resolution at run-time and integrated decision

support for conflict situations on the Petri net models

- Interpretation of XML-based configurations (used in

dynamic deployment).

A major task at this stage is to fit the orchestration engine

and web service technology into an automation device. The

resulting smart embedded devices (demonstrated in the

SOCRADES project) are the host for the most of the services

exposed in the system and also responsible for the

coordination and control activities (see Fig. 1). They include

an orchestration engine to “link” services together and to

create new composite services. Atomic services representing

resources and functions of the connected equipment are

provided by the device interface. An internal decision support

system is responsible to sustain the engine for decisions, e.g.

selecting the best modus operandi based on decision criteria.

Fig. 1. Structure of a smart embedded device.

Computer tools are necessary to configure devices. This

includes modeling and planning software, analysis utensils,

device and service deployment tools and also posterior

monitoring applications. The Continuum Development Tools

(CDT) [20] was developed with the aim to facilitate these

activities. The main component is build around the

Continuum Development Studio (CDS) that is based on an

extensible Document/View framework, provides an

engineering tool for service-oriented automation entities, for

example, supporting the visual description, analysis,

simulation and deployment of their behavior in Petri nets

formalism.

III. PROCESS OPTIMIZATION OF SERVICE OPERATIONS

The general approach of the proposed methodology for the

process optimization of service operations is represented in

Fig. 2. It is based on the necessary steps on the design phase

(when workflows are defined and configured) and operation

phase (when workflows are executed at runtime by devices).

Note that these two phases only include the procedures that

are important to this decision and optimization method (since

the design and operation phase involving devices requires

more steps than presented on this work).

Fig. 2. Procedure for the process optimization based on Petri net workflows

and decision criteria.

The several steps of the procedure will be explained in the

next subsections.

275

A. Design of Petri net workflows

The processes to be analyzed and executed by automation

devices are represented by the Petri net formalism (according

to the definition of T. Murata [21]). A Petri net is a 5-tuple,

PN = (P, T, F, W, M0) where P = {p1, p2, …, pm} is a finite set

of places, T = {t1, t2, …, tn} is a finite set of transitions,

F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation),

W: F → {1, 2, …} is a weight function, M0: P → {0, 1, 2, …}

is the initial marking, P ∩ T = ∅ and P ∪ T ≠ ∅. The Petri

net structure without specifying the initial marking is denoted

by N = (P, T, F, W).

Some of the transitions are linked to the request or

provisioning of basic device services. A service’s operation is

then triggered when the corresponding transition

enables/fires. In this case, S: T → {s1, s2, …, sn} represents

the finite set of services’ operations associated to

corresponding transition. A specific s ∈ S can be empty

(meaning there is no operation associated to the transition) or

a label identifying the service and its operations. A service

and a corresponding operation will be expressed as

service.operation[in|out](parameters). The in|out reference

indicates if the operation is a request or a response (i.e.

incoming or outgoing message in the perspective of the server

and outgoing or incoming message in the viewpoint of a

client). Messages can be added with information, represented

by the parameters field.

The design of the Petri nets and the association to services

can be done with the CDS tool. WSDL files, representing the

description of services, can be imported and the contained

operations are listed in order to be associated to the

transitions of the Petri net. Other extensions and features of

Petri nets can be used as well, but they are not discussed here

because of being out of scope.

B. Extraction of transition-invariants

In order to extract the transition-invariants of a Petri net, its

structure N is used. For the structural analysis, it is important

to firstly obtain the incidence matrix of the Petri net. For a

Petri net N with n transitions and m places, the incidence

matrix A = [aij] is an n × m matrix of integers and its typically

given by aij = aij
+
 - aij

-
 where aij

+
 = w(i, j) is the weight of the

arc from transition i to its output place j and aij
-
 = w(j, i) is the

weight of the arc to the transition i from its input place j. A
T

represents the transpose of the matrix A.

An integer solution x of the homogeneous equation A
T
x = 0

is called a transition-invariant. The analysis of the transition-

invariants allows the identification of work cycles in the Petri

net model. There are several algorithms to resolve the

equation and determine the minimal set of solutions, i.e.

transition-invariants (see for example, C. Amer-Yahia et al.

[22]).

The extraction of transition-invariants, as well the place-

invariants, can be performed in the CDS.

C. Setup initial decision criteria

Decision criteria can be defined for each service s ∈ S

using several attributes As = {a1, a2, …, ak}. Since attributes

are possibly of different units of measurement, normalization

has to be done. In this case, the adopted procedure is to

convert each attribute a ∈ A to a fuzzy interval of [0, 1]

where the maximization of this value is considered.

In this case, the linear normalization is given as an

example. Other normalization approaches can be used as well

such as the exponential and logarithmical. For the

normalization of a value v into n (n ∈ [0, 1]), the desired

maximum and minimum of the attribute must be known (vmax

and vmin, vmax > vmin). If the quantity is directly proportional to

the normalization interval [0, 1], i.e. the quantity is

considered better the higher the value is, then linear

normalization can be achieved by

From the other hand, in case of inverse proportionality, the

normalization must be done using

Fig. 3 shows and industrial lifter to lift pallets via the two

ports (that may be connected to conveyors). The lifter has a

transfer service with two operations responsible to transport a

pallet from port A to port B and vice-versa. Each one of the

operation has defined attributes to be used as decision criteria.

In the example, energy efficiency, quickness of operation and

reliability are defined. They have different values for each

operation that may be gathered from previous experiences,

defined initially using vendor specific information, or just

defined for example purposes (as in this case).

Fig. 3. Industrial lifter with a transfer service and current operation

attributes for the decision criteria.

In Fig. 3, the mean quickness of the operation from port A

to port B (.transfer_A_B) was defined as 11 seconds and from

port B to port A (.transfer_B_A) is 12 seconds. Considering

that maximum and minimum values for this attribute are,

respectively, 18 and 8 seconds, and that the quickness is

inversely proportional to the normalization quantity (less time

means better value), the quickness values for .transfer_A_B

and .transfer_B_A will be 0.7 and 0.6. This means that from

the speed point of view, .transfer_A_B would be the selected

operation because of the higher value (0.7).

Decision criteria should also be changed at run-time to

provide an update to the current situation of the system,

especially when involving a learning system that can balance

the attributes according to the past situations. For example,

n = 1 - (v - vmin)/(vmax - vmin) , vmin ≤ v ≤ vmax

n = (v - vmin)/(vmax - vmin) , vmin ≤ v ≤ vmax

276

the energy efficiency of an equipment will probably be

reduced with its increasing age.

D. Analysis and validation

The analysis and validation of the models, considering the

decision criteria, is used to verify its correctness and the

effects of the decision criteria into the final decisions. For this

purpose, discrete simulation is performed, after which

conclusions can be extracted to support the validation and/or

optimization of the model for execution.

Behavioral and structural analysis as well as step-wise

simulation can also be performed in CDS tool.

E. Upload information to the device

Since Petri net models are designed and analyzed offline,

all the modeling information has to be formatted in a device-

interpretable semantic, so that it can be uploaded and

interpreted by the device. This step is responsible for

configuring the device with the previously defined

information (Petri net model, transition-invariants, decision

criteria etc.). Once successfully completed, the device can

start running, corresponding to the operation phase.

With the CDT it is possible to configure automation

devices with the enabled Petri net orchestration engine. An

implemented feature from DPWS is implemented that permits

the dynamic deployment of services into the devices as well

as the general configuration of the device. The only

requirement is that the device must be ready, attached to the

network and discoverable by the tools.

F. Detection of decision points

Detection of decision points can be done when they

actually happen during the execution of the workflow or

analyzed previously when the model is about to be executed.

In any case, the decision points represent situations where

there is a need of the decision support system to provide a

concrete answer to the execution system of the workflow.

In terms of Petri nets, decision points are identified by

conflicts in the Petri net (see Fig. 4). There is the possibility

to model Petri nets without conflicts, but the existence of

such properties creates a new dimension in terms of

flexibility of Petri nets. Besides static models that only

specify a predefined work-plan, some models can be enriched

with the possibility of choices that permit the intervention of

decision systems.

Fig. 4. Conflict detection/resolution in the Petri net orchestration engine.

A place p has a structural conflict, SC(p), if there are at

least 2 transitions t ∈ T where w(p, t) > 0. The set of all

structural conflicts is denoted by SC. A place p is in conflict,

C(p) if it has a structural conflict SC(p) and the current

number of tokens of the place p, M(p), enables at least two

transitions t, which the place p is input.

Structural conflicts are quite suitable since they represent

the candidates for the real conflicts that happen at runtime. In

fact, the set of real conflicts C is always a subset (or equal) of

the structural conflicts SC, S ⊆ SC. These candidates can be

obtained by the structural information of the Petri nets model

and if calculated at designed phase, performance is increased

afterwards (avoiding the analysis of each place).

G. Combine transition-invariants with decision criteria

For a given decision point, the decision support system will

now combine the pre-calculated transition-invariants of the

workflow with the current decision criteria.

For a given transition t ∈ T associated to a service

operation s ∈ S, the combined attribute value for t is given by

where ai(t) is the normalized value of an attribute of the

service s associated to the transition t. There are k different

attributes to be considered for the transition t.

The decision factor of a transition-invariant (modus

operandi) x extracted from a Petri net workflow is given by

where Cx represents the set of non-null coefficients of all

t ∈ x, Ax is the set of combined attribute values of all non-null

coefficient t ∈ x. The value of b ∈ [0, 1] indicates how much

of the decision factor of x is to be considered (0 means not to

be considered and 1 fully considered). Similarly, the values of

attributes ai and combined attributes A(t) can also be

weighted by a w = [0, 1] before each operation. This

represents the weight the attribute’s value has in the final

decision.

H. Select the best modus operandi

Once the decision factors are calculated for each

transition-invariant, the selected modus operandi would be

the one corresponding to the transition-invariant with higher

decision factor. For example, if F(x1) and F(x2) are two

decision factors for respectively x1 and x2, and F(x1) > F(x2),

then x1 will be modus operandi selected.

I. Execute the modus operandi

The selected modus operandi will be executed by triggering

the transitions associated to the selected services workflow.

The non-selected modi operandi can be minimized (e.g. enter

standby modus).

J. Update current decision values

After the decision-making process and posterior execution

of a service, new values for the attributes can be determined

and balanced with the previous ones.

∑(CxAx)

∑(Cx)
F(x) = b

a1(t) + a2(t) + … + ak(t)

k
A(t) =

277

Decision values, as the whole information of the Petri net is

part of the Petri net orchestration engine and therefore are

stored locally at the device. Updated values can be obtained

directly via the input/output interface of the device (if it is

connected to industrial equipment) or requested via the

network (as a service operation or subscribed service event).

IV. EXPERIMENTS

Aiming to illustrate the proposed the concepts, besides the

previous formal definition, an example is used as shown in

Fig. 5. The case study comprises two conveyors to transport

pallets to and from Machine 1 and Machine 2 that perform

some type of production operations over the objects that are

on the pallets. The system is a simplification of a

demonstrator used in the SOCRADES project (see [19-20])

just for the purpose of proving the introduced methodology.

Fig. 5. Production and transport system used as example and application of

the methodology (including the representation of the services).

All of the four devices (Conveyor 1, Conveyor 2, Machine

1 and Machine 2) are connected to the network and expose

their capabilities and resources in form of services, as

represented in Fig. 5. The Table I shows the characteristics of

each equipment and the associated service. Each service has a

set of operations; in this case and for simplification purpose,

all services have a .start[in] and .finished[out] operation (that

will request and make the response of the service). Besides

that, the equipments also have several criteria attributes to be

used by the methodology. A final composite service does the

coordination of the system by using the available services

from the equipments in a logical way.

TABLE I
CHARACTERISTICS OF THE EQUIPMENT AND THEIR SERVICES

Attributes (normalized)
Equipment (Service)

Energy efficiency Production quality

conveyor1 0.6 -

conveyor2 0.7 -

machine1 0.8 0.5

machine2 0.3 0.7

composite - -

Fig. 6 represents a Petri net model which its execution can

be requested by the service composite (t1 indicates the start of

the service and t10 when it is finished). The execution

comprises the execution of the conveyor1, then the selection

of the machine1 or machine2 services at the place p4. Once

decision is taken over one of the services, the operation is

started via t4 (t5) and finished via t6 (t7) for the machine1

(machine2). Finally, the operation of conveyor2 is called.

Fig. 6. Petri net model with the composition of the four equipment services
(conveyor1, machine1 or machine2, conveyor2).

Using the example of Fig. 6, the transition-invariants of the

model are the following:

These solutions (x1 and x2) represent the available modi

operandi. In the case of x1, after composition.start is

requested, conveyor1 is called (using start and finished

operations), machine1.start is called (waiting then that the

machine1.finishes its operation), conveyor2 is coordinated via

start and finished operations and finally composition.finished

indicates the termination of the modus x1.

In the scenario Fig. 5, the several service operations

associated to the transitions may have decision criteria, such

as the attributes of energy efficiency (a1) and production

quality (a2). For example, transition t4 represents the start of

machine1 and its operation. Its current energy efficiency

value is a1(t4) = 0.8 (means that energy consumption is

minimum) and production quality is a2(t4) = 0.5 (a reasonable

quality). The machine2 started by transition t5 may have

a1(t5) = 0.3 (less energy efficient than machine1) and

a2(t5) = 0.7 (better production quality as machine1). The

conveyors only have the attribute for energy efficiency, in

this case a1(t2) = 0.6 and a1(t8) = 0.7.

Once the system is running, decision points must be

detected to be able to fire the right transitions associated to

the conflicts. In this case a single decision point is located in

the place p4, where either the path via machine1 or via

machine2 has to be selected. For this purpose, two attributes

(energy efficiency and production quality) are considered for

transitions t2, t4, t5 and t8. The combined attribute values for

t2, t4, t5 and t8 are:

The other transitions do not have attributes and their

combined attribute value is 0. Since there are two modus

operandi x1 and x2, the decision factors are

A(t2) = [0.6] / 1 = 0.6

A(t4) = [0.8 + 0.5] / 2 = 0.65

A(t5) = [0.3 + 0.7] / 2 = 0.5

A(t8) = [0.7] / 1 = 0.7

x1 = t1 + t2 + t3 + t4 + t6 + t8 + t9 + t10

x1 = t1 + t2 + t3 + t5 + t7 + t8 + t9 + t10

278

From the previous calculation x1 will be selected because

F(x1) > F(x2). The selected result demonstrates that the

sequence of x1 is the most favorable in the current situation to

be executed, considering the criteria and usage of this

method. This may not be valid for other situations using the

same model, where the decision values were changed in case

they do not represent the actual characteristics. As an

example, the energy efficiency of the equipment may vary

during time, where the corresponding attribute must be

recalculated and therefore influencing the decision made

afterwards.

V. CONCLUSIONS AND FUTURE WORK

In service-oriented automation systems, decision-making is

an important task to support the conflict resolution, the

exception handling and the reconfiguration and evolution

processes. This paper introduces a novel approach for the

process optimization in the orchestration of service-oriented

automation systems, centered in the use of Petri nets to

represents the work-plan associated to services, which will be

interpreted and executed by orchestration engines. The

information extracted from the Petri net models, such as the

structure of the net and the transition-invariants, constitutes

important knowledge that can be used to support the decision-

making process. This knowledge is then combined with a

flexible set of decision criteria, which can for instance

consider production parameters but also energy efficiency

issues. The application of this method permits the

maintenance of the models for orchestration and also their

evaluation for decisions. The dynamic optimization of

processes can be reached in real-time, considering available

parameters from devices and other resources.

Future work is related to test this method on compositional

services (that will inherit the decision values), to the

automatic definition of parameters by the devices (e.g.

reading power consumption from the equipments) and also to

study the variable values during operation.

ACKNOWLEDGMENT

The authors would like to thank the European Commission

and the partners of the EU FP6 project “Service-Oriented

Cross-layer infrastructure for Distributed smart Embedded

devices” (SOCRADES) and the EU FP7 project “Cooperating

Objects Network of Excellence” (CONET) for their support.

REFERENCES

[1] E. Zeeb, A. Bobek, H. Bohn and F. Golatowski, “Service-Oriented
Architectures for Embedded Systems Using Devices Profile for Web
Services”, Proceedings of the 21st International Conference on
Advanced Information Networking and Applications Workshops, vol.
1, pp. 956-963, 2007.

[2] The Devices Profile for Web Service Specification. See
http://schemas.xmlsoap.org/ws/2006/02/devprof/ (access date: January
2010)

[3] A. Bobek, E. Zeeb, H. Bohn, F. Golatowski and D. Timmermann,
“Device and service templates for the Devices Profile for Web
Services”, Proceedings of the 6th IEEE International Conference on
Industrial Informatics, pp. 797-801, 2008.

[4] Q. Li, Y. Shu, C. Tao, X. Peng and H. Shi. “Service-Oriented
Embedded Device Model in Industrial Automation”, Proceedings of the
Second International Symposium on Intelligent Information
Technology Application, vol. 1, pp. 525-529, 2008.

[5] N. Milanovic and M. Malek, “Current Solutions for Web Service
Composition”, IEEE Internet Computing, vol. 8, n. 6, pp. 51-59, 2004.

[6] Web Services Business Process Execution Language. OASIS Standard.
(http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html), 2007.

[7] R. Hamadi and B. Benatallah, “A Petri net-based model for web service
composition”, Proceedings of the 14th Australasian Database
Conference, pp. 191-200, 2003.

[8] X. Deng, Z. Lin, W. Cheng, R. Xiao, L. Fang, and L. Li, “Modeling
Web Service Choreography and Orchestration with Colored Petri Nets”,
Proceedings of the Eighth ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, vol. 2, pp. 838-843, 2007.

[9] B. Medjahed, A. Bouguettaya and A. K. Elmagarmid, “Composing Web
services on the Semantic Web”, In: The VLDB Journal - The
International Journal on Very Large Data Bases, vol. 12, n. 4,
Springer-Verlag New York, Inc., pp. 333-351, 2003.

[10] J. L. M. Lastra and M. Delamer, “Semantic Web Services in Factory
Automation: Fundamental Insights and Research Roadmap”, IEEE
Transactions on Industrial Informatics, vol. 2, n. 1, pp. 1-11, 2006.

[11] K. C. Thamboulidis, G. V. Koumoutsos and G. S. Doukas, “Semantic
Web Services in the Development of Distributed Control and
Automation Systems”, Proc. of the IEEE International Conference on
Robotics and Automation, pp. 2940-2945, 2007.

[12] Z. Maamar, S. Kouadri and H. Yahyaoui, “A Web services
Composition Approach based on Software Agents and Context”,
Proceedings of the 2004 ACM Symposium on Applied Computing,
ACM Press, New York, NY, USA, pp. 1619-1623, 2004.

[13] J. Pasley, “How BPEL and SOA are Changing Web Services
Development”, IEEE Internet Computing, vol. 9, n. 3, pp. 60-67, 2005.

[14] J. Day and R. Deters, “Selecting the Best Web Service”, Proceedings of
the 2004 Conference of the Centre for Advanced Studies on
Collaborative research, IBM Press, pp. 293-307, 2004.

[15] S. Chaari, Y. Badr and F. Biennier, “Enhancing Web Service Selection
by QoS-based Ontology and WS-policy”, Proceedings of the 2008
ACM symposium on Applied computing, ACM Press, New York, NY,
USA, pp. 2426-2431, 2008.

[16] F. Jammes and H. Smit, “Service-oriented Architectures for Devices -
the SIRENA View”, Proceedings of the 3rd IEEE International
Conference on Industrial Informatics, pp. 140-147, 2005.

[17] M. Gerosa, A. Cannata and M. Taisch, “A Technology Roadmap on
Service-Oriented Cross-layer Infrastructure for Distributed smart
Embedded devices”, Proceedings of the I*PROMS Conference, 2008.

[18] Web Services Description Working Group (see
http://www.w3.org/2002/ws/desc/).

[19] J. M. Mendes, F. Restivo, P. Leitão and A. W. Colombo, “Customizable
Service-oriented Petri Net Controllers”, Proceedings of the 35th Annual
Conference of the IEEE Industrial Electronics Society, 2009.

[20] J. M. Mendes, A. Bepperling, J. Pinto, P. Leitão, F. Restivo and A. W.
Colombo, “Software Methodologies for the Engineering of Service-
Oriented Industrial Automation: The Continuum Project”, Proceedings
of the 33rd Annual IEEE International Computer Software and
Applications Conference, pp. 452-459, 2009.

[21] T. Murata, “Petri nets: Properties, Analysis and Applications”, IEEE,
vol. 77, pp. 541-580, 1989.

[22] C. Amer-Yahia, N. Zerhouni, A. E. Moudni and M. Ferney, “Some
Subclasses of Petri nets and the Analysis of their Structural Properties: a
New Approach”, IEEE Transactions on Systems, Man and Cybernetics,
Part A, vol. 29, n. 2, pp. 164-172, 1999.

F(x1) = 1 ×
∑((1, 1, 1) × (0.6, 0.65, 0.7))

∑(1, 1, 1) = 0.65

F(x2) = 1 ×
∑((1, 1, 1) × (0.6, 0.5, 0.7))

∑(1, 1, 1) = 0.6

279

