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Abstract 
This paper presents a new approach for joint rotor flux and electrical parameters on-line identification 
in vector controlled high-performance induction motor drives based on a boot-strap estimator that uses 
a reduced order extended Kalman filter for rotor flux components and rotor parameters estimation and 
a recursive prediction error method for stator parameters estimation. Within the prediction error 
method some approaches are used and compared that affect both the adaptation gain and the direction 
in which the updates of stator parameters are made. The induction motor model structures are 
described in the rotor reference frame in order to reduce the computational effort by using a higher 
sampling time interval. 

Introduction 
In recent years, the availability of digital signal processors and the fast development of modern power 
electronics have contributed for the wide acceptance of the prevailing vector control in high-
performance induction motor (IM) drives, and have made the correct estimation of rotor flux and 
system adaptation to the changing motor parameters feasible, which are the two major problems in the 
implementation of such industrial applications as referred in [1]. 

In the recent past, the estimation of the electrical parameters of the IM has been achieved by using, 
normally, a recursive least squares method approach based on a linear model structure usually 
obtained from the classical IM model, expressed in its dq components, by elimination of fluxes and 
rotor currents and furthermore, the flux was estimated separately from the parameters. Moreover, to do 
that the rotor speed should also be constant or slowly varying as, for instance, in [2]. As a result, this 
kind of linear models is not suitable for transient conditions and furthermore, they typically need the 
computation of the first derivative of the stator voltage besides the first and second derivatives of the 
stator current. On the other hand, the online simultaneous estimation of the main electrical parameters 
in steady-state, under normal operating conditions, is not feasible due to the lack of persistent 
excitation provided by the signals. 

The recent trend is to implement a solution with joint online estimation of IM states and parameters as 
in [1] and [3-6]. However, the simultaneous estimation of both rotor flux components and all electrical 
parameters of a vector controlled induction motor, under normal operating conditions, for real-time 
applications, still remains a challenge. This work is a contribution for this purpose and uses the 
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extended Kalman filter (EKF) which is suitable for both steady-state and transient conditions and 
performs the joint state and parameter estimation of the nonlinear state-space model structure 
describing the IM. The main goal here is to achieve the estimation of flux and electrical parameters in 
real-time operation, with low computational effort, under normal operating conditions, and with an 
independent estimator for stator parameters based on a recursive prediction error method (RPEM). The 
objective is to adjust the identification procedure to the dynamic conditions of the machine, namely 
the stator parameters which can not be correctly estimated under steady-state conditions as shown in 
[5, 6]. With the boot-strap estimator presented in this paper the stator parameters can be separately 
estimated or updated whenever the dynamic conditions are suitable for this purpose. Some approaches 
are used and compared that affect both the adaptation gain and the direction in which the updates of 
stator parameters are made, within the RPEM, namely the Kalman filter, forgetting factor (recursive 
least squares), unnormalized gradient and normalized gradient approaches described in [7] and [8]. 

Induction Motor Model 
In the previous works [5, 6], the authors have shown that the joint estimation of rotor flux components 
and all the electrical parameters of a per-phase squirrel cage IM model described by the four 
parameters in [9], is feasible in real-time applications by using an EKF technique, with reduction of 
computational effort, based on a reduced order model in the rotor reference frame as shown below: 
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The simultaneous estimation of the four parameters requires some dynamic conditions for a correct 
identification of stator parameters [5, 6], namely, sR  and '

sL . In any case the estimation of these 
parameters remains hard, wherefore a new procedure is presented in the next section. Oppositely, the 
other two motor parameters, rτ  and ML , can be estimated whether in transient conditions or in steady 
state operation with a good robustness with respect to errors in the stator parameters [5]. According to 
this fact, a boot-strap estimator is proposed that enables the estimation of all parameters but separates 
the estimation of rτ , ML  and the rotor flux components from the stator parameters. The state-space 
model structure formed by both equations in (1) and (2), respectively, the state and output equations, is 
used within the EKF algorithm for joint estimation of rotor parameters and rotor flux components, and 
a linear model is derived just from (2) as shown in the next section. 

The Boot-Strap Estimator 
The proposed estimator consists of a first estimator that uses the EKF to find good estimates of the 
rotor parameters, rτ  and ML , and the two rotor flux components, followed by a recursive prediction 
error based estimator to obtain the remaining stator resistance, sR , and stator transient inductance, '

sL , 

in a boot-strap manner. Thus, considering a specific instant, kt , the EKF is used for estimation of the 
extended and scaled state vector x) , based on previous estimated values of stator parameters and then, 
a RPEM is used to estimate the parameter vector θ

)
, which contains the other two parameters, sR and 

'
sL . The state vector x and the parameter vector θ are scaled by constants Ki’s, for numerical reasons, 

as follows: 
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For the EKF algorithm, the model structure is formed by a nonlinear discrete state-space 4th-order 
model obtained by discretization of state equation in (1) and the output equation in (2), as presented in 
[6], resulting the following time-discrete state-space model, where Ts is the sampling period: 
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As we can see, the state equation in(5) is independent of rotor speed and stator parameters. Moreover, 
the matrices are diagonal and, therefore, it becomes very simple to get higher order approximation in 
the discretization process. The rotor speed and stator parameters only appear in the output equation in 
(6) where the measured output is function of the stator parameters which are estimated by using the 
model structure described bellow. It should be noticed that this particularity happens only in the rotor 
reference frame. For the recursive prediction error based method, a linear regression model structure is 
used, which is derived from (2), taking into account that: 
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Then we can write the linear regression model from (2) and (7) as follows: 
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The equation above can then be rewritten using the general linear regression expression, 
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Obviously, instead of the d equation described by (8) the q one could be selected but only one of them 
is needed. As we can verify the linear regression resulting from (10) and (11), described as a linear 
regression like in (9), does not depend on rotor parameters. However, it depends on rotor flux d (or q) 
component first derivative but the “noise” in the flux, estimated by the EKF, can be tunable and even 
made negligible and no problems come from computing its derivative. The first derivatives in (10) and 
(11) are computed by the following general recursive filter in order to obtain better results than by 
using Euler’s formula, 
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The weights Ci can be found in [10] which are determined after Taylor series expansion of the 
equation above to m+1 terms, with { }nm ,,2,1 L= , m being the order of the filter and n the number of 
points. For system identification purposes, as in this case, an important aspect to have in account is the 
delay introduced by the filter. The delay must be the same as the one introduced by the Euler’s 
formula that is implicit in the discretization process of state equation in (1) if the linear terns of the 
Taylor’s development is adopted as in (5). For sampling frequencies lower than 5kHz, the set of 
coefficients [ ] 6/291811 −− , has produced the best results. This is an unusual discretization 
process. Indeed, this strategy presented by the authors in [5, 6] has proven to give better results when 
compared with the usual linear terms-based discretization of the full order state-space model and only 
after this the reduced order model formed by (5) and (6) is derived. Following this strategy, high order 
approximations can be easily used also in the discretization of (1) since its matrices are diagonal. 
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The proposed boot-strap estimator is similar to an adaptive state estimator for nonlinear systems 
described, in general terms, in [8] and applied here for joint state and parameter estimation. The set-up 
in fig. 1 is a very natural and simple way to achieve this objective. Besides the advantage of separating 
the estimation of rτ , ML  and the rotor flux components from the stator parameters, by adapting the 
global estimator to the machine operating point or, in other words, to the information contained in the 
measured signals, it permits to overcome some of the disadvantages associated with the EKF, namely, 
a strong computational effort, eventually biased estimates, and not guaranteed convergence [8]. 
Furthermore, this can be a good alternative to the extended Luenberger observer suggested in [1] to 
solve the steady-state bias problem detected in the joint rotor flux and rotor time constant estimation, 
and an alternative to [3, 4], in terms of computational effort. 

As far as the induction motor is concerned the main advantage of the boot-strap estimator is the 
autonomy between the simultaneous estimation of rotor flux components and rotor parameters by 
using the EKF and, on the other hand, the estimation of stator parameters by using a RPEM based 
approach for joint estimation of stator parameters as represented in fig. 2(a) or even two RPEMs for 
independent estimation of these two parameters as in fig. 2(b). The independence of the two or three 
algorithms, as represented in fig. 2(a) and (b), respectively, is really very important since the operating 
conditions of the induction motor required for a successful simultaneous estimation of all electrical 
parameters, are quite different for the four parameters. 
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Figure 1: Boot-strap estimator with the model structures described in the rotor reference frame. 
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Figure 2: The both possibilities for stator parameters estimation using the boot-strap estimator. 
 

In [5, 6] the authors have shown that both rotor parameters (τr and LM) are well estimated even in 
steady-state operation and, due to this, they are proposed to be estimated together with rotor flux 
components in every iteration. Furthermore, stator transient inductance needs significant dynamic 
conditions which are different from the ones needed for stator resistance estimation. 

By using the proposed boot-strap estimator, the estimation of stator parameters can be separated from 
flux and rotor parameters and can be enabled or disabled according to the dynamic conditions of the 
induction motor and this is very important to do and even mandatory. Moreover, the EKF based 
algorithm that estimates rotor flux and rotor parameters can update, at every iteration, the values of 
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stator parameters in its output equation, from time to time, or only when they are properly available by 
the respective RPEM algorithms since these can not be, necessarily, always working. Figures 1 and 2 
represent the described identification procedure. 

The recursive prediction error method, which is well described in the specialized literature like in [7, 
8], can be summarized as follows where )1( +ψ k  represents the gradient of the predicted output, y) , 
with respect to the parameter vector, θ : 
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5. Go to 1 

The gain matrix L(k) that affects both the adaptation gain and the direction in which the updates of 
stator parameters are made, can be chosen following several approaches as referred in [7]. The results 
of the application of the Kalman filter, forgetting factor (recursive least squares), unnormalized 
gradient and normalized gradient approaches are presented and compared in the next section. The 
authors, in [11], have presented a similar methodology but with a different model structure for the 
stator parameters estimation which is performed in the stator reference frame, the sampling frequency 
being naturally higher. 

Simulation Results 
The above-proposed boot-strap estimator has been developed in the MATLAB with Simulink 
environment and tested under a vector control scheme. Simulation conditions were selected to be as 
close as possible of the experimental ones. All simulation and experimental results shown in this paper 
were obtained with the configuration of fig. 2(a) and a square wave speed reference in the range of 
±600 rpm, in order to ensure persistent enough excitation of the stator transient inductance from the 
transient conditions. 

Figure 3(a), below, shows the first 8 seconds of the rotor speed of a 2.2kW vector controlled induction 
motor which corresponds to the response to a square speed reference and fig. 3(b) shows the voltage 
and current d components in the rotor reference frame. 

 
 (a) (b) 

Figure 3: Simulated signals. (a) Electrical rotor speed generated by the vector control scheme (rad/s) and (b) 
stator voltage and current d components in the rotor reference frame (p.u.). 

 

One of the main difficulties of any full parameter and flux estimator is the start-up procedure when no 
information is available beforehand about the electrical parameters. It is even not possible to do it, 
since we search for too much information as fluxes and parameters, based on just stator signals and 
rotor speed and, on the other hand, the model sensibility in relation to the stator parameters is low and 
strongly dependent of the dynamic conditions during the start-up and immediately after. Due to this, 
the authors devised a robust solution that is presented here. It is only supposed to have rough initial 
values of the electrical parameters for scaling the state vector x in (3) and parameter vector θ in (4). 
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Many solutions can be used for this purpose. Some of them are very simple like the classical methods 
or other rough parameter estimations as in [3], based on nominal characteristics of the induction 
motor. 

Within the boot-strap estimator itself, the only requirement with respect to initial values of the 
electrical parameters is related to the initialization of stator parameters. Since in full estimation the 
rotor flux components are jointly estimated with the electrical parameters, both algorithms hardly 
converge to correct values because of the lack of confidence in estimated flux components at the 
beginning and, on the other hand, the lack of sensibility of the induction motor model with respect to 
stator parameters without specific supply conditions. By this way, the EKF is started without any 
assumed knowledge of rotor parameters, but with initial seeds for stator parameters which are very 
simple to obtain in the case of stator resistance. Thus, 1 second after the EKF has been started, when 
the rotor parameters and flux are supposed to be close to its expected values, the RPEM algorithm(s) 
is(are) started with the rough estimates or even zero values, as used in the present paper, in the 
parameter vector θ. One second later all parameters and flux components are supposed to be 
converging to their real values and the algorithms start working according to the proposed boot-strap 
manner. This start-up procedure has demonstrated to be much more robust when compared to the 
simultaneous starting of the estimation of all parameters and flux components. Another advantage is 
that it avoids convergence to wrong estimated parameters values even when fitting properly the 
estimated flux and simulated currents using the estimated parameters. Figure 4 shows the performance 
of the proposed boot-strap estimator for different initial seeds of stator parameters, used by the EKF. 

 
 (a) (b) 

 
 (c) (d) 

Figure 4: Performance of the proposed boot-strap estimator for different initial seeds of stator parameters used 
by the EKF. (a) estimated state x3 - inverse of scaled rotor time constant, (b) estimated state x4 - scaled 

magnetizing inductance, (c) estimated parameter θ1 - scaled stator transient inductance, (d) estimated parameter 
θ2 - scaled stator resistance. 

 

These results prove the robustness of the proposed boot-strap estimator with respect to initial seeds of 
stator parameters in the EKF based algorithm, where three runs were performed with different initial 
seeds: In the first one the initial seeds were made equal to the parameters’ real values and in the 
second and third ones they were made equal to 50% below and above of the real values, respectively. 

The initial values used in the algorithms are now presented. For the EKF, the initial state, the state 
covariance matrix and the system and measurement noise covariance matrices were, respectively: 
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The different approaches of the RPEM algorithm were initialized as follows: 

Kf approach: ff approach: 
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Where kf, ff, ug, ng, mean, respectively, Kalman filter, forgetting factor, unnormalized gradient and 
normalized gradient approaches. The exponential initialization of some matrices above serves to 
improve the rate of convergence of the respective parameters. 

The scaling factors k1 to k6 used in (3) and (4) were, respectively, 1, 1, 0.2, 5, 0.5 and 100. Figure 5 
shows the performance of the proposed boot-strap estimator for the different recursive prediction error 
based approaches. The initial seeds for stator parameters were its real values minus 50% and as we can 
see all approaches have a good performance with exception of the forgetting factor approach since its 
convergence time is too long. 

The errors in all estimated parameters are less than 2%, excepting the ones obtained with the 
forgetting factor approach, and the simulated stator current matches the “measured” one (generated by 
the vector control scheme) using the online estimated parameters, as can be seen in fig. 6(a). Also the 
estimated flux waveform very closely matches the simulated one as shown in fig. 6(b). 

 
 (a) (b) 

 
 (c) (d) 

Figure 5: Performance of the proposed boot-strap estimator for the different recursive prediction error based 
approaches. Initial seeds: Rs(0)=Rs-50% and Ls’(0)=Ls’-50%. In the legend ng, ug, ff, kf have the same meaning 

above described. (a) to (d) as in previous figure. 
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 (a) (b) 
Figure 6: Performance of the proposed boot-strap estimator – validation of the estimated states and parameters. 
(a) generated stator current q component and the simulated one using the online estimated parameters and (b) 

simulated/generated and estimated rotor flux q component. All signals are in the rotor reference frame. 

Experimental Results 
A practical experiment has beens selected to demonstrate and validate the identification procedure. 
The experimental results have proven the feasibility and applicability of the boot-strap estimator 
presented in previous sections. 

In this experiment the rotor-referred stator voltages, stator currents and angular speed were sampled at 
2kHz. Elliptic fifth-order low-pass pre-filters with a 500Hz cutoff frequency have been used. Specific 
hardware was developed that has the signals available in the range of ±10V in both rotor and stator 
reference frames, by using the AD2S100 analogue vector processor but only the stator-referred signals 
are used for this work. 

The stator voltages and currents are acquired in the stator reference frame with a data acquisition 
system that consists of the dSPACE development system, ACE Kit 1103, based on the DS1103 PPC 
controller board, the Real-Time Interface (RTI) blockset for Simulink as well as experiment software 
(ControlDesk, MLIB/MTRACE). The stator-referred signals are then converted into the rotor reference 
frame, as shown in fig. 7(a), using the rotor position which is obtained via an incremental encoder and 
from which is computed the rotor speed shown in fig. 7(b). The dSPACE development platform was 
used for the real-time identification task and not for control. 

 
 (a) (b) 
Fig.7: Measured signals. (a) Stator voltage and current d components in the rotor reference frame (p.u.) and (b) 

electrical rotor speed (rad/s). 
 

Digital filters, with the same specifications as the analog ones, were used for filtering the computed 
rotor speed from rotor angle as well as electrical signals after being acquired. Unfortunately, both 
filters introduce delays. In order to synchronize all the signals, the rotor angle and filtered speed had to 
be suitably delayed. 

A 2.2KW induction motor controlled by an industrial frequency converter from ABB has been used. 
The motor was loaded by a powder break which was programmed for 12Nm, about half of the nominal 
torque. 

The vector control scheme developed by us in Simulink and used for simulation experiments and the 
one implemented by ABB are naturally different. On the other hand, the electrical parameters are not 
constants anymore. By tuning the system and noise covariance matrices diagonal values, the gains in 
the identification algorithms are adjusted in order to tract the respective electrical parameters 
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following close the instantaneous variations of the real parameters, or instead, tracking its mean values 
over the time. Therefore some non-similarities exist between the generated signals in Simulink and the 
ones generated by the ABB frequency converter and, consequently, the evolutions of the estimated 
parameters in these two phases of the work are a little bit different mainly visible in real-time 
monitoring. 

The experimental results, presented in fig. 8, show the performance of the estimation of rotor flux 
components and rotor parameters by using the EKF and stator parameters estimation by using the 
recursive prediction error based on Kalman filter approach. 

In order to guarantee the validity of the boot-strap methodology it is necessary to validate the 
identified induction motor model through some validation test to evaluate the performance of the 
algorithms. The validation test was based on the simulation of a modified induction motor model, with 
the online estimated parameters, by injection of the measured voltages and angular speed and 
subsequent comparison of simulated and measured stator current dq components. 

 
 (a) (b) 

 
 (c) (d) 
Fig.8: Performance of the proposed boot-strap estimator with real dada, using the EKF and the RPEM based on 

Kalman filter approach. Initial seeds: Rs(0)=2.5Ω and Ls’(0)=15mH. (a) estimated state x3 - inverse of scaled 
rotor time constant, (b) estimated state x4 - scaled magnetizing inductance, (c) estimated parameter θ1 - scaled 

stator transient inductance, (d) estimated parameter θ2 - scaled stator resistance. 
 

As can be seen, in fig. 9(a), the measured stator current q component, in the stator reference frame, 
and the same one, simulated with the parameters estimated by the above-proposed estimator, are very 
similar. Like the stator current, the estimated rotor flux, in the stator reference frame, closely match 
the same rotor flux simulated with the estimated parameters, as shown in fig. 9(b). 

 
 (a) (b) 

Fig. 9: Performance of the proposed boot-strap estimator with real data – validation of the estimated states and 
parameters. (a) Measured and simulated stator current q component, (b) simulated and estimated rotor flux q 

component. Simulated signals were obtained using the online estimated parameters All signals are in the stator 
reference frame. 
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Conclusions 
The boot-strap estimator introduced in this paper is proposed for joint online estimation of rotor flux 
and physical parameters of vector controlled induction motors with independent estimation of the 
stator parameters by a recursive prediction error based approach. It is not restricted to steady-state 
operation, being capable to operate in transient conditions and the possibility of enabling or disabling 
the stator parameter estimation becomes available, taking into account the momentary machine 
dynamics. The rotor reference frame is used and therefore the sampling frequency can be made lower 
than in the stator one. Due to this, together with the RPEM used for estimation of stator parameters 
and the reduced order model structure adopted for the EKF, the computational effort is reduced with 
respect to a full order EKF. Different approaches have been tested in the RPEM and the comparison 
shows that Kalman filter, normalized gradient and unnormalized gradient have a good performance, in 
the estimation of stator parameters which are the most difficult to be estimated. The main problem is 
not the numerical approach of the estimation method but the lack of persistence of the signals. 
Therefore the estimation should be adjusted to the dynamic conditions of the IM. By this way, rotor 
parameters and flux components are permanently estimated since they are correctly estimated in both 
transient and steady-state conditions, and stator parameters are estimated if the dynamic conditions are 
suitable for this purpose and the estimated values are updated within the EKF, or else estimation 
should be disabled, and values held. Simulation and experimental results have shown that the above-
described start-up of the identification procedure is much more robust than starting the estimation of 
all parameters and fluxes simultaneously. Depending on the application itself, this king of 
identification procedure can be adapted to the adaptive control law as a result of the flexibility and 
independency that becomes available between the states and parameters, being possible to choose 
other estimation configurations. Taking into account that the stator resistance has slow dynamics when 
compared with the others electrical parameters and can be measured or even estimated from time to 
time, then if its value is assumed to be known we can improve even more the robustness of the 
estimation of the other three parameters. The identification procedure that has just been presented in 
this paper can be applied for auto-tuning and adaptive direct field-oriented induction motor control. 
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