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Abstract. Many domain-specific languages, that try to bring feasible 
alternatives for existing solutions while simplifying programming work, 
have come up in recent years. Although, these little languages seem to 
be easy to use, there is an open issue whether they bring advantages in 
comparison to the application libraries, which are the most commonly 
used implementation approach. In this work, we present an experiment, 
which was carried out to compare such a domain-specific language with 
a comparable application library. The experiment was conducted with 36 
programmers, who have answered a questionnaire on both 
implementation approaches. The questionnaire is more than 100 pages 
long. For a domain-specific language and the application library, the 
same problem domain has been used – construction of graphical user 
interfaces. In terms of a domain-specific language, XAML has been used 
and C# Forms for the application library. A cognitive dimension 
framework has been used for a comparison between XAML and C# 
Forms. 

Keywords: domain-specific languages; general-purpose languages; 
program comprehension; empirical software engineering. 

1. Introduction 

The primary goal in developing a new programming language is to make 
programming more efficient. The perfect programming language should 
provide the right level of abstraction, meaning that it describes solutions 
naturally and hides unnecessary details. Also, it should be expressive enough 
in the problem domain and should provide guarantees on properties that are 
critical for the problem domain. It should also have precise semantics to 
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enable formal reasoning about a program. With general-purpose languages 
(GPLs), this is difficult to achieve, since GPLs tend to be general, resulting in 
poor support for domain-specific notation. On the other hand, domain-specific 
languages (DSLs) can be designed in many problem domains to exactly have 
properties mentioned above. A DSL is a language that is tailored to a specific 
application domain that offers appropriate notations and abstractions [1]. For 
a domain in question, DSLs are more expressive and are easier to use than 
GPLs, with gains in productivity and maintenance costs [2 - 4]. 

GPLs are perfectly established in the life-cycle of software development. 
Their characteristics are widely spread amongst software engineers. On the 
other hand, the integration of DSLs into the software development life-cycle is 
not so smooth [5]. However, many DSL studies during the last ten years [1, 3, 
6 – 12], reveal the importance of these languages in software engineering. 
The concentration on a definition of notation that would only express concepts 
of a single application domain, brings the possibility to sharpen the edges of a 
language, which makes it more and more efficient in various directions, which 
are briefly elaborated below. One of these directions is the efficiency of being 
read and learned by the domain experts [13]. To use DSLs that allow focusing 
on the problem and not on the solution, can be profitable at earlier stages of 
the software life-cycle as well [14], such as requirements analysis and 
management [15]. Moreover, there is the possibility of integrating domain 
experts in the later stages of the software development life-cycle [2, 16]. 
Since the usage of GPLs requires good programming skills, the domain-
experts, who are not proficient in that area, can do very little on this matter. 
However, with the use of DSLs, they can concentrate on the programming 
tasks and they can even do programming. Another benefit of DSLs is that 
software maintenance is simplified [2], since DSLs provide self-
documentation that avoids the search for documentation resources, which 
may be unavailable in the first place. DSLs are also claimed to be a good 
approach for software reuse [17]. In this context, not only the pieces of 
software are reused, but also the knowledge embodied in the language. 
Another facet of efficiency can be observed in the tools that give support to a 
language. Their processors, for instance, can be improved to offer better 
results, as the domain is restricted and the knowledge is centralized [18, 19]. 
All together, these aspects diminish the costs of engineering and 
reengineering, and increase reliability and maintainability of the software 
constructed with DSLs [20]. 

Although, DSLs have proven their usefulness, GPLs together with 
application libraries (APIs) are still the most commonly used programmer’s 
choice when preparing new solutions for their problems. One of the reasons 
that DSLs are not accepted among the practitioners is the lack of DSLs’ 
promotion. Further, studies that would point out the benefits of DSL over GPL 
solution are rare. In this paper, we will use the cognitive dimension framework 
(CDF) [21, 22, 23] to compare DSL and GPL programs and to expose 
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properties that are enhanced in the context of DSLs. The goal of the project1 
is to measure how easy it is to understand programs written in DSLs 
compared to GPLs. In this manner, the experiment is conducted with the use 
of questionnaires to measure programmers’ understanding of DSL and GPL 
programs on the same problem domain, a construction of graphical user 
interfaces (GUIs). More precisely, with these questionnaires, we attempt to 
confirm that DSL programs are easier to understand than GPL programs. 
This hypothesis is defended with an experiment in a controlled environment, 
using direct observations of the experiment evaluation model involving CDF. 

The organization of this paper is as follows. Related work on the 
preparation of an experiment and CDF is discussed in Section 2. The 
experiment skeleton, the identification of its main goals, and experiment 
details are introduced in Section 3. The experiment results, with the cognitive 
dimension framework, are given in Section 4. Concluding remarks are 
summarized in Section 5. 

2. Related work 

This work can be classified within the category of empirical software 
engineering. Empirical research in software engineering is an important 
discipline that shows practical results on how practitioners (developers, end-
users) come to accept and use technologies, techniques, etc. In order to 
avoid questionable results and to have an option to repeat the research, 
giving the same results, experiments must be prepared with caution. One of 
the most well known frameworks for software experiments is described in 
[24]. This framework concentrates on building the knowledge concerning the 
context of an experiment and is based on organizing sets of related studies 
(family of studies). Such studies contribute to common hypotheses, which do 
not vary for individual experiments. In order to prepare this experiment we 
have followed guidelines from a framework [24]. We have also defined: 
context of the study, experiment hypothesis, comparison validity, and 
measurement framework. 

Teaching environments give us an opportunity to conduct experiments in 
computer science programs as well. However, a lot of concerns are 
connected with the accuracy of results in such environments and several 
threats to the validity of experiments have to be identified as well as to 
interpret the results correctly. For those who are interested to read more 
about this topic, a checklist for integrating empirical studies in teaching 
activities can be found in the work [25]. 

As stated above, an important step in the experiment preparation is to set 
down the measurement framework – how the results of an experiment are 
evaluated and interpreted. In cognitive theory, guidelines on how to measure 

                                                      
1This work is sponsored by bilateral project “Program Comprehension for Domain-

Specific Languages” (code BI-PT/08-09-008) between Slovenia and Portugal. 
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a human’s ability to program are defined. CDF [21] provides cognitively-
relevant aspects which can be used to determine how easy it is to understand 
a program. In our study, CDF is used to compare user understanding of DSL 
and GPL programs. In the past the CDF has been used to assess the 
usability of visual programming languages [26, 27] and spreadsheets [28].  

Recently, another application for cognitive dimensions can be found in [29], 
where a method for designing Framework-Specific Modeling Languages 
(FSMLs) is presented. From FSML specifications, a user can build 
applications based on object-oriented frameworks. In FSML software, artifacts 
(models, languages, etc.) are evaluated according to their goals with different 
quality methods. Particularly, the quality of notation is measured with 
cognitive dimensions – a heuristic measure that evaluates the notation and its 
environment.  

Before this experiment, the authors of the paper were involved in another 
similar experiment [30]. That work is important for an interested reader, since 
the information on experiment skeletons is described in great detail. 
Difference between both experiments is in the hypothesis and 
exclusion/inclusion of CDF. Also, the problem domain in experiment [30] is 
different (graph description with DOT language [31]) than in this paper 
(construction of GUI with XAML). 

This paper is also closely related to the field of Program Comprehension, 
which is a hard cognitive task, done by a software analyst. In the process of 
program comprehension, the use of tools to interconnect different views 
(operational, behavioral, etc.) to understand the results of applications, are 
indispensable. Traditional techniques on program comprehension from GPLs 
(visualizers, animators, etc.) have been studied and applied to DSLs in our 
previous work [32], where CDF was also briefly described and applied to 
DSLs. 

3. Presentation of experiment 

In this section the preparation, execution, and experiment evaluation model is 
given. 

3.1. Objective of the experiment 

In [3] the empirical results that compare ten diverse implementation 
approaches for DSLs, conducted on the same representative language, are 
provided. Among the implementation approaches, the comparison also 
included the XML-based approach. From this study, it can be concluded that 
XML-based approach has some disadvantages [3]. Although, XML usage and 
its tool support are spreading, this is one of the reasons that XAML [33], as a 
representative DSL, has been chosen for this study. XAML, the Extensible 
Application Markup Language, is a language for construction of graphical 
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user interfaces in Windows Presentation Foundation and Silverlight 
applications of .NET Framework 3.5. C# Forms [34] has been used for the 
comparison since it covers the same domain of graphical user interfaces. 

3.2. Hypothesis of the experiment 

In order to perform the comparison on XAML and C# Forms, two separate 
questionnaires have been prepared. The study that was carried out had a 
task to observe programmers’ efficiency on understanding programs with both 
approaches, compare the results obtained through questionnaires and use 
them to investigate the following hypothesis: 

H1null 
There is no significant difference in program understanding between 

domain-specific or general-purpose languages, when using XAML or C# 
Forms for comparison. 

H1alt 
There is a significant difference in program understanding between 

domain-specific or general-purpose languages when using XAML instead of 
C# Forms. 

This hypothesis is the object of investigation in the conducted experiment 
and is further examined in the Section 4, where the questionnaires results are 
presented. 

3.3. Preparation of experiment  

The results from an experiment are reliable if the repetition of the experiment 
can be proven [35]. Repetition is strongly connected to agreements set down 
before the start of the experiment [24]. Therefore, some rules and constraints 
were defined for the questionnaire implementers:   

– the same group of questions for both experiments on a GPL and a DSL 
must be used, 

– the questions for two applications on the same question were prepared 
(easier and harder application domain), 

– the equal questions in DSL and GPL questionnaires must be defined by 
the same number of components in order to obtain the same level of question 
complexity, and  

– the questions and the given choices (programs) must be reviewed by 
other domain experts, to obtain a code as optimal as possible. 

As stated above, two questionnaires have been prepared for program 
understanding of DSL and GPL programs. Then, the structure of 
questionnaires has been defined to cover the following three topics of 
program understanding: learn, perceive, and evolve. In the first group, 
questions on learning notation and meaning of programs have been given to 
the programmers. In the second group, questions on program perceiving 
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have been defined, such as identification of correct meaning from a given 
program, language constructs, new construct meaning, and meaning of a 
program with given comments. In the third group, programmers had been 
challenged to expand/remove/replace program functionality. 

For these three groups, 11 questions have been defined: 
– Learn 
• Q1 Select syntactically correct statements. 
• Q2 Select program statements with no sense (unreasonable). 
• Q3 Select a valid program with the given result. 
– Perceive 
• Q4 Select a correct result for the given program. 
• Q5 Identify language constructs. 
• Q6 Select a program with the same result. 
• Q7 Select a correct meaning for the new language construct. 
• Q8 Identify language constructs in the program with comments. 
– Evolve 
• Q9 Expand the program with new functionality. 
• Q10 Remove functionality from the program. 
• Q11 Change functionality in the program. 
Learning and perceiving questions have been defined as a multiple-choice 

question, and questions under evolve have been defined as an essay 
question (programmers are challenged to modify existing code). Both, XAML 
and C# Forms questionnaires have been constructed with the use of the 
above questions.  

To illustrate the style of the questions, used in the questionnaires, an 
example is presented in Figure 1. Because of the question size only the 
correct choice is given. Complete questionnaires can be found on a project 
group webpage2. The above questions (Q1-Q11) have been used as 
templates to define DSL and GPL questionnaires. The first version of DSL 
and GPL questionnaires has been given to a small group as a training set, in 
order to receive feedback. Further, results from a training set have been 
studied and used to refine the questions before applying them to the target 
groups of students. Most correctness issues were related to the program 
failures, question understandability and question complexity comparability 
between DSL and GPL questions.   

3.4. Execution of the experiment 

Besides well-structured questionnaires, other factors have also been 
controlled in the experiment. The list of experiment execution actions in the 
classroom (just before starting, as soon as it begins, and during the 
experiment) are provided below:  

– a short tutorial, for end-users, has been given on the problem domain 
(graphical user interfaces), 

                                                      
2 http://epl.di.uminho.pt/~ gepl/DSL/ 
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– a tutorial on domain specific notation (XAML), together with an example 
of a program, has been given to end-users, 

– a tutorial on application library (C# Forms) together with an example of 
the program has been given to end-users, 

– a tutorial has been given to end-users in their native language, however 
the slides, programs and experiment questionnaires were in English, and 

– the slides and the examples have been given to end-users and could be 
used during the experiment. 

If necessary, individual help to better understand the questions was 
provided to the programmers. 

3.5. Processing the results 

There were also issues that needed to be controlled, after the programmers 
completed the questionnaire. One of those is submission completeness. 
When students submitted their questionnaires, it was checked if the 
questionnaire contained answers to all questions. Most of the programmers 
answered the questions, however if some answers were missing, the 
programmers were advised to complete the questionnaire. Still, if some 
answers were found missing during the processing of the results, the 
complete programmer questionnaire was eliminated from the further 
experiment analysis. For previously mentioned reasons, one submission has 
been eliminated from the results. 

3.6. Threats to validity 

In each experiment, there are several threats to the validity of results. Those 
threats need to be identified and handled before the start of the experiment. 
To restrict the impact of the experiment environment on the results, the 
following issues have been identified for our study. 

 
Chosen domain Results of the experiment are strongly connected to 

programmers’ experiences and knowledge of the chosen problem domain. In 
Table 1, programmers’ familiarity with the construction of the GUI is 
presented, together with the experience on XAML and C# Forms library 
application. From Table 1, we can conclude that programmers are 
experienced in the construction GUIs domain. However, their experience in 
implementation technique differs – programmers were unfamiliar with XAML 
on one hand (median value 1), and had good knowledge in constructing GUIs 
with C# Forms (median value 4) on the other. Uneven knowledge on both 
notations could have made an influence on comparison results. 

 
Programmers’ experience In Table 2, results from the self evaluation test 

are presented, where students (second year of undergraduate computer 
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science) grade their general knowledge on programming, programming in C# 
language and prior experience with DSLs. Comparing knowledge on C# 
(median value 4) and prior experience with DSLs (median value 2) could have 
also made an influence on experiment results. 

 

Table 1. Programmers’ knowledge in construction of graphical user interfaces  
(N = 36) 

 Average3 Median St. dev. 
Familiarity GUI domain 3.39 4 1.18 
Knowledge of XAML 1.36 1 0.68 
Knowledge of C# Forms application library 3.5 4 1.11 

Table 2. Programmers experiences in programming (N = 36) 

 Average Median St. dev. 
Skills in programming 3.41 3.5 0.65 
Skills of programming in 
C# 

3.53 4 0.74 

Prior experience with DSLs 2.28 2 0.70 
 
Comparability of questionnaires The same type of questions in DSL and 

GPL questionnaires contain a similar number of graphical components 
(labels, text fields, buttons, etc), to obtain the same level of complexity. 

Order of questionnaires An experiment on program understanding was 
carried out twice, at different times and on different students. The first group 
started the experiment with the questionnaire on DSL and proceeded with a 
GPL questionnaire. The second group started the questionnaire on GPL and 
finished with the DSL questionnaire. In such a way, the influence of starting 
the experiment on the same questionnaire with all subjects was avoided and 
with such, the order of questionnaires is not relevant for the outcome of the 
study. 

4. Results 

All together, programmers answered 22 questions on both questionnaires. 
Success rate for questions varied from 27.14% for Q6 to 79.73% for Q9 
(Table 3). Differences in success rate in the same language (DSL/GPL) can 
be explained with different difficulty level (some questions were harder than  

                                                      
3 A five-grade scale, starting from very bad (1) to very good (5) was used for self-

evaluation questionnaires (in Tables 1 and 2). Note, that column “Average” shows 
the average value given by 36 programmers, “Median” stands for middle value in set 
of programmers grades and “St. dev.” represents standard deviation on given 
grades. 
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Fig. 1. Question 5 in DSL and GPL questionnaires with the correct choice 
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others). On the other hand the biggest difference between GPL and DSL is 51.16% in 
the case of Q9. The smallest difference is found in Q2, where the difference is just 
3.44%. In this case, the success rate was even slightly better for GPL than DSL. In our 
opinion, this is due to the difficultness of Q2 (success rate was less than 39%), where 
syntactically correct programs with no sense have to be identified. Since programmers 
have more experience in C# Forms than XAML (Table 1), they were more successful 
with GPL than DSL, in finding programs with no sense. 

Table 3. Average programmer success rate (N = 35) 

Question DSL GPL Difference 
 XAML C# Forms  
Q1 72.97% 48.57% 24.4% 
Q2 35.14% 38.57% -3.44% 
Q3 64.86% 35.71% 29.15% 
Q4 77.03% 70.00% 7.03% 
Q5 64.86% 48.57% 16.29% 
Q6 39.19% 27.14% 12.05% 
Q7 75.68% 62.86% 12.82% 
Q8 62.16% 45.71% 16.45% 
Q9 79.73% 28.57% 51.16% 
Q10 68.92% 41.43% 27.49% 
Q11 66.22% 30.00% 36.22% 

Table 4. Average programmer success rate on learn, perceive and evolve (N=35) 

 DSL GPL 
 XAML C# Forms 

 
Question 

Mean Std. 
dev. 

Std. err. 
mean Mean Std. 

dev. 
Std. err. 
mean 

Learn Q1, Q2, and  
Q3 

57.62
% 21.90% 3.70% 40.95% 22.99% 3.89% 

Perceive Q4, Q5, Q6,  
Q7, and Q8 

64.57
% 19.45% 3.29% 50.86% 18.69% 3.16% 

Evolve Q9, Q10,  
and Q11 

70.95
% 20.35% 3.44% 33.33% 26.20% 4.43% 

Total All 
questions 

64.34
% 14.81% 2.50% 43.37% 15.99% 2.70% 

 
However, drawing conclusions based on an average value of a single 

question can be extremely risky. Therefore, by grouping questions into learn, 
perceive and evolve categories, we can obtain more reliable results. In Table 
4, the success rate on questions by the individual group is presented with a 
mean value, standard deviation, and standard error mean. Table 4 confirms 
our presumption that program understanding, in terms of learn, perceive and 
evolve, is much better for DSL programs than for GPL programs. Later 
observation is especially obvious from the results on evolve questions – the 
mean value of the success rate was 37.62% better for DSL than on GPL 
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questions (see mean values in Table 4). Similar results were also obtained on 
the other problem domain described in [30]. To support the results in Table 3 
and Table 4, statistical tests have been performed to evaluate whether the 
comparison shows the statistical significant difference. Efficiency on both 
questionnaires (see last row from Table 4) has been compared for all 
programmers. The results from questionnaires were statistically tested with t-
test, since the means of two independent groups were compared. The 
threshold for the independent t-test was set to α = 0.05 and the test results 
are shown in Table 5. The most important column in the table is the 
significance  

Table 5. Independent t-test for program understanding (N = 35) 

 
95% Confidence  
Interval of  
the Difference 

 

t Sig. 
(two-tailed) Mean Std.  

dev. 
Std. err. 
mean 

Lower Upper 
XAML  
vs.  
C# Forms 

5.474 0.000 20.971 22.664 3.831 13.186 28.757 

 
column. Observing this data confirms that the difference in mean value 
between XAML and C# Forms program understanding was significant, since 
a significant level was not reached. With observations from Table 5, we could 
reject null hypothesis H1null since subjects did better on XAML program 
understanding and accept the alternative hypothesis: (H1alt): there is a 
significant difference in program understanding between domain-specific or 
general-purpose languages when using XAML instead of C# Forms. 

While this experiment indeed shows superiority of DSLs on an end-user 
ability to learn, perceive and evolve programs in this particular domain, it does 
not provide possible explanations why DSLs programs are easier to 
understand. The “psychology of programming” [36, 37] is a research field 
which tries to identify, understand and explain those cognitive processes 
which take place during reasoning (e.g., programming, program 
understanding). In this context, CDF [21] provides useful dimensions, which 
help us to better explain why DSL programs are easier to understand than 
GPL programs. The CDF has been used before to assess the usability of 
visual programming languages [26], while no such study exists for DSLs. 
These cognitive dimensions are: 

– Closeness of mapping – languages should be task-specific; 
– Viscosity – revisions should be painless; 
– Hidden dependencies – the consequences of changes should be clear; 
– Hard mental operations – no enigmatic is allowed; 
– Imposed guess-ahead – no premature commitment; 
– Secondary notation – allow to encompass additional information; 
– Visibility – search trails should be short; 
– Consistency – user expectations should not be broken; 
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– Diffuseness – language should not be too verbose; 
– Error-proneness – notation should catch mistakes avoiding errors; 
– Progressive evaluation – get immediate feedback; 
– Role expressiveness – see the relations among components clearly; 
– Abstraction gradient – languages should allow different abstraction 

levels. 
The next step was to connect cognitive dimensions with our questions. We 

identified which dimensions are relevant for a particular question (Table 6). As 
it can be seen Di (dimension i of CDF) can be related to several questions 
used in our questionnaires. 

Table 6. Questions connection to cognitive dimensions 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 
Closeness of mapping 1 1 1 1 1 1 1 1 1 1 1 
Viscosity 0 0 0 0 0 0 0 0 1 1 1 
Hidden dependencies 0 0 1 1 1 1 0 1 0 1 0 
Hard mental operations 0 1 1 1 1 1 1 1 0 0 0 
Imposed guess-ahead 0 0 0 0 0 0 0 0 1 0 1 
Secondary notation 0 0 0 0 0 0 0 1 0 0 0 
Visibility 0 0 1 1 1 1 1 1 0 0 0 
Consistency 0 0 0 0 0 1 1 0 0 0 0 
Diffuseness 1 1 1 1 1 1 1 1 1 1 1 
Error-proneness 1 1 1 1 1 1 1 1 1 1 1 
Progressive evaluation 0 0 0 0 0 0 0 0 0 0 0 
Role expressiveness 0 1 1 1 1 1 1 1 1 1 1 
Abstraction gradient 0 0 1 1 1 1 1 1 0 0 0 

 
Questions have been designed in such a way that they directly reflect 

cognitive dimensions as much as possible. However, not all cognitive 
dimensions play an important role in all questions. Hence, to evaluate a single 
cognitive dimension (Di) we proposed the following formula: 

j

j

j
iji C
S

QD *
11

1
∑
=

=  

where Qij stands for the value from Table 6, which means whether dimension 
Di is connected to the question Qj. Variable Sj represents an average 
programmer’s success rate on question Qj (Table 3). For example, if 4 
programmers out of 5 answered question Q1 correctly, the value of S1 would 
be 0.8. Finally, Cj represents the number of cognitive dimensions relevant for 
Qj (for example, C1 = 3). This formula is used for XAML as well as for C# 
Forms. Intuitively, it means that cognitive dimensions contribute to the 
success of a particular question. Here, we assume that contribution of 
involved cognitive dimensions was equally distributed (one cognitive 
dimension is not more important than the other, if it is involved). Moreover, we 
assume that the higher values always mean a positive influence of particular 
cognitive dimension. For example, higher values for ’closeness of mapping’ 
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mean that the semantic gap between the problem and the solution space is 
small, or higher values for ’hidden dependencies’ mean that short and long-
range interactions among program components are immediately visible.  

Table 7 roughly shows how a particular cognitive dimension contributes to 
the questionnaires’ success for XAML, as well as for C# Forms. From Table 7 
it can be seen that in our experiment, the most influential for DSL/GPL 
program understanding were: closeness of mappings, diffuseness, error-
proneness, role expressiveness, and hard mental operations. More than 
particular values, the difference among cognitive dimensions for XAML and 
C# Forms is far more important. The biggest difference among cognitive 
dimensions was in closeness of mappings, diffuseness, error-proneness, role 
expressiveness, and viscosity. 

Table 7. Influence of cognitive dimension to XAML and C# Forms 

 DSL GPL Difference 
 XAML C# Forms  
Closeness of mapping 1.127 0.749 0.377 
Viscosity 0.442 0.237 0.206 
Hidden dependencies 0.486 0.343 0.143 
Hard mental operations 0.525 0.421 0.105 
Imposed guess-ahead 0.243 0.098 0.146 
Secondary notation 0.069 0.051 0.018 
Visibility 0.455 0.344 0.111 
Consistency 0.128 0.100 0.028 
Diffuseness 1.127 0.749 0.377 
Error-proneness 1.127 0.749 0.377 
Progressive evaluation N/A N/A N/A 
Role expressiveness 0.884 0.587 0.296 
Abstraction gradient 0.455 0.344 0.111 

 
Closeness of mapping refers to the width of the semantic gap between the 

problem and the solution spaces. Diffuseness refers to the number of 
symbols needed to express the meaning. By definition, DSLs use existing 
domain notation, which should be at an appropriate level of verbosity, so it is 
expected that they exhibit low diffuseness. On the other hand, it was shown in 
[38] that plenty of low-level primitives, which are often purely syntactical, are 
one of the biggest cognitive barriers for end-user programmers. Error 
proneness refers to the capability of a language to induce careless mistakes. 
GPLs, due to their extension and intrinsic complexity, are usually error-prone, 
while DSLs, due to the narrow domain they are designed for, are usually less 
error prone. Role expressiveness refers to the ability to see how each 
component of a program relates to the whole. The high role expressiveness 
can be more easily achieved in DSLs due to domain specifics and shorter 
programs. It is shown in our experiment that differences in closeness of 
mapping, diffuseness, error proneness, and role expressiveness among 
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XAML and C# Forms are the biggest and the source of main contribution for 
easier understanding of XAML programs than programs written in C# Forms.  

Viscosity refers to the amount of effort that is needed to perform small 
changes. Since DSLs are usually at a high abstraction level and have natural 
notation, small changes should be easier to perform. It is shown in our 
experiment that the difference in viscosity between XAML and C# Forms was 
among the largest. Viscosity was involved only in questions Q9-Q11, which 
were much better solved with the use of XAML than using C# Forms. We can 
conclude that viscosity had an important influence on this success. 

5. Conclusion and future work 

The purpose of this paper is to promote formal studies on the advantages of 
DSLs over GPLs. In this paper we have tried to explain the difference 
between DSL/GPL program understanding, using the cognitive dimension 
framework. Questionnaires on understanding programs have been prepared 
and given to the programmers. Each programmer answered a 100 page long 
questionnaires and on an average spent more than 3 hours solving 44 
questions. 

Results show that programmers’ success rate was around 15% better for 
DSL in all three groups of questions: learn, perceive and evolve, despite the 
fact that programmers were significantly less experienced in XAML than C# 
Forms. Further, the experiment measurement framework included cognitive 
dimensions to identify the aspects among these dimensions that are 
enhanced in the context of DSL. It can be learned from the study that DSLs 
are superior to GPLs in all cognitive dimensions. The cognitive dimensions, 
with the biggest influence in the experiment, are closeness of mappings, 
diffuseness, error-proneness, role expressiveness, and viscosity. 

We consider that the results of this experiment are reliable despite the fact 
that the experiment has been done only on a single domain. One of the future 
tasks of this project is to conduct similar experiments in different domains. 
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