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Abstract—This paper addresses the problem of parameter 

estimation of continuous-time systems using samples of its 
input-output data. We propose a method based on the bilinear 
transformation to obtain an equivalent discrete-time model. 
Introducing a new polynomial pre-filter it is possible to 
compute the physical parameters via inverse mapping between 
the discrete-time and the continuous-time models. A simulation 
example is given to illustrate the noise effects in the parameter 
estimation results. Using experimental results, we demonstrate 
the ability of the estimator to handle real measurement 
problems. 
 

I. INTRODUCTION 
In this paper the problem of continuous-time identification is 
addressed. Two different approaches are currently available 
to solve this problem. The so-called “indirect method” 
consists of two parts: firstly the estimation of the discrete-
time model parameters using samples of input-output data, 
and secondly the determination of a continuous-time model, 
corresponding to the discrete-time model. The other 
approach is the “direct method”, where discrete-time 
approximations are used for the signals and operators in a 
continuous-time model. The result is an approximate model 
in which the parameters of the original model are obtained. 
The surveys by Young [1], and Unbehauen and Rao [2] 
describe most of the available techniques. 

One limitation of the indirect approach is that the results 
obtained are strongly dependent on the choice of the 
sampling interval for the input-output data [3]. Additionally, 
the necessary evaluation of the natural logarithm of a square 
matrix presents some difficulties. Remark that the 
conventional method relies on the calculation of the matrix 
of a continuous-time model (A) from the estimate of the 
matrix of a discrete-time model (F), and since F e AT= , 
where the sampling period T is known, the difficulty arises 
from the calculation of the natural logarithm of F, i.e. 

. More specifically, this calculation can be done 
by transformation to diagonal or Jordan canonical forms, or 
by use of Sylvester’s interpolation formula. As it has been 
reported in the literature by Sinha and Lastman [4], these 
methods do not work efficiently when there are negative or 
multiple poles. In the first case, a real negative pole in the z-
plane is transformed into complex conjugates poles in the s-
plane, causing an increase in the order of the system model. 

In the case of multiple poles the diagonalization method 
cannot be used, and an efficient algorithm does not exist to 
calculate the continuous-time model from the Sylvester 
interpolation formula. A different approach based on the 
series expansion of the natural logarithm has also been 
suggested by Sinha and Lastman in [4]. This technique can 
sometimes introduce difficulties due to imposition of some 
restrictions on the poles of the system or on the sampling 
period to guarantee the convergence of the series. 

AT F= ln  ( )

In order to overcome these problems we propose a novel 
scheme to compute a discrete-time approximation of a 
continuous-time model by applying the well-known bilinear 
transformation. Besides the fact that this transformation 
gives excellent approximation over a large bandwidth, there 
is an added advantage, which is the possibility of estimation 
of the values of the physical parameters of the system. 
However, the above advantages come with a price. It is 
necessary to know the a priori structure of the model and the 
system must be linear. 

Many contributions do exist for the estimation of the 
parameters of continuous-time models from measured input-
output data that use the “direct method” [2]. However, only a 
few are known that use the “indirect method” [5], for which, 
only an underdeveloped theory is available. One should bear 
in mind that this approach to identification of continuous-
time models has not yet received appropriate coverage in the 
recent literature. 

The present paper is organized as follows: section II gives 
a general formulation of the parameter estimation problem; 
section III describes our method to determine the model 
parameters. To illustrate our approach, we present in section 
IV a numerical simulation and in section V one practical 
example is treated. Lastly, we conclude and present some 
final remarks, in section VI. 

 

II. PROBLEM STATEMENT 

A. Model Description 
Consider a continuous-time system: 
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with excitation u(t), and response y(t). The polynomials A(s) 



 

and B(s) are given by  
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where and are unknown coefficients and the 
superscript c denotes continuous parameters. Suppose that 
the input-output signals of the system are sampled with 
period T and the measured output y
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m(t) is assumed to be 
corrupted by an additive stationary white noise sequence e(t), 
with zero mean and variance . Let the measurements 
consist of samples at time instants, t , 
and the noise effects at those time instants be e(kT). Hence 
the measured output is 
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The data available for estimation is 
and for convenience 

they will be denoted as a set 
. Remark that they denote 

samples of continuous-time signals with finite time axis. 
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B. Parameter Estimation Problem 
The aim of this sub-section is to formulate the estimation 

problem. For this purpose, let Mc be a model structure of a 
continuous-time system which is a smoothly parametrized set 
of models  
 { ccccc DMM ∈= θθ  : )(  (5) 
where the set Dc denotes the parameter space to which the 
parameters vector θc is restricted. 

We assume that the model system and the measurement 
data obtained from this system allow an approximate 
description [6]  
 { } )(+)(),( =)( :  )( tetupGty ccmcc θθθ cDM ∈=c  (6) 
where p is the differentiation operator and Gc is the transfer 
function of the system. We further assume that: 
A.1 The system Gc under study is linear and asymptotically 
stable, i.e. A(s) has all zeros in the left-hand side of the plane 
s. 
A.2 The noise e(t) is independent of the input signal u(t). 
A.3 The upper bound of the orders n and m is known. 
A.4 Only models represented by a finite dimensional 
parameter vector are considered and all parameters are time-
invariant, i.e. , and . h

cc
h
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Thus, the problem considered in this paper can be 
formulated in intuitive mathematical terms as follows: Given 
a set of N measured pairs of input and output data u(t), ym(t), 
determine the coefficients a  and b  of the 
differential equation model. The parameter vector to be 
estimated is then: 
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where the superscript T denotes the transpose. 

 

III. BASIC THEORY OF INDIRECT METHOD 
In this section, we present a solution based on an indirect 

approach to the parameter estimation problem. This consists 
of two steps. In the first step a discrete-time model is 
estimated from the measured input and output signals. Once 
these parameters are determined, the coefficients of the 
differential equations can be computed via a mapping 
function between the discrete-time model and the 
continuous-time model. 

A. From Continuous to Discrete Time 
The first step consists in establishing the relation between 

the continuous-time model and an equivalent discrete-time 
model. It is assumed that the model and the measurement 
data obtained from this system, allow a description like the 
following: 
 )(+)(),( =)( tetupGty ccm θ . (8) 

In order to establish the model structures for the system, 
we need to transform the transfer function Gc into a discrete-
time model by means of the bilinear transformation: 
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At this point it is worthwhile to interpret the discretization 
process as a mapping or a transformation, i.e. the 
discretization may be viewed as a mapping from the Dc 
domain to the Dd domain. Suppose we have two sets, Mc and 
Md. Suppose in addition that we can define a function F that 
assigns to each element in the set Mc one element of the set 
Md. In other words, F is a function which transforms, or 
maps, Dc into Dd and we will denote this by 

 such that l
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which can be determined from mathematical modeling, for 
example with Maple®. 

After establishing the relation between the continuous-
time and discrete-time models, the discrete parameters θd will 
be estimated by a standard identification algorithm A and a 

data set Z, i.e. . For example, an identification 
algorithm with an output-error method can be used. The 
orders of the polynomials of the output-error model are 
defined by the structure of G

)(ˆ ZA=dθ

d, which may be known in 
advance based on the continuous-time to discrete-time 
transformation. 

The basis for conversion from the discrete-time domain to 
the continuous domain is now settled. We consider that, 
given a continuous-time model for estimation of its 
parameters, under some reasonable assumptions, it is 
possible to reformulate the problem in a way that permits the 
straightforward application of discrete-time black-box 
identification using, for example, the routines available in the 
System Identification Toolbox of Matlab [7]. It is quite 



 

obvious that, if the discrete-time model is not accurate, the 
equivalent continuous-time model will also be inaccurate, so, 
a number of precautions must be considered in this step. 

We turn now our attention to study the possibility of 
conversion, that is, the calculation the differential equation 
model coefficients according to the function that performs 
the mapping between the continuous-time and the discrete-
time domains. This is the subject of the next sub-section. 

B.  The Basic Difficulty 
We now come to the topic of inversion of the F function 

(see (10)). This is a small but extremely important step in our 
problem. Let us make this idea more precise. Based on the 
estimated discrete-time parameters , the continuous-time 

parameters have to be determined by the inverse function  
dθ̂

cθ̂

  (11) )ˆ(ˆ 1
dc F θθ −=

when the inverse exists, so giving an unique solution. 
The main difficulty with finding this inverse function is 

associated with the mapping of the zeros of the discrete-time 
model transfer function to the continuous-time model. It is 
well known that with a zero-order hold approach the 
mapping between the discrete-time poles and their 
continuous-time counterparts is reasonably simple, because 
these are mapped by means of complex exponentials. 
However, this is not the general case for the zeros, for which 
no general closed form equation exists, and only approximate 
expressions were reported; see for instance in [8] and [9]. 
Consequently, a poor parameter mapping will usually occur 
affecting the accuracy of the final continuous-time parameter 
estimation. 

C.  Computing the Parameter Vector  $θc

The main problem to solve appears with the transfer 
function zeros. The solution described by Araújo [10] uses a 
polynomial pre-filter applied to the input signal that 
guarantees that the continuous-time parameters could be 
uniquely determined from the discrete-time parameters. As a 
consequence the measured input is filtered through the 
polynomial filter. It is shown in [10] that the polynomial 
filter for input data is given as follows: 

  (12) ( ) )(1 )( 1* ku+qku
r−= θ̂

where q-1 is the backward shift operator, r is the relative 
degree of the model rational function and u(k) it is the input 
data sample at instant k. 

At this stage, we assumed to have the discrete transfer 
function computed according to (9) and a set of input-output 
data, Z. The expression (12) implies that each input-output 
measurement defines a new set denoted by Z* containing u*: 

 . (13) { }1 , ,0 );( ),(* −== Nkkyku m K*Z
So, assuming that the conditions established by the inverse 

function theorem are all fulfilled, the parameter vector θc is 
calculated by 

  (14) 
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where  is estimated by the identification algorithm A 
using input-output data Z*. This means that the estimation is 
close to the true value of the parameter vector for large data 
sets and small sampling period. 

dθ̂

 

IV. SIMULATION STUDY 
In this section, we illustrate the theoretical results 

discussed in the previous sections by means of a numerical 
simulation. In section 5 a practical real-data example is also 
presented. This example is based on the following second-
order continuous-time system: 
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The transfer function represents the electric circuit 
admittance illustrated in figure 1 which is parametrized by 
the physical parameters R, L, and C, denoted by the 
parameter vector [ ] 3C  ℜ∈= T

c LRθ . 

A. From Continuous-time Model to Discrete-time Model 
and vice-versa 
In order to establish the model structures for this example, 

we need to use the transfer function (15) which is 
transformed into a discrete-time model by means of the 
bilinear transformation: 
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After simple manipulations we obtain the following 
discrete-time model with appropriate reparametrization: 
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Fig. 1.  The circuit under test. 



 

where T is the sampling interval duration. Note that the 
discrete model is parametrized by three independent 
parameters that can be estimated with standard prediction 
error methods. Next, if the discrete-time parameters  are 

estimated, the continuous-time parameters  can be 
determined using the inverse function given by 

dθ̂

cθ̂
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An important and interesting aspect of our method is that 
this algebraic operation can be coded in computer algebraic 
languages, such as Maple®. So, this approach can be used as 
well in problems of greater dimension. 

B. Numerical Illustration 
The following illustrative study was simulated using the 

computer package Simulink®. The simulation of a true 
continuous-time system was implemented and the differential 
equation solved with constant integration steps using the 
Runge-Kutta method of order 5. The input-output data 
samples generated by simulation were then considered to be 
the continuous-time input and output data that were sampled 
at different sample rates for parameter estimation. Our 
intention is to analyze the estimation accuracy under 
different conditions. The true values of parameters of the 
system under simulation are 

. Note that these values 
are normalized in frequency to preserve the same impedance 
as the experimental circuit of next section. In order to 
evaluate the performance of this methodology, the following 
measure of estimation error was used: 

[ ] [ TT
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where θ0 is the true parameter vector and θ is the estimation 
parameter vector. 

The aim of this study is to look at the effect of noise on the 
accuracy of parameter estimates. In this experiment, the 
Monte Carlo simulation has 50 runs in each case. The input 
signal is a square wave with amplitude 2 A e 0.2/π Hz. The 
output signal has been disturbed with Gaussian noise 
sequence. Its variance is adjusted to obtain the desired ratio 
of noise to signal (N/S) defined by 
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where σ  represents the standard deviation. The sampling 
period of s 02.0=T

<(0.003 n TT
 has been chosen based on the rule of 

thumb  that utilizes the period of 
natural system oscillations T

)0.05< nT

n (Unbehauen and Rao, 1990). 
Table I summarizes the parameter estimation obtained with 
the noise to signal ratio that is placed within an assumed 
range of 10-25%. Note that in this study the θ is a mean 
value over about 50 Monte Carlo runs. These results allow to 
obtain some idea on the sensitivity to noise of the 
identification method presented here. The parameter error 
norm is indicative of the accuracy of estimation. In general 
the results show that when the noise increases the accuracy 
of estimation becomes worse. 

The parameter error norm has a large value for small 
sample size 1000=N , but the error norm is improved 
greatly when the number of samples (N) increases. Indeed, 
the associated error norm do not exceed 4% even at a 
considerably high level of the noise (N/S = 25%). In 
addition, the performance of the identification algorithm 
becomes more sensitive to the choice of T. A too small T 
may give erroneous estimates if the number of data points is 

]

TABLE I - RESULTS OF PARAMETER ESTIMATION WITH NOISE 

N N/S (%) R (Ω) L (H) C (F) Error Norm 
 Mean estimated value ± standard deviation   

 
10 4.8376 ± 0.2585 0.0223 ± 0.0039 0.4580 ± 0.0688 0.0334 

1000 15 4.6642 ± 0.6648 0.0224 ± 0.0044 0.4587 ± 0.0743 0.0673 
 

20 4.4906 ± 0.4486 0.0241 ± 0.0063 0.4378 ± 0.0958 0.1021 
 

25 3.9253 ± 1.2408 0.0250 ± 0.0068 0.4130 ± 0.1178 0.2146 
 

10 4.9062 ± 0.1641 0.0209 ± 0.002 0.4800 ± 0.0398 0.0191 

2000 15 4.8654 ± 0.2478 0.0212 ± 0.0025 0.4749 ± 0.0470 0.0273 
 

20 4.8064 ± 0.3019 0.0213 ± 0.0027 0.4719 ± 0.0500 0.0389 
 

25 4.6461 ± 0.6147 0.0223 ± 0.0037 0.4565  ± 0.0636 0.0710 
 

10 4.9732 ± 0.0536 0.0201 ± 0.0007 0.4940 ± 0.0153 0.0055 

5000 15 4.9710 ± 0.0899 0.0204 ± 0.0011 0.4882 ± 0.0229 0.0062 
 

20 4.9147 ± 0.1383 0.0210 ± 0.0016 0.4755 ± 0.0339 0.0177 
 

25 4.8091 ± 0.2574 0.0216 ± 0.0023 0.4645 ± 0.0432 0.0386 



 

 
Fig. 2.  Input and output signals used in experiments. 

 
Fig. 3. Comparison of output measured with estimated for 
experiment 1. 

not chosen appropriately. As it is known, the increase of N 
implies that more information about the system is given to 
the estimator, thus improving the parameter estimates. 
Another possible observation from table I is that in all case it 
is possible to obtain reasonable estimates of parameters in 
the presence of moderate noise. 

V. EXPERIMENTAL RESULTS 
As a demonstration of the practical application of the 

method presented here, we estimate the physical parameters 
of the transfer function of an experimental electrical circuit, 
which is composed of resistor, inductor and capacitor. The 
circuit components are measured as R= 987 Ω, L= 0.389 H 
and C= 0.499 µF. The system inputs for two runs are square 
wave signals with amplitude of 7.5 V and frequencies 100 
and 25 Hz, which are produced by signal generator. 

 
Fig. 4. The outputs measured and estimated for experiment 2. 

 
Fig. 5. Comparison of output measured with estimated for experiment 3. 

 
A personal computer with a Keithley DAS-1602/CE board 

is used for data acquisition. For the A/D converters, the full 
range of the analog signal is ±10V. The resolution of these 
converters is 12 bits. Except for the quantization error in the 
data acquisition, no extra noise is introduced in this system. 
The sampling frequency is 10 kHz. Table II summarizes the 
results of the parameter estimation in the three experiments 
for this electrical circuit. In the first experiment (1) we used a 
model with three physical parameters. In the other two 
experiments (2 and 3) we use a model with four parameters 
in order to account for the resistance of the inductor.  

Figure 2 shows the input and output signals measured with 
the data acquisition system used in experiments 1 and 2. A 
third experiment was done with a change of the signal 
frequency. A standard method for model validation is to 
simulate the system with the actual input and compare the 
simulated and measured outputs. 

Experiment 1- Model with three theoretical components: 

TABLE II - ESTIMATED PARAMETERS OF RLC CIRCUIT 

Experiment R (Ω) L (H) C (F) Error Norm 

1 668.7 0.436 3.604e-7 0.3225 

2 1012 0.364 4.027e-7 0.0255 

3 969.5 0.371 4.302e-7 0.0177 



 

In this experiment we consider that real components can be 
represented by their essential ideal components (R, L and C). 
From the plots in figure 3 we see that the error in estimation 
is quite large. Because of the modeling error, i.e. the 
erroneous theoretical components assumption, the chosen 
discrete-time model is no longer optimal within the discrete 
model set. Hence, when the indirect identification method is 
applied severe errors in the estimated physical parameters are 
found in the estimation procedure. For this experiment the 
error norm defined above was 32.3%. 

Experiment 2 - Model with four components: The aim of 
this experiment is to show that when we consider that the 
inductor also has a series resistance the accuracy of 
parameter estimation its rather good. In this case the 
frequency of the input signal is 100Hz. In fact, all real 
components are not ideal, and their characteristics deviate 
more or less from the theoretical ones. However, the main 
difference between real and ideal components in our circuit 
arises from the inductor. From the plots in figure 4 we 
conclude that we have a good agreement between the model 
and the real system. Consequently we have a clear indication 
that the model has picked up the essential features of the 
system and is able to reproduce the input-output behavior 
quite well. 

From the discrete-time parameters, the physical parameters 
can be reconstructed univocally. In this case the error norm 
is 2.5%. 

Experiment 3 - Model with four components: In this case 
the signal input frequency is 25 Hz with the objective of 
observing the influence of the input frequency on the 
identifiability. From the plots in figure 5 we conclude that we 
have excellent agreement between the model and real 
system. Note that in this case the error norm is 1.77%, which 
means that the identifiability of parameters has improved 
compared to experiment 2. 

VI. CONCLUSION 
We have studied the problem of parameter estimation in a 

continuous-time linear system based on an indirect approach. 
This methodology involves firstly the identification of the 
parameters of a discrete-time model and secondly a 
transformation of the corresponding parameters into a 
continuous-time model. The novel methodology proposed in 
this paper requires the implementation of a polynomial filter 
that operates on the input data sequence allowing to establish 
an inverse function with an unique solution. Numerical test 
of the identification algorithm exhibits a good accuracy in 
the presence of Gaussian noise. The experimental results 
confirm the properties of the proposed approach. 
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