
UDC 004.438, DOI: 10.2298/CSIS1002247K

Comparing General-Purpose and Domain-Specific
Languages: An Empirical Study

Tomaž Kosar1, Nuno Oliveira2, Marjan Mernik1, Maria João Varanda
Pereira3, Matej Črepinšek1, Daniela da Cruz2, and Pedro Rangel Henriques2

1 University of Maribor, Faculty of Electrical Engineering and Computer Science,
Smetanova 17, 2000 Maribor, Slovenia

{tomaz.kosar, marjan.mernik, matej.crepinsek}@uni-mb.si
2 University of Minho - Department of Computer Science,

Campus de Gualtar, 4715-057, Braga, Portugal
{nunooliveira, danieladacruz, prh}@di.uminho.pt

3 Polytechnic Institute of Bragança
Campus de Sta. Apolónia, Apartado 134 - 5301-857, Bragança, Portugal

mjoao@ipb.pt

Abstract. Many domain-specific languages, that try to bring feasible
alternatives for existing solutions while simplifying programming work,
have come up in recent years. Although, these little languages seem to
be easy to use, there is an open issue whether they bring advantages in
comparison to the application libraries, which are the most commonly
used implementation approach. In this work, we present an experiment,
which was carried out to compare such a domain-specific language with
a comparable application library. The experiment was conducted with 36
programmers, who have answered a questionnaire on both
implementation approaches. The questionnaire is more than 100 pages
long. For a domain-specific language and the application library, the
same problem domain has been used – construction of graphical user
interfaces. In terms of a domain-specific language, XAML has been used
and C# Forms for the application library. A cognitive dimension
framework has been used for a comparison between XAML and C#
Forms.

Keywords: domain-specific languages; general-purpose languages;
program comprehension; empirical software engineering.

1. Introduction

The primary goal in developing a new programming language is to make
programming more efficient. The perfect programming language should
provide the right level of abstraction, meaning that it describes solutions
naturally and hides unnecessary details. Also, it should be expressive enough
in the problem domain and should provide guarantees on properties that are
critical for the problem domain. It should also have precise semantics to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153404412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Tomaž Kosar, Nuno Oliveira, Marjan Mernik, Maria João Varanda Pereira, Matej
Črepinšek, Daniela da Cruz, and Pedro Rangel Henriques

ComSIS Vol. 7, No. 2, Special Issue, April 2010 248

enable formal reasoning about a program. With general-purpose languages
(GPLs), this is difficult to achieve, since GPLs tend to be general, resulting in
poor support for domain-specific notation. On the other hand, domain-specific
languages (DSLs) can be designed in many problem domains to exactly have
properties mentioned above. A DSL is a language that is tailored to a specific
application domain that offers appropriate notations and abstractions [1]. For
a domain in question, DSLs are more expressive and are easier to use than
GPLs, with gains in productivity and maintenance costs [2 - 4].

GPLs are perfectly established in the life-cycle of software development.
Their characteristics are widely spread amongst software engineers. On the
other hand, the integration of DSLs into the software development life-cycle is
not so smooth [5]. However, many DSL studies during the last ten years [1, 3,
6 – 12], reveal the importance of these languages in software engineering.
The concentration on a definition of notation that would only express concepts
of a single application domain, brings the possibility to sharpen the edges of a
language, which makes it more and more efficient in various directions, which
are briefly elaborated below. One of these directions is the efficiency of being
read and learned by the domain experts [13]. To use DSLs that allow focusing
on the problem and not on the solution, can be profitable at earlier stages of
the software life-cycle as well [14], such as requirements analysis and
management [15]. Moreover, there is the possibility of integrating domain
experts in the later stages of the software development life-cycle [2, 16].
Since the usage of GPLs requires good programming skills, the domain-
experts, who are not proficient in that area, can do very little on this matter.
However, with the use of DSLs, they can concentrate on the programming
tasks and they can even do programming. Another benefit of DSLs is that
software maintenance is simplified [2], since DSLs provide self-
documentation that avoids the search for documentation resources, which
may be unavailable in the first place. DSLs are also claimed to be a good
approach for software reuse [17]. In this context, not only the pieces of
software are reused, but also the knowledge embodied in the language.
Another facet of efficiency can be observed in the tools that give support to a
language. Their processors, for instance, can be improved to offer better
results, as the domain is restricted and the knowledge is centralized [18, 19].
All together, these aspects diminish the costs of engineering and
reengineering, and increase reliability and maintainability of the software
constructed with DSLs [20].

Although, DSLs have proven their usefulness, GPLs together with
application libraries (APIs) are still the most commonly used programmer’s
choice when preparing new solutions for their problems. One of the reasons
that DSLs are not accepted among the practitioners is the lack of DSLs’
promotion. Further, studies that would point out the benefits of DSL over GPL
solution are rare. In this paper, we will use the cognitive dimension framework
(CDF) [21, 22, 23] to compare DSL and GPL programs and to expose

Comparing General-Purpose and Domain-Specific Languages: An Empirical Study

ComSIS Vol. 7, No. 2, Special Issue, April 2010 249

properties that are enhanced in the context of DSLs. The goal of the project1
is to measure how easy it is to understand programs written in DSLs
compared to GPLs. In this manner, the experiment is conducted with the use
of questionnaires to measure programmers’ understanding of DSL and GPL
programs on the same problem domain, a construction of graphical user
interfaces (GUIs). More precisely, with these questionnaires, we attempt to
confirm that DSL programs are easier to understand than GPL programs.
This hypothesis is defended with an experiment in a controlled environment,
using direct observations of the experiment evaluation model involving CDF.

The organization of this paper is as follows. Related work on the
preparation of an experiment and CDF is discussed in Section 2. The
experiment skeleton, the identification of its main goals, and experiment
details are introduced in Section 3. The experiment results, with the cognitive
dimension framework, are given in Section 4. Concluding remarks are
summarized in Section 5.

2. Related work

This work can be classified within the category of empirical software
engineering. Empirical research in software engineering is an important
discipline that shows practical results on how practitioners (developers, end-
users) come to accept and use technologies, techniques, etc. In order to
avoid questionable results and to have an option to repeat the research,
giving the same results, experiments must be prepared with caution. One of
the most well known frameworks for software experiments is described in
[24]. This framework concentrates on building the knowledge concerning the
context of an experiment and is based on organizing sets of related studies
(family of studies). Such studies contribute to common hypotheses, which do
not vary for individual experiments. In order to prepare this experiment we
have followed guidelines from a framework [24]. We have also defined:
context of the study, experiment hypothesis, comparison validity, and
measurement framework.

Teaching environments give us an opportunity to conduct experiments in
computer science programs as well. However, a lot of concerns are
connected with the accuracy of results in such environments and several
threats to the validity of experiments have to be identified as well as to
interpret the results correctly. For those who are interested to read more
about this topic, a checklist for integrating empirical studies in teaching
activities can be found in the work [25].

As stated above, an important step in the experiment preparation is to set
down the measurement framework – how the results of an experiment are
evaluated and interpreted. In cognitive theory, guidelines on how to measure

1This work is sponsored by bilateral project “Program Comprehension for Domain-

Specific Languages” (code BI-PT/08-09-008) between Slovenia and Portugal.

Tomaž Kosar, Nuno Oliveira, Marjan Mernik, Maria João Varanda Pereira, Matej
Črepinšek, Daniela da Cruz, and Pedro Rangel Henriques

ComSIS Vol. 7, No. 2, Special Issue, April 2010 250

a human’s ability to program are defined. CDF [21] provides cognitively-
relevant aspects which can be used to determine how easy it is to understand
a program. In our study, CDF is used to compare user understanding of DSL
and GPL programs. In the past the CDF has been used to assess the
usability of visual programming languages [26, 27] and spreadsheets [28].

Recently, another application for cognitive dimensions can be found in [29],
where a method for designing Framework-Specific Modeling Languages
(FSMLs) is presented. From FSML specifications, a user can build
applications based on object-oriented frameworks. In FSML software, artifacts
(models, languages, etc.) are evaluated according to their goals with different
quality methods. Particularly, the quality of notation is measured with
cognitive dimensions – a heuristic measure that evaluates the notation and its
environment.

Before this experiment, the authors of the paper were involved in another
similar experiment [30]. That work is important for an interested reader, since
the information on experiment skeletons is described in great detail.
Difference between both experiments is in the hypothesis and
exclusion/inclusion of CDF. Also, the problem domain in experiment [30] is
different (graph description with DOT language [31]) than in this paper
(construction of GUI with XAML).

This paper is also closely related to the field of Program Comprehension,
which is a hard cognitive task, done by a software analyst. In the process of
program comprehension, the use of tools to interconnect different views
(operational, behavioral, etc.) to understand the results of applications, are
indispensable. Traditional techniques on program comprehension from GPLs
(visualizers, animators, etc.) have been studied and applied to DSLs in our
previous work [32], where CDF was also briefly described and applied to
DSLs.

3. Presentation of experiment

In this section the preparation, execution, and experiment evaluation model is
given.

3.1. Objective of the experiment

In [3] the empirical results that compare ten diverse implementation
approaches for DSLs, conducted on the same representative language, are
provided. Among the implementation approaches, the comparison also
included the XML-based approach. From this study, it can be concluded that
XML-based approach has some disadvantages [3]. Although, XML usage and
its tool support are spreading, this is one of the reasons that XAML [33], as a
representative DSL, has been chosen for this study. XAML, the Extensible
Application Markup Language, is a language for construction of graphical

Comparing General-Purpose and Domain-Specific Languages: An Empirical Study

ComSIS Vol. 7, No. 2, Special Issue, April 2010 251

user interfaces in Windows Presentation Foundation and Silverlight
applications of .NET Framework 3.5. C# Forms [34] has been used for the
comparison since it covers the same domain of graphical user interfaces.

3.2. Hypothesis of the experiment

In order to perform the comparison on XAML and C# Forms, two separate
questionnaires have been prepared. The study that was carried out had a
task to observe programmers’ efficiency on understanding programs with both
approaches, compare the results obtained through questionnaires and use
them to investigate the following hypothesis:

H1null
There is no significant difference in program understanding between

domain-specific or general-purpose languages, when using XAML or C#
Forms for comparison.

H1alt
There is a significant difference in program understanding between

domain-specific or general-purpose languages when using XAML instead of
C# Forms.

This hypothesis is the object of investigation in the conducted experiment
and is further examined in the Section 4, where the questionnaires results are
presented.

3.3. Preparation of experiment

The results from an experiment are reliable if the repetition of the experiment
can be proven [35]. Repetition is strongly connected to agreements set down
before the start of the experiment [24]. Therefore, some rules and constraints
were defined for the questionnaire implementers:

– the same group of questions for both experiments on a GPL and a DSL
must be used,

– the questions for two applications on the same question were prepared
(easier and harder application domain),

– the equal questions in DSL and GPL questionnaires must be defined by
the same number of components in order to obtain the same level of question
complexity, and

– the questions and the given choices (programs) must be reviewed by
other domain experts, to obtain a code as optimal as possible.

As stated above, two questionnaires have been prepared for program
understanding of DSL and GPL programs. Then, the structure of
questionnaires has been defined to cover the following three topics of
program understanding: learn, perceive, and evolve. In the first group,
questions on learning notation and meaning of programs have been given to
the programmers. In the second group, questions on program perceiving

Tomaž Kosar, Nuno Oliveira, Marjan Mernik, Maria João Varanda Pereira, Matej
Črepinšek, Daniela da Cruz, and Pedro Rangel Henriques

ComSIS Vol. 7, No. 2, Special Issue, April 2010 252

have been defined, such as identification of correct meaning from a given
program, language constructs, new construct meaning, and meaning of a
program with given comments. In the third group, programmers had been
challenged to expand/remove/replace program functionality.

For these three groups, 11 questions have been defined:
– Learn
• Q1 Select syntactically correct statements.
• Q2 Select program statements with no sense (unreasonable).
• Q3 Select a valid program with the given result.
– Perceive
• Q4 Select a correct result for the given program.
• Q5 Identify language constructs.
• Q6 Select a program with the same result.
• Q7 Select a correct meaning for the new language construct.
• Q8 Identify language constructs in the program with comments.
– Evolve
• Q9 Expand the program with new functionality.
• Q10 Remove functionality from the program.
• Q11 Change functionality in the program.
Learning and perceiving questions have been defined as a multiple-choice

question, and questions under evolve have been defined as an essay
question (programmers are challenged to modify existing code). Both, XAML
and C# Forms questionnaires have been constructed with the use of the
above questions.

To illustrate the style of the questions, used in the questionnaires, an
example is presented in Figure 1. Because of the question size only the
correct choice is given. Complete questionnaires can be found on a project
group webpage2. The above questions (Q1-Q11) have been used as
templates to define DSL and GPL questionnaires. The first version of DSL
and GPL questionnaires has been given to a small group as a training set, in
order to receive feedback. Further, results from a training set have been
studied and used to refine the questions before applying them to the target
groups of students. Most correctness issues were related to the program
failures, question understandability and question complexity comparability
between DSL and GPL questions.

3.4. Execution of the experiment

Besides well-structured questionnaires, other factors have also been
controlled in the experiment. The list of experiment execution actions in the
classroom (just before starting, as soon as it begins, and during the
experiment) are provided below:

– a short tutorial, for end-users, has been given on the problem domain
(graphical user interfaces),

2 http://epl.di.uminho.pt/~ gepl/DSL/

Comparing General-Purpose and Domain-Specific Languages: An Empirical Study

ComSIS Vol. 7, No. 2, Special Issue, April 2010 253

– a tutorial on domain specific notation (XAML), together with an example
of a program, has been given to end-users,

– a tutorial on application library (C# Forms) together with an example of
the program has been given to end-users,

– a tutorial has been given to end-users in their native language, however
the slides, programs and experiment questionnaires were in English, and

– the slides and the examples have been given to end-users and could be
used during the experiment.

If necessary, individual help to better understand the questions was
provided to the programmers.

3.5. Processing the results

There were also issues that needed to be controlled, after the programmers
completed the questionnaire. One of those is submission completeness.
When students submitted their questionnaires, it was checked if the
questionnaire contained answers to all questions. Most of the programmers
answered the questions, however if some answers were missing, the
programmers were advised to complete the questionnaire. Still, if some
answers were found missing during the processing of the results, the
complete programmer questionnaire was eliminated from the further
experiment analysis. For previously mentioned reasons, one submission has
been eliminated from the results.

3.6. Threats to validity

In each experiment, there are several threats to the validity of results. Those
threats need to be identified and handled before the start of the experiment.
To restrict the impact of the experiment environment on the results, the
following issues have been identified for our study.

Chosen domain Results of the experiment are strongly connected to

programmers’ experiences and knowledge of the chosen problem domain. In
Table 1, programmers’ familiarity with the construction of the GUI is
presented, together with the experience on XAML and C# Forms library
application. From Table 1, we can conclude that programmers are
experienced in the construction GUIs domain. However, their experience in
implementation technique differs – programmers were unfamiliar with XAML
on one hand (median value 1), and had good knowledge in constructing GUIs
with C# Forms (median value 4) on the other. Uneven knowledge on both
notations could have made an influence on comparison results.

Programmers’ experience In Table 2, results from the self evaluation test

are presented, where students (second year of undergraduate computer

Tomaž Kosar, Nuno Oliveira, Marjan Mernik, Maria João Varanda Pereira, Matej
Črepinšek, Daniela da Cruz, and Pedro Rangel Henriques

ComSIS Vol. 7, No. 2, Special Issue, April 2010 254

science) grade their general knowledge on programming, programming in C#
language and prior experience with DSLs. Comparing knowledge on C#
(median value 4) and prior experience with DSLs (median value 2) could have
also made an influence on experiment results.

Table 1. Programmers’ knowledge in construction of graphical user interfaces
(N = 36)

 Average3 Median St. dev.
Familiarity GUI domain 3.39 4 1.18
Knowledge of XAML 1.36 1 0.68
Knowledge of C# Forms application library 3.5 4 1.11

Table 2. Programmers experiences in programming (N = 36)

 Average Median St. dev.
Skills in programming 3.41 3.5 0.65
Skills of programming in
C#

3.53 4 0.74

Prior experience with DSLs 2.28 2 0.70

Comparability of questionnaires The same type of questions in DSL and

GPL questionnaires contain a similar number of graphical components
(labels, text fields, buttons, etc), to obtain the same level of complexity.

Order of questionnaires An experiment on program understanding was
carried out twice, at different times and on different students. The first group
started the experiment with the questionnaire on DSL and proceeded with a
GPL questionnaire. The second group started the questionnaire on GPL and
finished with the DSL questionnaire. In such a way, the influence of starting
the experiment on the same questionnaire with all subjects was avoided and
with such, the order of questionnaires is not relevant for the outcome of the
study.

4. Results

All together, programmers answered 22 questions on both questionnaires.
Success rate for questions varied from 27.14% for Q6 to 79.73% for Q9
(Table 3). Differences in success rate in the same language (DSL/GPL) can
be explained with different difficulty level (some questions were harder than

3 A five-grade scale, starting from very bad (1) to very good (5) was used for self-

evaluation questionnaires (in Tables 1 and 2). Note, that column “Average” shows
the average value given by 36 programmers, “Median” stands for middle value in set
of programmers grades and “St. dev.” represents standard deviation on given
grades.

Comparing General-Purpose and Domain-Specific Languages: An Empirical Study

ComSIS Vol. 7, No. 2, Special Issue, April 2010 255

Fig. 1. Question 5 in DSL and GPL questionnaires with the correct choice

Tomaž Kosar, Nuno Oliveira, Marjan Mernik, Maria João Varanda Pereira, Matej
Črepinšek, Daniela da Cruz, and Pedro Rangel Henriques

ComSIS Vol. 7, No. 2, Special Issue, April 2010 256

others). On the other hand the biggest difference between GPL and DSL is 51.16% in
the case of Q9. The smallest difference is found in Q2, where the difference is just
3.44%. In this case, the success rate was even slightly better for GPL than DSL. In our
opinion, this is due to the difficultness of Q2 (success rate was less than 39%), where
syntactically correct programs with no sense have to be identified. Since programmers
have more experience in C# Forms than XAML (Table 1), they were more successful
with GPL than DSL, in finding programs with no sense.

Table 3. Average programmer success rate (N = 35)

Question DSL GPL Difference
 XAML C# Forms
Q1 72.97% 48.57% 24.4%
Q2 35.14% 38.57% -3.44%
Q3 64.86% 35.71% 29.15%
Q4 77.03% 70.00% 7.03%
Q5 64.86% 48.57% 16.29%
Q6 39.19% 27.14% 12.05%
Q7 75.68% 62.86% 12.82%
Q8 62.16% 45.71% 16.45%
Q9 79.73% 28.57% 51.16%
Q10 68.92% 41.43% 27.49%
Q11 66.22% 30.00% 36.22%

Table 4. Average programmer success rate on learn, perceive and evolve (N=35)

 DSL GPL
 XAML C# Forms

Question

Mean Std.
dev.

Std. err.
mean Mean Std.

dev.
Std. err.
mean

Learn Q1, Q2, and
Q3

57.62
% 21.90% 3.70% 40.95% 22.99% 3.89%

Perceive Q4, Q5, Q6,
Q7, and Q8

64.57
% 19.45% 3.29% 50.86% 18.69% 3.16%

Evolve Q9, Q10,
and Q11

70.95
% 20.35% 3.44% 33.33% 26.20% 4.43%

Total All
questions

64.34
% 14.81% 2.50% 43.37% 15.99% 2.70%

However, drawing conclusions based on an average value of a single

question can be extremely risky. Therefore, by grouping questions into learn,
perceive and evolve categories, we can obtain more reliable results. In Table
4, the success rate on questions by the individual group is presented with a
mean value, standard deviation, and standard error mean. Table 4 confirms
our presumption that program understanding, in terms of learn, perceive and
evolve, is much better for DSL programs than for GPL programs. Later
observation is especially obvious from the results on evolve questions – the
mean value of the success rate was 37.62% better for DSL than on GPL

Comparing General-Purpose and Domain-Specific Languages: An Empirical Study

ComSIS Vol. 7, No. 2, Special Issue, April 2010 257

questions (see mean values in Table 4). Similar results were also obtained on
the other problem domain described in [30]. To support the results in Table 3
and Table 4, statistical tests have been performed to evaluate whether the
comparison shows the statistical significant difference. Efficiency on both
questionnaires (see last row from Table 4) has been compared for all
programmers. The results from questionnaires were statistically tested with t-
test, since the means of two independent groups were compared. The
threshold for the independent t-test was set to α = 0.05 and the test results
are shown in Table 5. The most important column in the table is the
significance

Table 5. Independent t-test for program understanding (N = 35)

95% Confidence
Interval of
the Difference

t Sig.
(two-tailed) Mean Std.

dev.
Std. err.
mean

Lower Upper
XAML
vs.
C# Forms

5.474 0.000 20.971 22.664 3.831 13.186 28.757

column. Observing this data confirms that the difference in mean value
between XAML and C# Forms program understanding was significant, since
a significant level was not reached. With observations from Table 5, we could
reject null hypothesis H1null since subjects did better on XAML program
understanding and accept the alternative hypothesis: (H1alt): there is a
significant difference in program understanding between domain-specific or
general-purpose languages when using XAML instead of C# Forms.

While this experiment indeed shows superiority of DSLs on an end-user
ability to learn, perceive and evolve programs in this particular domain, it does
not provide possible explanations why DSLs programs are easier to
understand. The “psychology of programming” [36, 37] is a research field
which tries to identify, understand and explain those cognitive processes
which take place during reasoning (e.g., programming, program
understanding). In this context, CDF [21] provides useful dimensions, which
help us to better explain why DSL programs are easier to understand than
GPL programs. The CDF has been used before to assess the usability of
visual programming languages [26], while no such study exists for DSLs.
These cognitive dimensions are:

– Closeness of mapping – languages should be task-specific;
– Viscosity – revisions should be painless;
– Hidden dependencies – the consequences of changes should be clear;
– Hard mental operations – no enigmatic is allowed;
– Imposed guess-ahead – no premature commitment;
– Secondary notation – allow to encompass additional information;
– Visibility – search trails should be short;
– Consistency – user expectations should not be broken;

Tomaž Kosar, Nuno Oliveira, Marjan Mernik, Maria João Varanda Pereira, Matej
Črepinšek, Daniela da Cruz, and Pedro Rangel Henriques

ComSIS Vol. 7, No. 2, Special Issue, April 2010 258

– Diffuseness – language should not be too verbose;
– Error-proneness – notation should catch mistakes avoiding errors;
– Progressive evaluation – get immediate feedback;
– Role expressiveness – see the relations among components clearly;
– Abstraction gradient – languages should allow different abstraction

levels.
The next step was to connect cognitive dimensions with our questions. We

identified which dimensions are relevant for a particular question (Table 6). As
it can be seen Di (dimension i of CDF) can be related to several questions
used in our questionnaires.

Table 6. Questions connection to cognitive dimensions

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
Closeness of mapping 1 1 1 1 1 1 1 1 1 1 1
Viscosity 0 0 0 0 0 0 0 0 1 1 1
Hidden dependencies 0 0 1 1 1 1 0 1 0 1 0
Hard mental operations 0 1 1 1 1 1 1 1 0 0 0
Imposed guess-ahead 0 0 0 0 0 0 0 0 1 0 1
Secondary notation 0 0 0 0 0 0 0 1 0 0 0
Visibility 0 0 1 1 1 1 1 1 0 0 0
Consistency 0 0 0 0 0 1 1 0 0 0 0
Diffuseness 1 1 1 1 1 1 1 1 1 1 1
Error-proneness 1 1 1 1 1 1 1 1 1 1 1
Progressive evaluation 0 0 0 0 0 0 0 0 0 0 0
Role expressiveness 0 1 1 1 1 1 1 1 1 1 1
Abstraction gradient 0 0 1 1 1 1 1 1 0 0 0

Questions have been designed in such a way that they directly reflect

cognitive dimensions as much as possible. However, not all cognitive
dimensions play an important role in all questions. Hence, to evaluate a single
cognitive dimension (Di) we proposed the following formula:

j

j

j
iji C
S

QD *
11

1
∑
=

=

where Qij stands for the value from Table 6, which means whether dimension
Di is connected to the question Qj. Variable Sj represents an average
programmer’s success rate on question Qj (Table 3). For example, if 4
programmers out of 5 answered question Q1 correctly, the value of S1 would
be 0.8. Finally, Cj represents the number of cognitive dimensions relevant for
Qj (for example, C1 = 3). This formula is used for XAML as well as for C#
Forms. Intuitively, it means that cognitive dimensions contribute to the
success of a particular question. Here, we assume that contribution of
involved cognitive dimensions was equally distributed (one cognitive
dimension is not more important than the other, if it is involved). Moreover, we
assume that the higher values always mean a positive influence of particular
cognitive dimension. For example, higher values for ’closeness of mapping’

Comparing General-Purpose and Domain-Specific Languages: An Empirical Study

ComSIS Vol. 7, No. 2, Special Issue, April 2010 259

mean that the semantic gap between the problem and the solution space is
small, or higher values for ’hidden dependencies’ mean that short and long-
range interactions among program components are immediately visible.

Table 7 roughly shows how a particular cognitive dimension contributes to
the questionnaires’ success for XAML, as well as for C# Forms. From Table 7
it can be seen that in our experiment, the most influential for DSL/GPL
program understanding were: closeness of mappings, diffuseness, error-
proneness, role expressiveness, and hard mental operations. More than
particular values, the difference among cognitive dimensions for XAML and
C# Forms is far more important. The biggest difference among cognitive
dimensions was in closeness of mappings, diffuseness, error-proneness, role
expressiveness, and viscosity.

Table 7. Influence of cognitive dimension to XAML and C# Forms

 DSL GPL Difference
 XAML C# Forms
Closeness of mapping 1.127 0.749 0.377
Viscosity 0.442 0.237 0.206
Hidden dependencies 0.486 0.343 0.143
Hard mental operations 0.525 0.421 0.105
Imposed guess-ahead 0.243 0.098 0.146
Secondary notation 0.069 0.051 0.018
Visibility 0.455 0.344 0.111
Consistency 0.128 0.100 0.028
Diffuseness 1.127 0.749 0.377
Error-proneness 1.127 0.749 0.377
Progressive evaluation N/A N/A N/A
Role expressiveness 0.884 0.587 0.296
Abstraction gradient 0.455 0.344 0.111

Closeness of mapping refers to the width of the semantic gap between the

problem and the solution spaces. Diffuseness refers to the number of
symbols needed to express the meaning. By definition, DSLs use existing
domain notation, which should be at an appropriate level of verbosity, so it is
expected that they exhibit low diffuseness. On the other hand, it was shown in
[38] that plenty of low-level primitives, which are often purely syntactical, are
one of the biggest cognitive barriers for end-user programmers. Error
proneness refers to the capability of a language to induce careless mistakes.
GPLs, due to their extension and intrinsic complexity, are usually error-prone,
while DSLs, due to the narrow domain they are designed for, are usually less
error prone. Role expressiveness refers to the ability to see how each
component of a program relates to the whole. The high role expressiveness
can be more easily achieved in DSLs due to domain specifics and shorter
programs. It is shown in our experiment that differences in closeness of
mapping, diffuseness, error proneness, and role expressiveness among

Tomaž Kosar, Nuno Oliveira, Marjan Mernik, Maria João Varanda Pereira, Matej
Črepinšek, Daniela da Cruz, and Pedro Rangel Henriques

ComSIS Vol. 7, No. 2, Special Issue, April 2010 260

XAML and C# Forms are the biggest and the source of main contribution for
easier understanding of XAML programs than programs written in C# Forms.

Viscosity refers to the amount of effort that is needed to perform small
changes. Since DSLs are usually at a high abstraction level and have natural
notation, small changes should be easier to perform. It is shown in our
experiment that the difference in viscosity between XAML and C# Forms was
among the largest. Viscosity was involved only in questions Q9-Q11, which
were much better solved with the use of XAML than using C# Forms. We can
conclude that viscosity had an important influence on this success.

5. Conclusion and future work

The purpose of this paper is to promote formal studies on the advantages of
DSLs over GPLs. In this paper we have tried to explain the difference
between DSL/GPL program understanding, using the cognitive dimension
framework. Questionnaires on understanding programs have been prepared
and given to the programmers. Each programmer answered a 100 page long
questionnaires and on an average spent more than 3 hours solving 44
questions.

Results show that programmers’ success rate was around 15% better for
DSL in all three groups of questions: learn, perceive and evolve, despite the
fact that programmers were significantly less experienced in XAML than C#
Forms. Further, the experiment measurement framework included cognitive
dimensions to identify the aspects among these dimensions that are
enhanced in the context of DSL. It can be learned from the study that DSLs
are superior to GPLs in all cognitive dimensions. The cognitive dimensions,
with the biggest influence in the experiment, are closeness of mappings,
diffuseness, error-proneness, role expressiveness, and viscosity.

We consider that the results of this experiment are reliable despite the fact
that the experiment has been done only on a single domain. One of the future
tasks of this project is to conduct similar experiments in different domains.

References

1. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Computing Surveys. 37(4) (December 2005) 316–344

2. Deursen, A.v., Klint, P.: Little languages: Little maintenance? Journal of Software
Maintenance 10 (1998) 75–92

3. Kosar, T., Martínez López, P.E., Barrientos, P.A., Mernik, M.: A preliminary study
on various implementation approaches of domain-specific language. Information
and Software Technology 50(5) (2008) 390–405

4. Živanov, v., Rakić, P., Hajduković, M.: Using code generation approach in
developing kiosk applications. Journal on Computer Science and Information
Systems 5(1) (2008) 41–59

Comparing General-Purpose and Domain-Specific Languages: An Empirical Study

ComSIS Vol. 7, No. 2, Special Issue, April 2010 261

5. Sprinkle, J., Mernik, M., Tolvanen, J-P., Spinellis, D.: What Kinds of Nails Need a
Domain-Specific Hammer? IEEE Software, 26(4) (2009) 15–18

6. Wile, D.S.: Supporting the DSL spectrum. Journal of Computing and Information
Technology 9(4) (2001) 263–287

7. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. ACM SIGPLAN Notices 35 (2000) 26–36

8. Hudak, P.: Building domain-specific embedded languages. ACM Computing
Surveys 28(4) (June 1996) 196–202

9. Hudak, P.: Modular domain specific languages and tools. In: ICSR ’98:
Proceedings of the 5th International Conference on Software Reuse, Washington,
DC, USA, IEEE Computer Society (1998)

10. Kieburtz, R.B., Mckinney, L., Bell, J.M., Hook, J., Kotov, A., Lewis, J., Oliva, D.P.,
Sheard, T., Smith, I., Walton, L.: A software engineering experiment in software
component generation. In: ICSE ’96: Proceedings of the 18th international
conference on Software engineering, Washington, DC, USA, IEEE Computer
Society (1996) 542–552

11. Sirer, E.G., Bershad, B.N.: Using production grammars in software testing. In:
Proceedings of the 2nd conference on Domain-specific languages, New York, NY,
USA, ACM (1999) 1–13

12. Kolovos, D.S., Paige, R.F., Kelly, T., Polack, F.A.C.: Requirements for domain-
specific languages. In: Proc. 1st ECOOP Workshop on Domain-Specific Program
Development (DSPD 2006), Nantes, France (July 2006)

13. Consel, C., Latry, F., Réveillère, L., Cointe, P.: A generative programming
approach to developing DSL compilers. In Gluck, R., Lowry, M., eds.: Fourth
International Conference on Generative Programming and Component
Engineering (GPCE). Volume 3676 of Lecture Notes in Computer Science, Tallinn,
Estonia, Springer-Verlag (September 2005) 29–46

14. Jackson, M.: Problem frames and software engineering. Information and Software
Technology 47(14) (November 2005) 903–912

15. Aurum, A., Wohlin, C.: Engineering and Managing Software Requirements.
Springer-Verlag New York, Inc., Secaucus, NJ, USA (2005)

16. Gray, J., Fisher, K., Consel, C., Karsai, G., Mernik, M., Tolvanen, J.P.: DSLs: the
good, the bad, and the ugly. In: OOPSLA Companion ’08: Companion to the 23rd
ACM SIGPLAN conference on Object-oriented programming systems languages
and applications, New York, NY, USA, ACM (2008) 791–794

17. Krueger, C.W.: Software reuse. ACM Computing Surveys 24(2) (June 1992) 131–
183

18. Javed, F., Mernik, M., Bryant, B., Sprague, A.: An unsupervised incremental
learning algorithm for domain-specific language development. Applied Artificial
Intelligence 22(7) (2008) 707-729

19. Wu, H., Gray, J., Mernik, M.: Grammar-driven generation of domain-specific
language debuggers. Software Practice and Experience 38(10) (2008) 1073-1103

20. Herndon, R.M., Berzins, V.A.: The realizable benefits of a language prototyping
language. IEEE Transactions on Software Engineering 14(6) (1988) 803–809

21. Green, T., Petre, M.: Usability analysis of visual programming environments: a
”cognitive dimensions” framework. Journal of Visual Languages and Computing
7(2) (1996) 131–174

22. Blackwell, A., Britton, C., Cox, A., Green, T.R.G., Gurr, C., Kadoda, G., Kutar, M.,
Loomes, M., Nehaniv, C., Petre, M., Roast, C., Roe, C., Wong, A., Young, R.:
Cognitive dimensions of notations: Design tools for cognitive technology. In:
Cognitive Technology: Instruments of Mind. Springer-Verlag (2001) 325–341

Tomaž Kosar, Nuno Oliveira, Marjan Mernik, Maria João Varanda Pereira, Matej
Črepinšek, Daniela da Cruz, and Pedro Rangel Henriques

ComSIS Vol. 7, No. 2, Special Issue, April 2010 262

23. Green, T.R.G., Blandford, A.E., Church, L., Roast, C.R., Clarke, S.: Cognitive
dimensions: achievements, new directions, and open questions. Journal of Visual
Languages & Computing 17(4) (August 2006) 328–365

24. Basili, V., Shull, F., Lanubile, F.: Building knowledge through families of
experiments. IEEE Transactions on Software Engineering 25(4) (1999) 456–473

25. Carver, J., Jaccheri, L., Morasca. S., Shull. F.: A checklist for integrating student
empirical studies with research and teaching goals. To appear in Empirical
Software Engineering (2009)

26. Blackwell, A.: Ten years of cognitive dimensions in visual languages and
computing: Guest editor’s introduction to special issue. Journal of Visual
Languages and Computing 17(4) (2006) 285–287

27. Yang, S., Burnett, M., DeKoven, E., Zloof, M.: Representation design benchmarks:
a design-time aid for VPL navigable static representations. Journal of Visual
Languages and Computing 8(5/6) (1997) 563–599

28. Peyton Jones, S., Blackwell, A., Burnett, M.: A user-centred approach to functions
in excel. In: Proceedings of the eighth ACM SIGPLAN international conference on
Functional programming. (2003) 165–176

29. Antkiewicz, M., Czarnecki, K., Stephan, M.: Engineering of framework-specific
modeling languages. IEEE Transactions on Software Engineering 35 (6) (2009)
795–824

30. Kosar, T., Mernik, M., Črepinšek, M., Henriques, P.R., Cruz, D.d., Varanda
Pereira, M.J., Oliveira, N.: Influence of domain-specific notation to program
understanding. In: Proceedings of 2nd IMCSIT Workshop on Advances in
Programming Languages (WAPL’09), Mrągowo, Poland (October 2009) 675 – 682

31. Dot: Graph description language, available at: http://en.wikipedia.org/wiki/DOT
language

32. Varanda Pereira, M.J., Mernik, M., Cruz, D.d., Henriques, P.R.: Program
comprehension for domain-specific languages. Journal on Computer Science and
Information Systems 5(2) (2008) 1–17

33. XAML: Extensible application markup language, available at:
http://en.wikipedia.org/wiki/Extensible Application Markup Language

34. C# Forms, available at: http://en.wikipedia.org/wiki/Windows Forms
35. Shull, F., Carver, J., Vegas, S., Juristo, N.: The role of replications in empirical

software engineering. Empirical Software Engineering 13(2) (2008) 211–218
36. Weinberg, G.M.: The Psychology of Computer Programming. Van Nostrand

Reinhold (1971)
37. A. Blackwell. Psychological issues in end-user programming. In H. Lieberman, F.

Paterno, and V. Wulf, editors, End User Development Springer (2006) 9–30
38. Lewis, C., Olson, G.: Can principles of cognition lower the barriers to

programming? In: 2nd workshop on Empirical Studies of Programmers. (1987) 248
– 263

Tomaž Kosar received the Ph.D. degree in computer science at the
University of Maribor, Slovenia in 2007. His research is mainly concerned with
design and implementation of domain-specific languages. Other research
interest in computer science include also domain-specific visual languages,
empirical software engineering, software security, generative programming,
compiler construction, object oriented programming, object-oriented design,
refactoring, and unit testing. He is currently a teaching assistant at the

Comparing General-Purpose and Domain-Specific Languages: An Empirical Study

ComSIS Vol. 7, No. 2, Special Issue, April 2010 263

University of Maribor, Faculty of Electrical Engineering and Computer
Science.

Nuno Oliveira received, from University of Minho, a B.Sc. in Computer
Science (2007) and a M.Sc. in Informatics (2009). He is a member of the
Language Processing group at CCTC (Computer Science and Technology
Center) , University of Minho. He participated in several projects with focus on
Visual Languages and Program Comprehension; VisualLISA and Alma2 the
main outcome of his master thesis entitled "Program Comprehension Tools
for Domain-Specific Languages", are the most relevant works. The latter
came under "Program Comprehension for Domain-Specific Languages", a
bilateral project between Portugal and Slovenia, funded by FCT. Currently, he
is starting his PhD studies on Patterns for Architectures Coordination Analysis
and Self-Adaptive Architectures, under MathIS, a research project also
funded by FCT. Meanwhile he is an assistant-lecturer (practical classes) in a
course on Imperative Programming, at University of Minho.

Marjan Mernik received the M.Sc. and Ph.D. degrees in computer science
from the University of Maribor in 1994 and 1998 respectively. He is currently a
professor at the University of Maribor, Faculty of Electrical Engineering and
Computer Science. He is also an adjunct professor at the University of
Alabama at Birmingham, Department of Computer and Information Sciences.
His research interests include programming languages, compilers, grammar-
based systems, grammatical inference, and evolutionary computations. He is
a member of the IEEE, ACM and EAPLS.

Maria João Varanda Pereira received the M.Sc. and Ph.D. degrees in
computer science from the University of Minho in 1996 and 2003 respectively.
She is a member of the Language Processing group in the Computer Science
and Technology Center , at the University of Minho. She is currently an
adjunct professor at the Technology and Management School of the
Polytechnic Institute of Bragança, on the Informatics and Communications
Department and vice-president of the same school. She usually teaches
courses under the broader area of programming: programming languages,
algorithms and language processing. But also some courses about project
management. As a researcher of gEPL, she is working with the development
of compilers based on attribute grammars, automatic generation tools, visual
languages and program understanding. She was also responsible for PCVIA
project (Program Comprehension by Visual Inspection and Animation), a FCT
funded national research project; She was involved in several bilateral
cooperation projects with University of Maribor (Slovenia) since 2000. The
last one was about the subject ``Program Comprehension for Domain
Specific Languages''.

Matej Črepinšek received the Ph.D. degree in computer science at the
University of Maribor, Slovenia in 2007. His research interests include
grammatical inference, evolutionary computations, object-oriented

Tomaž Kosar, Nuno Oliveira, Marjan Mernik, Maria João Varanda Pereira, Matej
Črepinšek, Daniela da Cruz, and Pedro Rangel Henriques

ComSIS Vol. 7, No. 2, Special Issue, April 2010 264

programming, compilers and grammar-based systems. He is currently a
teaching assistant at the University of Maribor, Faculty of Electrical
Engineering and Computer Science.

Daniela da Cruz received a degree in “Mathematics and Computer Science”,
at University of Minho (UM), and now she is a Ph.D. student of ”Computer
Science” also at University of Minho, under the MAPi doctoral program. She
joined the research and teaching team of “gEPL, the Language Processing
group” in 2005. She is teaching assistant in different courses in the area of
Compilers and Formal Development of Language Processors; and
Programming Languages and Paradigms (Procedural, Logic, and OO). As a
researcher of gEPL, Daniela is working with the development of compilers
based on attribute grammars and automatic generation tools. She developed
a completed compiler and a virtual machine for the LISS language (Language
of Integers, Sequences and Sets - an imperative and powerful programming
language conceived at UM). She was also involved in the PCVIA (Program
Comprehension by Visual Inspection and Animation), a FCT funded national
research project; in that context, Daniela worked in the implementation of
“Alma”, a program visualizer and animator tool for program understanding.
Now she is working in the intersection of formal verification (design by
contract) and code analysis techniques, mainly slicing.

Pedro Rangel Henriques got a degree in "Electrotechnical/Electronics
Engineering", at FEUP (Porto University), and finished a Ph.D. thesis in
"Formal Languages and Attribute Grammars" at University of Minho. In 1981
he joined the Computer Science Department of University of Minho, where he
is a teacher/researcher. Since 1995 he is the coordinator of the "Language
Processing group" at CCTC (Computer Science and Technologies Center).
He teaches many different courses under the broader area of programming:
Programming Languages and Paradigms; Compilers, Grammar Engineering
and Software Analysis and Transformation; etc. Pedro Rangel Henriques has
supervised Ph.D. (11), and M.Sc. (13) thesis, and more than 50 graduating
trainingships/projects, in the areas of: language processing (textual and
visual), and structured document processing; code analysis, program
visulaization/animation and program comprehension; knowledge discovery
from databases, data-mining, and data-cleaning. He is co-author of the "XML
& XSL: da teoria a prática" book, publish by FCA in 2002; and has published
3 chapters in books, and 20 journal papers.

Received: November 15, 2009; Accepted: February 24, 2010.

