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Abstract – In service-oriented systems, composition of 

services is required to build new, distributed and more complex 

services, based on the logic behavior of individual ones. This 
paper discusses the formal composition of Petri nets models used 
for the process description and control in service-oriented 

automation systems. The proposed approach considers two 
forms for the composition of services, notably the offline 
composition, applied during the design phase, and the online 

composition, related to the synchronization of Petri nets models 
on the fly. An experimental case study is used to illustrate the 
proposed composition approach. 

I. INTRODUCTION 

Service-oriented architecture (SOA) is being seen as a new 

playground for experimentation in industrial automation since 

its relative success in electronic commerce and business 

domains in the beginning of the 21st century. The use of the 

SOA paradigm implemented through web services 

technologies enables the adoption of an unifying technology 

for all levels of the enterprise, from sensors and actuators to 

enterprise business processes [1]. This approach was handled 

by the EU IST FP6 SOCRADES (Service-Oriented Cross-

layer Infrastructure for Distributed Smart Embedded Devices) 

project, which primary objective was to develop a design, 

execution and management platform for the next-generation 

of industrial automation systems, exploiting the SOA 

paradigm both at the device and application levels [2]. 

A main concern in service-based systems is how the 

services “play” together. Since services aren’t isolated entities 

exposed by the intervenient software components, it is 

necessary to consider some kind of logic that will be 

responsible for their interaction patterns. Orchestration is the 

most well-known process used to define the invocation order 

of services. The achieved sequence can be used to form a 

composition, i.e. to create a new service (composite service). 

The model-based orchestration engine is able to interpret a 

given sequence made of services (an orchestration) and 

execute it. The work-plan associated to services can be 

defined using different methods [3], namely the Business 

Process Execution Language (BPEL) [4], the Petri nets 

formalism [5-7] or even the IEC 61131-3 languages [8]. 

In automation systems, it is not usual to deal in parallel 

with the specification of the automation system behavior and 

the configuration of the system equipments, which implies 

that re-adjustments in one side would require major efforts in 

the other one. One example, and also the main problem 

targeted in this work, is the development of orchestration 

models in Petri nets formalism without knowing the final 

control composition in terms of service-enabled and 

orchestration-capable devices. The number of embedded 

devices and also their distribution over transport and 

production equipments would affect the previously designed 

models. Moreover, the objective is the reduction of the 

configuration and design efforts (in this case Petri nets 

models with associated service representations), when the 

control layout has changed or is unknown. 

This paper discusses the composition of Petri nets models 

in service-oriented automation systems, introducing an 

approach that comprises two types of composition, notably 

the offline composition (the composed model is a result of the 

combination of several smaller ones) and the online 

composition (where individual models are distributed and 

synchronized together via service logic). The proposed 

approach is powerful enough to create complex and flexible 

services from simpler ones, both at designing and operation 

phases. The Continuum Development Tools [9] was used to 

design, analyze and compose Petri nets and also to configure 

service-enabled orchestration-capable embedded devices. 

Experiments were done over an industrial transport system 

with modules represented by services accessible via the 

network. The offered features of composition, as well as the 

characteristics of these Petri net models, demonstrate that the 

design of the system’s behavior can be abstracted from the 

device distribution where these models should run afterwards. 

The remainder of this paper is organized as follows: first, 

section 2 overviews the basic concepts of SOA in automation 

domain and the use of Petri nets formalism to represent the 

services’ process behavior. Section 3 introduces the proposed 

approach for the composition of Petri nets models, and 

section 4 illustrates the application of the proposed concepts 

into an experimental case study. Finally, section 5 rounds up 

the paper with conclusions. 

II. SOA IN AUTOMATION: A TECHNICAL OVERVIEW 

In a SOA architecture, services are the primary organizing 

principle [10]. A service is a software module that 

encapsulates the business/control logic or resource 
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functionality of an unit that responds to specific requests 

and/or is a source for events. From the practical standpoint, 

web services offer a technology that is rich and flexible 

enough to make SOAs a reality [11]. One of the major 

protocols used in web services (and also important to this 

work) is WSDL (Web Services Description Language) [12], 

which is a W3C specification that provides an abstract, 

technology neutral language for the definition of published 

operations of a service [13]. In a simple manner, services are 

a set of operations, which in turn can be one of different 

message exchange patterns, for instance request/response or 

events. The exchange of information of the operations is via 

the network using SOAP (Simple Object Access Protocol) 

formatted messages (which is another web service standard). 

Web services (and SOA) would be difficult to be 

practicable in industrial automation if there were not some 

trade-offs considering the domain and available resources. 

The Devices Profile for Web Services (DPWS) [14] was 

defined considering some specific web service protocols but 

also restricting the usage of web services to keep aspects of 

the limitations in embedded systems [15]. 

Aiming to achieve the collaborative global behavior, one or 

more services may interact. The composition of two or more 

services generates a new, more complex service, providing 

both the original individual behavioral logic and a new 

collaborative behavior for carrying out a new composite task 

[16]. In literature, several works are focused on composition 

and orchestration of web services, but they are mainly 

directed to e-business/e-commerce (see [17-19]). In 

automation and manufacturing, the service composition and 

collaboration have been studied with web semantics [20], 

service classification [21], service binding [22] and the 

collaboration/integration of multi-agent systems [23]. 

As previously referred, the process behavior of services can 

be described using different languages [3], one of them being 

the Petri nets formalism. Petri nets are a well-known process 

modeling technique with a strong mathematical foundation. A 

Petri net is a directed, bipartite graph in which each node is 

either a place or a transition. Tokens occupy places 

representing resources or states of the system. For a more 

elaborate introduction to Petri nets, the reader is referred to 

[5-7]. In this work, the orchestration of services is modeled 

using Petri nets, with service operations being mapped into 

transitions. 

Since automation systems are a rich playground for diverse 

types of equipments and embedded computational systems, 

services and their orchestration has been applied to these 

specific systems. Smart embedded devices are the host for the 

most of the services exposed in the system and also 

responsible for the coordination and control activities (Fig. 1). 

These devices have two main interfaces: one to mediate the 

shop floor equipment via I/O (e.g. a lifter) and other one to 

manage the access to the service bus by exposing and 

requesting services. An automation entity is considered the 

software representation of the device and can also be hosted 

in different computational equipments. The internal 

orchestration engine is used to “link” services into higher 

ones and is the host for the service-enriched Petri nets model. 

 

Fig. 1. Smart embedded device with orchestration engine. 

These entities are configurable software components with the 

dynamic deployment feature of the used DPWS (SOA4D at 

http://forge.soa4d.org/). This does not only configure the 

automation entity and its services but also the orchestration 

engine. The setup of the embedded Petri net engine, for 

example, is started by receiving the XML representation of a 

Petri net included in the uploaded deployment file. 

Afterwards, the engine is able to interpret Petri net models 

and coordinate the available services on devices. Due to the 

service-based communication it is also possible the lateral 

collaboration with other entities. 

The application of Petri nets can range from typical 

systems with defined behavior to more complex ones with 

distributed participants. In any case, system engineering and 

associated tools are required to facilitate the developer's 

intervention. The Continuum Development Tool (CDT) and 

the visual editor Continuum Development Studio (CDS) are 

being developed with the objective to facilitate the design, 

analysis and configuration of distributed service-oriented 

automation systems, by using until now, a special kind of 

Petri nets associated to service information. Other important 

feature of this tool is the capability of validating 

methodologies applied to the automation control with an 

integrated application (client) and distributed resources 

(servers). Petri nets based orchestration engines can be 

configured with this tool, which uses DPWS as the 

framework for the integration of services. For a more 

information, the reader is referred to [9]. 

III. COMPOSITION OF SERVICE-BASED PETRI NETS 

The composition of Petri nets is viewed as additional logic 

to synchronize the process of two or more models. As 

illustrated in the left side of Fig. 2, three Petri net models are 

composed and their intersection is defined as composition 

logic. This can be done offline using a composition tool by 

generating a new Petri net model that is the composition of 

several individual ones and also online, where individual 

models are maintained in their distributional units and 

synchronized together on the fly via the network. The online 

composition can also be designated as virtual composition, 

because no new model is generated, but individual models 

have to be linked together as they were part of one. The 

online composition is done by using service-oriented 

architecture as means of information exchange and service 
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representation (i.e. to identify the synchronization points of 

the Petri nets model). In both cases, at runtime an 

orchestration engine will get the Petri nets model and run it. 

 

Fig. 2. Composition of Petri net models (offline and online) and their 

execution in orchestration engines (OE). 

The two forms of composition will be explained in the 

following sub-sections. 

A. Offline Composition: The Petri Net Composer Tool (PNC) 

Offline composition comprises the generation of a new 

Petri net model based on the connection of two or more 

individual ones. If PN1 and PN2 are two Petri nets, PN1∪2 = 

PN1 ∪ PN2 represents its composition. This composition 

procedure can be applied to two or more Petri nets models. 

Fig. 3 represents an example where two Petri nets are 

composed via the addition of composition logic. 

 

Fig. 3. Offline composition of Petri nets PN1 and PN2 resulting in PN1∪2. 

When the composition is completed, new inter-logic is 

generated. The basic idea is to match two transitions from 

different models by connecting them via a place (and 

corresponding arcs). Additionally, the specification of the 

direction should be considered (e.g. the transition t2 from PN1 

is the input of the transition t1 from PN2). This approach, 

besides to simplify the development of bigger and more 

complex models, also facilitates the synchronization of 

models viewed as individual entities. 

Since composition is not limited to a set of transitions and 

thereof, transitions may be grouped into logical connection 

groups, the concept of ports was introduced into the Petri net 

models. An example is given in Fig. 4 where the conveyor A 

is the client and the conveyor B is the server. The transition t1 

represents a start order of the conveyor B, the transition t2 

represents that it has started and the transition t3 notifies when 

it is completed. All these three transitions are part of the same 

port (port=in of the conveyor B) and are input or output 

transitions in contrast to their counterparts in the other model 

of the conveyor A. Additionally, they have a sequence 

reference to indicate the order of connection of the transitions 

(e.g. the output transition t4 of port=out from the conveyor A 

will be connected to the input transition t1 of port=in from the 

conveyor B, because they have the same sequence reference, 

port_out_seq=port_in_seq=1). In a few words, for two 

interconnected ports from different models, input transitions 

will be connected to output transitions with the same 

sequence reference. This can be seen in the connection table 

of Fig. 4, where transitions have two properties, {port, 

port_in_seq|port_out_seq}, which indicate, respectively, the 

port they belong and also the input/output sequence reference. 

 

Fig. 4. Port-based composition of two Petri net models representing the 
behavior of two conveyors. 

As seen in Fig. 4, ports are also useful when the models 

represent mechatronic devices. For example, a conveyor may 

have two ports (one for the input of pallets and another one 

for the output of pallets). This situation is also represented in 

its control model, in which it contains two ports that are used 

to connect to other models from other devices (e.g. adjacent 

conveyors). Moreover, to facilitate the composition, 

information about the layout and displacement of equipment 

can be used for (semi-) automatic composition. For this 

purpose, the Petri net model should include a label (in case of 

Fig. 4, Conveyor A and Conveyor B) and the layout 

information defining which resources/devices may be 

connected and through which port. 

A XML file was adopted to represent the resource 

connections and to improve the automatic offline 

composition. The resource connections for the example of 

Fig. 4 looks like: 

 
In the example, only one connection is included, but 

multiple connections can also be defined. For this purpose, 

new <connection/> tags must be defined inside the 

<connections> tag. If the conveyor B would be connected 

<?xml version="1.0" encoding="UTF-8"?> 

  <connections> 

    <connection 

      resource1="Conveyor A" port1="out" 

      resource2="Conveyor B" port2="in" 

    /> 

  </connections> 
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to a conveyor C on the right, then this information is 

represented by one additional <connection/> tag. 

For the offline composition, a special tool is needed and 

therefore was developed in the top of the CDS. The Petri Net 

Composer Tool (PNC) allows the user to create simplified 

models and then link them together into a global model.  

The individual models can be stored into XML-formated 

files (Extensible Petri Net File Format, with the extension 

*.xpn). In order to be successful, the user must select the 

transitions that belong to a connection port and define the two 

properties as previously explained (port and 

port_in_seq|port_out_seq). After defining the models, a 

layout information file has to be created with the resource 

connections and saved with the extension “.xrc”. 

Once all referred files are available, the user may use the 

PNC menu entry to proceed with the composition, by 

selecting the resource connections file (*.xrc) and the several 

Petri net files (*.xpn) to be composed. The composition is 

automatically done by extracting the information from the 

*.xrc file, creating a new empty Petri net model, copying all 

the sub Petri nets models into the new model, generating the 

composition logic and saving the new model representing the 

composition. The new *.xpn file can then be opened and 

processed as a normal Petri net model.  

The example of Fig. 5 shows the result of a composition of 

two individual models using the PNC tool. The window on 

the right side is the property editor that is used to define the 

properties of the transitions. 

 

Fig. 5. Composition of Conveyors A and B using the PNC tool. 

One characteristic not explained in this section is the 

representation of services, their operations and service calls in 

the model. This issue will be introduced in the next 

subsection, because the online composition is based on the 

online connection of models via service technology. Note that 

the services represented in the models are not only used for 

the online composition, but also for the access and exposition 

of other services in the system (e.g. production services, 

automation services and maintenance services). 

B. Online Composition: Synchronization of Models 

Online composition means that each model runs separately 

in its own orchestration engine and they are synchronized via 

a connection logic. In this case, the connection logic 

represents a service-based communication act, where services 

and their operations are described in Petri net models. 

Online composition requires that Petri nets have 

information on how to invoke and represent services to 

synchronize with the other models. This is done by describing 

transitions in the Petri net model. A transition willing of 

sending a request/response or an event must be enabled, and 

the action is done when it fires. In the other hand, a transition 

receiving a message from a request, response or event, will 

only fire if it is enabled and the message is there. Fig. 6 

represents these two types of associations. 

 

Fig. 6. Two types of service message association to transitions: (A) 

transition outputs a message, (B) transition waits for a message. 

The information to be used by transitions is gathered by an 

imported WSDL file that contains the description of the 

service. Depending on the operation, transitions can be part of 

a client request/response, server request/response, client event 

and server event. The first two types require two transitions: 

one for initializing the request and one for the response. It is 

also possible to test responses by their return parameters, 

implying the use of one response transition for each test 

(resulting in a conflict in the Petri net model). The difference 

of an operation being a server or client is obvious: a server 

waits for the request and then gives a response, and a client 

makes a request and waits for a response. Events are possible 

as client and server, but only require one single direction (and 

consequently, one transition). 

Fig. 7 represents the connection of the two conveyors 

illustrated in Fig. 4 with the connection logic based on the 

service infrastructure. In the example, the conveyor A is the 

client and the conveyor B is the server. Both use the transfer 

interface (transfer.wsdl) to express the service in the model. 

The sequence start, started and completed will be 

transformed into a TransferIn(request), TransferIn(response) 

and TransferStatus(“completed”) sequence, to be compliant 

with the WSDL file. 

 

Fig. 7. Online composition of the Conveyors of Fig. 4 using service-
orientation. 
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In the CDS tool, WSDL files can be imported (see the 

lower window of Fig. 8) and their service operations listed. 

Service operations can be applied over a selected transition. If 

the operation is a request/response, then the user has to select 

one of them (request or response) and if it is a client or a 

server operation (i.e. the direction of the message). A request 

must also be defined with the device class reference and 

transition(s) that will receive the response. In case of events, 

the server or client viewpoint is selected, as well as the device 

class reference. The properties are automatically applied to 

the transition (this can be seen in the Property editor, in the 

right side of Fig. 8), and can be edited, including the addition 

of parameters to the message fired by the transition (or to be 

tested by incoming message). 

 

Fig. 8. Upload of the service operation information (TransferIn) from a 
WSDL file to a transition, using the CDS. 

After the modeling phase it is possible to configure and 

upload the achieved composed model to a device embedding 

an orchestration engine, which will interpret and run the Petri 

nets model. This issue will be detailed in the next section. 

IV. CONFIGURATION AND EXPERIMENT 

The industrial equipment used for the experimentation of 

the proposed concepts is a flexible transport system, used in 

the EU FP6 SOCRADES project and illustrated in Fig. 9, 

made of conveyors and lifters, supporting the routing of 

pallets to different workstations. 

 

Fig. 9. Layout of the transport system (C1-C11: conveyor modules, L1/L2: 

lifters, W1/W2: workstations). 

The several modules of the system are connected to 

industrial controllers that “transform” the I/O logic into 

atomic services. These atomic services can then be used by 

the smart embedded devices (i.e. the orchestration engines) to 

run the logic with the Petri net models and thus orchestrate 

the whole system. 

The CDS provides a deployment tool that will generate 

deployment files and upload them into a selected device. The 

deployment files have XML-formated information to 

configure the device and associated resources (e.g 

characterisitics of the provided services, Petri net model for 

the orchestration engine, etc.). Afterwards, the device can 

auto configure itself with the deployed information, i.e. 

generate the necessary service, prepare the Petri net logic, 

discover the required atomic services, etc. 

At the time of the experimentation, there were only three 

available devices embedding Petri net orchestration engines, 

which one able to run one model at a time. Therefore, this 

situation represents a major problem when there are much 

more models to execute (e.g. one for each conveyor 

unit/lifter). However, this situation was the main motivation 

behind this work, involving both offline and online 

composition. The solution was using the offline composition 

to generate only three composed models (one for each 

orcestration device) and let them work together in real-time 

using the online composition. 

 

Fig. 10. Composition approach for the transport system case study. 

Fig. 10 represents the composition applied to the system. 

Individual Petri nets models were developed for each unit 

(C1-C11 and L1-L2). Most of them are simply copy&paste of 

others, only the device information is changed (e.g. C10 and 

C11 have the same logic, use the same service interface, but 

offer different services). Afterwards, the decision was to split 

the system into 3 clusters of units (to be representative of the 

limitation of 3 orchestration devices), resulting in the right 

side, center and left side of the transport system. This division 

was taken into account to make the offline composition, 

ending up in three composed Petri nets models (model left, 

model center and model right of Fig. 10). The last step was to 

configure the devices with the deployment tool, uploading the 

models and the other information to the devices. The system 

is then ready to receive pallets and orchestrate the transport 

system according to the pallet needs (defined in the product 

process plan information). 
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The composition application shows that it is possible to 

design individual models without knowing the availability 

and disposability of the final orchestration devices. The 

experiment shows one possible way to compose the system 

using three devices and a defined distribution, but it could 

also be done with a different number of devices and other 

ways of division.  

Offline composition is used to limit the use of devices, 

network traffic, but introduces more complex models to be 

orchestrated (considering the limitations of embedded 

devices). Online composition is focused more on the 

distributed orchestration and the synchronization thereof. The 

correct division and use of the composition types depends 

always on the available resources, the optimization strategies 

and the layout of the system, but orchestration models can be 

individually developed without knowing this information. 

V. CONCLUSIONS AND FUTURE WORK 

This paper discusses the composition of Petri nets models 

used to represent the process behavior of services in service-

oriented automation systems. The composition of services 

allows creating new and more complex services; each 

individual service behavior being modeled using Petri nets, 

the composed model is by sure more complex. The proposed 

approach for the composition of Petri nets models considers 

two forms, namely the off-line composition and the on-line 

composition. Both compositions can be used depending on 

the design choices and available resources, but in both cases 

they maintain the original behaviour planned for the 

individual equipment. At the end, the whole composition 

represents the specification of the system made of several 

well specified elementar models. The re-use of the models is 

also achievable, where a model of an equipment class can be 

part of several compositions, without defining it from the 

scratch. The composition of Petri nets models in service-

oriented systems was illustrated through an experimental case 

study, namely a flexible transport system made of conveyors 

and lifters. It shows that modeling individual units could be 

done before or in parallel to the specification of the control 

layout. This feature is a crucial issue in modern automation 

systems design. 

Further work is planned to explore more in detail the 

features of composition, including automatic composition 

using semantics and the direct information from anounced 

devices. Improvements have to be done in the CDT tool to 

facilitate the composition process. In terms of analysis of 

Petri nets, a study must be taken on how the properties of 

individual models are reflected in the composition. 
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