
Composition of Petri Nets Models in Service-

oriented Industrial Automation

J. Marco Mendes
1
, Paulo Leitão

2,4
, Francisco Restivo

1,4
, Armando W. Colombo

3

1
University of Porto - Faculty of Engineering, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

2
Polytechnic Institute of Bragança, Quinta S

ta
 Apolónia, Apartado 134, 5301-857 Bragança, Portugal

3
Schneider Electric Automation GmbH, Steinheimer Str. 117, D-63500 Seligenstadt, Germany

4
LIACC – Artificial Intelligence and Computer Science Laboratory, University of Porto, Portugal

E-mails: {marco.mendes,fjr}@fe.up.pt, pleitao@ipb.pt, armando.colombo@de.schneider-electric.com

Abstract – In service-oriented systems, composition of

services is required to build new, distributed and more complex

services, based on the logic behavior of individual ones. This
paper discusses the formal composition of Petri nets models used
for the process description and control in service-oriented

automation systems. The proposed approach considers two
forms for the composition of services, notably the offline
composition, applied during the design phase, and the online

composition, related to the synchronization of Petri nets models
on the fly. An experimental case study is used to illustrate the
proposed composition approach.

I. INTRODUCTION

Service-oriented architecture (SOA) is being seen as a new

playground for experimentation in industrial automation since

its relative success in electronic commerce and business

domains in the beginning of the 21st century. The use of the

SOA paradigm implemented through web services

technologies enables the adoption of an unifying technology

for all levels of the enterprise, from sensors and actuators to

enterprise business processes [1]. This approach was handled

by the EU IST FP6 SOCRADES (Service-Oriented Cross-

layer Infrastructure for Distributed Smart Embedded Devices)

project, which primary objective was to develop a design,

execution and management platform for the next-generation

of industrial automation systems, exploiting the SOA

paradigm both at the device and application levels [2].

A main concern in service-based systems is how the

services “play” together. Since services aren’t isolated entities

exposed by the intervenient software components, it is

necessary to consider some kind of logic that will be

responsible for their interaction patterns. Orchestration is the

most well-known process used to define the invocation order

of services. The achieved sequence can be used to form a

composition, i.e. to create a new service (composite service).

The model-based orchestration engine is able to interpret a

given sequence made of services (an orchestration) and

execute it. The work-plan associated to services can be

defined using different methods [3], namely the Business

Process Execution Language (BPEL) [4], the Petri nets

formalism [5-7] or even the IEC 61131-3 languages [8].

In automation systems, it is not usual to deal in parallel

with the specification of the automation system behavior and

the configuration of the system equipments, which implies

that re-adjustments in one side would require major efforts in

the other one. One example, and also the main problem

targeted in this work, is the development of orchestration

models in Petri nets formalism without knowing the final

control composition in terms of service-enabled and

orchestration-capable devices. The number of embedded

devices and also their distribution over transport and

production equipments would affect the previously designed

models. Moreover, the objective is the reduction of the

configuration and design efforts (in this case Petri nets

models with associated service representations), when the

control layout has changed or is unknown.

This paper discusses the composition of Petri nets models

in service-oriented automation systems, introducing an

approach that comprises two types of composition, notably

the offline composition (the composed model is a result of the

combination of several smaller ones) and the online

composition (where individual models are distributed and

synchronized together via service logic). The proposed

approach is powerful enough to create complex and flexible

services from simpler ones, both at designing and operation

phases. The Continuum Development Tools [9] was used to

design, analyze and compose Petri nets and also to configure

service-enabled orchestration-capable embedded devices.

Experiments were done over an industrial transport system

with modules represented by services accessible via the

network. The offered features of composition, as well as the

characteristics of these Petri net models, demonstrate that the

design of the system’s behavior can be abstracted from the

device distribution where these models should run afterwards.

The remainder of this paper is organized as follows: first,

section 2 overviews the basic concepts of SOA in automation

domain and the use of Petri nets formalism to represent the

services’ process behavior. Section 3 introduces the proposed

approach for the composition of Petri nets models, and

section 4 illustrates the application of the proposed concepts

into an experimental case study. Finally, section 5 rounds up

the paper with conclusions.

II. SOA IN AUTOMATION: A TECHNICAL OVERVIEW

In a SOA architecture, services are the primary organizing

principle [10]. A service is a software module that

encapsulates the business/control logic or resource

978-1-4244-7299-4/10/$26.00 ©2010 IEEE 578

functionality of an unit that responds to specific requests

and/or is a source for events. From the practical standpoint,

web services offer a technology that is rich and flexible

enough to make SOAs a reality [11]. One of the major

protocols used in web services (and also important to this

work) is WSDL (Web Services Description Language) [12],

which is a W3C specification that provides an abstract,

technology neutral language for the definition of published

operations of a service [13]. In a simple manner, services are

a set of operations, which in turn can be one of different

message exchange patterns, for instance request/response or

events. The exchange of information of the operations is via

the network using SOAP (Simple Object Access Protocol)

formatted messages (which is another web service standard).

Web services (and SOA) would be difficult to be

practicable in industrial automation if there were not some

trade-offs considering the domain and available resources.

The Devices Profile for Web Services (DPWS) [14] was

defined considering some specific web service protocols but

also restricting the usage of web services to keep aspects of

the limitations in embedded systems [15].

Aiming to achieve the collaborative global behavior, one or

more services may interact. The composition of two or more

services generates a new, more complex service, providing

both the original individual behavioral logic and a new

collaborative behavior for carrying out a new composite task

[16]. In literature, several works are focused on composition

and orchestration of web services, but they are mainly

directed to e-business/e-commerce (see [17-19]). In

automation and manufacturing, the service composition and

collaboration have been studied with web semantics [20],

service classification [21], service binding [22] and the

collaboration/integration of multi-agent systems [23].

As previously referred, the process behavior of services can

be described using different languages [3], one of them being

the Petri nets formalism. Petri nets are a well-known process

modeling technique with a strong mathematical foundation. A

Petri net is a directed, bipartite graph in which each node is

either a place or a transition. Tokens occupy places

representing resources or states of the system. For a more

elaborate introduction to Petri nets, the reader is referred to

[5-7]. In this work, the orchestration of services is modeled

using Petri nets, with service operations being mapped into

transitions.

Since automation systems are a rich playground for diverse

types of equipments and embedded computational systems,

services and their orchestration has been applied to these

specific systems. Smart embedded devices are the host for the

most of the services exposed in the system and also

responsible for the coordination and control activities (Fig. 1).

These devices have two main interfaces: one to mediate the

shop floor equipment via I/O (e.g. a lifter) and other one to

manage the access to the service bus by exposing and

requesting services. An automation entity is considered the

software representation of the device and can also be hosted

in different computational equipments. The internal

orchestration engine is used to “link” services into higher

ones and is the host for the service-enriched Petri nets model.

Fig. 1. Smart embedded device with orchestration engine.

These entities are configurable software components with the

dynamic deployment feature of the used DPWS (SOA4D at

http://forge.soa4d.org/). This does not only configure the

automation entity and its services but also the orchestration

engine. The setup of the embedded Petri net engine, for

example, is started by receiving the XML representation of a

Petri net included in the uploaded deployment file.

Afterwards, the engine is able to interpret Petri net models

and coordinate the available services on devices. Due to the

service-based communication it is also possible the lateral

collaboration with other entities.

The application of Petri nets can range from typical

systems with defined behavior to more complex ones with

distributed participants. In any case, system engineering and

associated tools are required to facilitate the developer's

intervention. The Continuum Development Tool (CDT) and

the visual editor Continuum Development Studio (CDS) are

being developed with the objective to facilitate the design,

analysis and configuration of distributed service-oriented

automation systems, by using until now, a special kind of

Petri nets associated to service information. Other important

feature of this tool is the capability of validating

methodologies applied to the automation control with an

integrated application (client) and distributed resources

(servers). Petri nets based orchestration engines can be

configured with this tool, which uses DPWS as the

framework for the integration of services. For a more

information, the reader is referred to [9].

III. COMPOSITION OF SERVICE-BASED PETRI NETS

The composition of Petri nets is viewed as additional logic

to synchronize the process of two or more models. As

illustrated in the left side of Fig. 2, three Petri net models are

composed and their intersection is defined as composition

logic. This can be done offline using a composition tool by

generating a new Petri net model that is the composition of

several individual ones and also online, where individual

models are maintained in their distributional units and

synchronized together on the fly via the network. The online

composition can also be designated as virtual composition,

because no new model is generated, but individual models

have to be linked together as they were part of one. The

online composition is done by using service-oriented

architecture as means of information exchange and service

579

representation (i.e. to identify the synchronization points of

the Petri nets model). In both cases, at runtime an

orchestration engine will get the Petri nets model and run it.

Fig. 2. Composition of Petri net models (offline and online) and their

execution in orchestration engines (OE).

The two forms of composition will be explained in the

following sub-sections.

A. Offline Composition: The Petri Net Composer Tool (PNC)

Offline composition comprises the generation of a new

Petri net model based on the connection of two or more

individual ones. If PN1 and PN2 are two Petri nets, PN1∪2 =

PN1 ∪ PN2 represents its composition. This composition

procedure can be applied to two or more Petri nets models.

Fig. 3 represents an example where two Petri nets are

composed via the addition of composition logic.

Fig. 3. Offline composition of Petri nets PN1 and PN2 resulting in PN1∪2.

When the composition is completed, new inter-logic is

generated. The basic idea is to match two transitions from

different models by connecting them via a place (and

corresponding arcs). Additionally, the specification of the

direction should be considered (e.g. the transition t2 from PN1

is the input of the transition t1 from PN2). This approach,

besides to simplify the development of bigger and more

complex models, also facilitates the synchronization of

models viewed as individual entities.

Since composition is not limited to a set of transitions and

thereof, transitions may be grouped into logical connection

groups, the concept of ports was introduced into the Petri net

models. An example is given in Fig. 4 where the conveyor A

is the client and the conveyor B is the server. The transition t1

represents a start order of the conveyor B, the transition t2

represents that it has started and the transition t3 notifies when

it is completed. All these three transitions are part of the same

port (port=in of the conveyor B) and are input or output

transitions in contrast to their counterparts in the other model

of the conveyor A. Additionally, they have a sequence

reference to indicate the order of connection of the transitions

(e.g. the output transition t4 of port=out from the conveyor A

will be connected to the input transition t1 of port=in from the

conveyor B, because they have the same sequence reference,

port_out_seq=port_in_seq=1). In a few words, for two

interconnected ports from different models, input transitions

will be connected to output transitions with the same

sequence reference. This can be seen in the connection table

of Fig. 4, where transitions have two properties, {port,

port_in_seq|port_out_seq}, which indicate, respectively, the

port they belong and also the input/output sequence reference.

Fig. 4. Port-based composition of two Petri net models representing the
behavior of two conveyors.

As seen in Fig. 4, ports are also useful when the models

represent mechatronic devices. For example, a conveyor may

have two ports (one for the input of pallets and another one

for the output of pallets). This situation is also represented in

its control model, in which it contains two ports that are used

to connect to other models from other devices (e.g. adjacent

conveyors). Moreover, to facilitate the composition,

information about the layout and displacement of equipment

can be used for (semi-) automatic composition. For this

purpose, the Petri net model should include a label (in case of

Fig. 4, Conveyor A and Conveyor B) and the layout

information defining which resources/devices may be

connected and through which port.

A XML file was adopted to represent the resource

connections and to improve the automatic offline

composition. The resource connections for the example of

Fig. 4 looks like:

In the example, only one connection is included, but

multiple connections can also be defined. For this purpose,

new <connection/> tags must be defined inside the

<connections> tag. If the conveyor B would be connected

<?xml version="1.0" encoding="UTF-8"?>

 <connections>

 <connection

 resource1="Conveyor A" port1="out"

 resource2="Conveyor B" port2="in"

 />

 </connections>

580

to a conveyor C on the right, then this information is

represented by one additional <connection/> tag.

For the offline composition, a special tool is needed and

therefore was developed in the top of the CDS. The Petri Net

Composer Tool (PNC) allows the user to create simplified

models and then link them together into a global model.

The individual models can be stored into XML-formated

files (Extensible Petri Net File Format, with the extension

*.xpn). In order to be successful, the user must select the

transitions that belong to a connection port and define the two

properties as previously explained (port and

port_in_seq|port_out_seq). After defining the models, a

layout information file has to be created with the resource

connections and saved with the extension “.xrc”.

Once all referred files are available, the user may use the

PNC menu entry to proceed with the composition, by

selecting the resource connections file (*.xrc) and the several

Petri net files (*.xpn) to be composed. The composition is

automatically done by extracting the information from the

*.xrc file, creating a new empty Petri net model, copying all

the sub Petri nets models into the new model, generating the

composition logic and saving the new model representing the

composition. The new *.xpn file can then be opened and

processed as a normal Petri net model.

The example of Fig. 5 shows the result of a composition of

two individual models using the PNC tool. The window on

the right side is the property editor that is used to define the

properties of the transitions.

Fig. 5. Composition of Conveyors A and B using the PNC tool.

One characteristic not explained in this section is the

representation of services, their operations and service calls in

the model. This issue will be introduced in the next

subsection, because the online composition is based on the

online connection of models via service technology. Note that

the services represented in the models are not only used for

the online composition, but also for the access and exposition

of other services in the system (e.g. production services,

automation services and maintenance services).

B. Online Composition: Synchronization of Models

Online composition means that each model runs separately

in its own orchestration engine and they are synchronized via

a connection logic. In this case, the connection logic

represents a service-based communication act, where services

and their operations are described in Petri net models.

Online composition requires that Petri nets have

information on how to invoke and represent services to

synchronize with the other models. This is done by describing

transitions in the Petri net model. A transition willing of

sending a request/response or an event must be enabled, and

the action is done when it fires. In the other hand, a transition

receiving a message from a request, response or event, will

only fire if it is enabled and the message is there. Fig. 6

represents these two types of associations.

Fig. 6. Two types of service message association to transitions: (A)

transition outputs a message, (B) transition waits for a message.

The information to be used by transitions is gathered by an

imported WSDL file that contains the description of the

service. Depending on the operation, transitions can be part of

a client request/response, server request/response, client event

and server event. The first two types require two transitions:

one for initializing the request and one for the response. It is

also possible to test responses by their return parameters,

implying the use of one response transition for each test

(resulting in a conflict in the Petri net model). The difference

of an operation being a server or client is obvious: a server

waits for the request and then gives a response, and a client

makes a request and waits for a response. Events are possible

as client and server, but only require one single direction (and

consequently, one transition).

Fig. 7 represents the connection of the two conveyors

illustrated in Fig. 4 with the connection logic based on the

service infrastructure. In the example, the conveyor A is the

client and the conveyor B is the server. Both use the transfer

interface (transfer.wsdl) to express the service in the model.

The sequence start, started and completed will be

transformed into a TransferIn(request), TransferIn(response)

and TransferStatus(“completed”) sequence, to be compliant

with the WSDL file.

Fig. 7. Online composition of the Conveyors of Fig. 4 using service-
orientation.

581

In the CDS tool, WSDL files can be imported (see the

lower window of Fig. 8) and their service operations listed.

Service operations can be applied over a selected transition. If

the operation is a request/response, then the user has to select

one of them (request or response) and if it is a client or a

server operation (i.e. the direction of the message). A request

must also be defined with the device class reference and

transition(s) that will receive the response. In case of events,

the server or client viewpoint is selected, as well as the device

class reference. The properties are automatically applied to

the transition (this can be seen in the Property editor, in the

right side of Fig. 8), and can be edited, including the addition

of parameters to the message fired by the transition (or to be

tested by incoming message).

Fig. 8. Upload of the service operation information (TransferIn) from a
WSDL file to a transition, using the CDS.

After the modeling phase it is possible to configure and

upload the achieved composed model to a device embedding

an orchestration engine, which will interpret and run the Petri

nets model. This issue will be detailed in the next section.

IV. CONFIGURATION AND EXPERIMENT

The industrial equipment used for the experimentation of

the proposed concepts is a flexible transport system, used in

the EU FP6 SOCRADES project and illustrated in Fig. 9,

made of conveyors and lifters, supporting the routing of

pallets to different workstations.

Fig. 9. Layout of the transport system (C1-C11: conveyor modules, L1/L2:

lifters, W1/W2: workstations).

The several modules of the system are connected to

industrial controllers that “transform” the I/O logic into

atomic services. These atomic services can then be used by

the smart embedded devices (i.e. the orchestration engines) to

run the logic with the Petri net models and thus orchestrate

the whole system.

The CDS provides a deployment tool that will generate

deployment files and upload them into a selected device. The

deployment files have XML-formated information to

configure the device and associated resources (e.g

characterisitics of the provided services, Petri net model for

the orchestration engine, etc.). Afterwards, the device can

auto configure itself with the deployed information, i.e.

generate the necessary service, prepare the Petri net logic,

discover the required atomic services, etc.

At the time of the experimentation, there were only three

available devices embedding Petri net orchestration engines,

which one able to run one model at a time. Therefore, this

situation represents a major problem when there are much

more models to execute (e.g. one for each conveyor

unit/lifter). However, this situation was the main motivation

behind this work, involving both offline and online

composition. The solution was using the offline composition

to generate only three composed models (one for each

orcestration device) and let them work together in real-time

using the online composition.

Fig. 10. Composition approach for the transport system case study.

Fig. 10 represents the composition applied to the system.

Individual Petri nets models were developed for each unit

(C1-C11 and L1-L2). Most of them are simply copy&paste of

others, only the device information is changed (e.g. C10 and

C11 have the same logic, use the same service interface, but

offer different services). Afterwards, the decision was to split

the system into 3 clusters of units (to be representative of the

limitation of 3 orchestration devices), resulting in the right

side, center and left side of the transport system. This division

was taken into account to make the offline composition,

ending up in three composed Petri nets models (model left,

model center and model right of Fig. 10). The last step was to

configure the devices with the deployment tool, uploading the

models and the other information to the devices. The system

is then ready to receive pallets and orchestrate the transport

system according to the pallet needs (defined in the product

process plan information).

582

The composition application shows that it is possible to

design individual models without knowing the availability

and disposability of the final orchestration devices. The

experiment shows one possible way to compose the system

using three devices and a defined distribution, but it could

also be done with a different number of devices and other

ways of division.

Offline composition is used to limit the use of devices,

network traffic, but introduces more complex models to be

orchestrated (considering the limitations of embedded

devices). Online composition is focused more on the

distributed orchestration and the synchronization thereof. The

correct division and use of the composition types depends

always on the available resources, the optimization strategies

and the layout of the system, but orchestration models can be

individually developed without knowing this information.

V. CONCLUSIONS AND FUTURE WORK

This paper discusses the composition of Petri nets models

used to represent the process behavior of services in service-

oriented automation systems. The composition of services

allows creating new and more complex services; each

individual service behavior being modeled using Petri nets,

the composed model is by sure more complex. The proposed

approach for the composition of Petri nets models considers

two forms, namely the off-line composition and the on-line

composition. Both compositions can be used depending on

the design choices and available resources, but in both cases

they maintain the original behaviour planned for the

individual equipment. At the end, the whole composition

represents the specification of the system made of several

well specified elementar models. The re-use of the models is

also achievable, where a model of an equipment class can be

part of several compositions, without defining it from the

scratch. The composition of Petri nets models in service-

oriented systems was illustrated through an experimental case

study, namely a flexible transport system made of conveyors

and lifters. It shows that modeling individual units could be

done before or in parallel to the specification of the control

layout. This feature is a crucial issue in modern automation

systems design.

Further work is planned to explore more in detail the

features of composition, including automatic composition

using semantics and the direct information from anounced

devices. Improvements have to be done in the CDT tool to

facilitate the composition process. In terms of analysis of

Petri nets, a study must be taken on how the properties of

individual models are reflected in the composition.

ACKNOWLEDGMENT

The authors would like to thank the European Commission

and the partners of the EU FP6 project “Service-Oriented

Cross-layer infrastructure for Distributed smart Embedded

devices” (SOCRADES) and the EU FP7 project “Cooperating

Objects Network of Excellence” (CONET) for their support.

REFERENCES

[1] A. Bepperling, J. Mendes, A.W. Colombo, R. Schoop, A. Aspragathos,
"A Framework for Development and Implementation of Web Service-
based Intelligent Autonomous Mechatronics Components", Proc. of the
IEEE Conf. on Industrial Informatics, 2006, pp. 341-347.

[2] A. Cannata, M. Gerosa and M. Taisch, "A Technology Roadmap on
SOA for Smart Embedded Devices: Towards Intelligent Systems in
Manufacturing", Proc. of the IEEE Intern. Conference on Industrial
Engineering and Engineering Management, 2008, pp. 762-767.

[3] N. Milanovic and M. Malek, “Current Solutions for Web Service
Composition”, IEEE Internet Computing, 8 (6), 2004, pp. 51-59.

[4] OASIS, Web Services Business Process Execution Language Version
2.0, OASIS Standard, 2007 (available at http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.pdf).

[5] T. Murata, “Petri nets: Properties, Analysis and Applications”, IEEE,
77, 1989, pp. 541-580.

[6] A. Desrochers and R. Al-Jaar, “Applications of Petri Nets in
Manufacturing Systems: Modeling, Control and Performance
Analysis”, IEEE Press, 1995.

[7] R. Zurawski and M. Zhou, "Petri nets and Industrial Applications: A
Tutorial", IEEE Transactions on Industrial Electronics, 41 (6), 1994, pp.
567-583.

[8] IEC 61131-3, “Programmable Controllers - Part 3: Programming
Languages”, 2003.

[9] J.M. Mendes, A. Bepperling, J. Pinto, P. Leitão, F. Restivo and A.W.
Colombo, “Software Methodologies for the Engineering of Service-
oriented Industrial Automation: The Continuum Project”, Proc. of the
33rd IEEE Conf. on Computer Software and Applications, 2009, pp.
452-459.

[10] I. Melzer, et al., “Service-orientierte Architecturen mit Web Services”,
2. Aufl., Elsevier, Spektrum Akademischer Verlag, 2007.

[11] K. J. Ma, "Web Services: What's Real and What's Not?", IT
Professional, vol. 7, n. 2, 2005, pp. 4-21.

[12] Web Services Description Working Group, Information about WSDL
available at http://www.w3.org/2002/ws/desc/ (21 January 2010).

[13] M. Brenner M. Unmehopa, "Service-oriented Architecture and Web
Services Penetration in Next-generation Networks", Bell Labs
Technical Journal, 12 (2), 2007, pp. 147-159.

[14] The Devices Profile for Web Service Specification, OASIS Web
Services Discovery and Web Services Devices Profile (WS-DD) TC.

[15] S. Pruter, G. Moritz, E. Zeeb, R. Salomon, D. Timmermann, F.
Golatowski, "Applicability of Web Service Technologies to Reach Real
Time Capabilities", Proc. of the 11th IEEE Intern. Symposium on Object
Oriented Real-Time Distributed Computing, 2008, pp. 229-233.

[16] R. Hamadi and B. Benatallah, “A Petri net-based Model for Web
Service Composition”, Proceedings of the 14th Australasian Database
Conference, 2003, pp. 191-200.

[17] M. Nanda, S. Chandra and V. Sarkar, "Decentralizing Execution of
Composite Web Services", Proc. of the 19th ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages and
Applications, 2004, pp. 170-187.

[18] I. Santos, M. Fluegge, N. Tizzo and E. Madeira, "Challenges and
Techniques on the Road to Dynamically Compose Web Services", Proc.
of the 6th Intern. Conf. on Web Engineering, 2006, ACM, pp. 40-47.

[19] E. Karakoc, K. Kardas, P. Senkul, "A Workflow-Based Web Service
Composition System", Proc. of the IEEE/WIC/ACM Intern. Conf. on
Web Intelligence and Intelligent Agent Technology, 2006, pp. 113-116.

[20] I.M. Delamer and J.L. Martinez Lastra, "Ontology Modeling of
Assembly Processes and Systems using Semantic Web Services", Proc.
of the IEEE Conf. on Industrial Informatics, 2006, pp. 611-617.

[21] Y. Zhao, J. Zhang, L. Zhuang and D. Zhang, "Service-oriented
Architecture and Technologies for Automating Integration of
Manufacturing Systems and Services", Proc. of the 10th IEEE Conf. on
Emerging Technologies and Factory Automation, 2005, pp. 350-355.

[22] A. Pohl, H. Krumm, F. Holland, I. Luck and F. Stewing, "Service-
Orientation and Flexible Service Binding in Distributed Automation
and Control Systems", Proc. of the 22nd Intern. Conf. on Advanced
Information Networking and Applications, 2008, pp. 1393-1398.

[23] W. Shen, Y. Li, Q. Hao, S. Wang and H. Ghenniwa, "Implementing
Collaborative Manufacturing with Intelligent Web services", Proc. of
the 5th Conf. on Computer and Information Technology, 2005, pp.
1063-1069.

583

