
 
 

 

 

Abstract—This paper presents and proposes a new ap-
proach to achieve robust speed estimation in induction motor 
sensorless control. The estimation method is based on a re-
duced-order Extended Kalman Filter (EKF), instead of a full-
order EKF. The EKF algorithm uses a reduced-order state-
space model structure that is discretized in a particular and 
innovative way proposed in this paper. With this model struc-
ture, only the rotor flux components are estimated, besides the 
rotor speed itself. Important practical aspects and new im-
provements are introduced that enable us to reduce the execu-
tion time of the algorithm without difficulties related to the 
tuning of covariance matrices, since the number of elements to 
be adjusted is reduced. 
 

Index Terms—Extended Kalman Filter, speed estimation, 
induction motor, sensorless control. 

I. INTRODUCTION 

In high-performance drives the mechanical speed feed-
back signal is needed to achieve fast torque response over 
the entire speed range. Therefore, a speed sensor is required 
for closed-loop speed or position control in both scalar- and 
vector-controlled drives. An incremental shaft-mounted op-
tical encoder is usually used for this purpose, but it is an 
undesirable requirement because the drive cost is increased 
and additional signal lines are required to connect the en-
coder and the control electronic system, besides the need 
for a shaft extension and mounting arrangement. 

Due to lower cost and greater reliability without mount-
ing problems, sensorless control methods have been mak-
ing remarkable developments in the most recent years [1], 
[2]. Speed estimation methods are being used that avoid the 
speed measurement set-up and commercial sensorless vec-
tor-controlled drives are already available. There are sev-
eral speed estimation techniques in the literature which are 
generally classified in [3] as follows: slip calculation; direct 
synthesis from state equations; model reference adaptive 
system (MRAS) [4]; speed adaptive flux observer; slot 
harmonics; injection of auxiliary signal on salient rotor to 
improve the estimation at low speed [5] and extended Kal-
man filter (EKF) based methods, [6], [7]. 

A recent effort in research on sensorless drive control of 
standard induction motors has been the estimation of rotor 
speed from the measurement of stator voltages and currents 
using either the MRAS [4], [8] or the EKF [6], [7] and [9]. 
This work deals with a new approach for real-time estima-
tion of mechanical speed and rotor flux components by us-
ing a reduced-order EKF. Rather than a full-order EKF for 

speed estimation that also estimates stator current compo-
nents, besides the estimation of rotor flux components [6], 
[7], rotor current components [9] or magnetizing current 
[10], an EKF algorithm based on a reduced-order state-
space model is proposed in this paper. In this case only the 
rotor flux dq components are estimated, besides the rotor 
speed itself. It is well known that some drawbacks associ-
ated to the EKF are the computational effort for real-time 
applications, the complexity and the hard tuning of the co-
variance matrices. Important improvements are achieved 
with respect to all these difficulties using the reduced-order 
EKF proposed in this paper. In fact, with the 3rd-order EKF 
that is obtained, the dimension of all matrices of the algo-
rithm becomes small enough from a practical point of view. 
Consequently, on one hand the computational effort is 
smaller and, on the other hand, the complexity is reduced 
since the tuning of the algorithm becomes simpler, mainly 
due to the lower dimension of the state vector. Thus, the 
genetic algorithm proposed in [6] is not needed any more. 
Furthermore, if needed, a 2nd-order approximation becomes 
practicable and no more fastidious, with the particular dis-
cretization process proposed by the authors in this work. 

II. INDUCTION MOTOR MODEL 

The well-known and established dq dynamic model of a 
squirrel-cage induction motor is represented by its stator 
and rotor space phasors voltage equations and stator and 
rotor flux expressed in terms of stator and rotor currents 
space phasors [11]. 

Considering the induction motor equations, in the stator 
reference frame, and eliminating stator flux and rotor cur-
rents space phasors followed by some algebraic manipula-
tions the following sate-space model structure can be ob-
tained, where the notation x  means /dx dt : 
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with ( )' 1 1
s s M ra L R L− −= − + τ , ' 1 1

s rb L − −= τ , ' 1
sc L −= ω  and 

1
M rd L −= τ . ω  is the electrical rotor speed in rad/s and the 
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electrical parameters rτ , '
sL , ML  and sR  represent the ro-

tor time constant, stator transient inductance, mutual induc-
tance and stator resistance, respectively. 

This is the type of full-order state-space model used for 
speed estimation using an EKF like in [6] and [7]. Instead 
of this full-order model, a reduced-order state-space model 
structure is derived here for speed estimation. It is obtained 
rewriting (1a), in the general form ( ) ( ) ( )x t Ax t Bu t= +  and 

( ) ( )y t Cx t= , resulting, respectively, as follows: 
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(2a) being the new state equation and (2b) the new output 
equation. The state vector and the input and output vectors 
are given by, respectively: 
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Ty y y= , 

with the outputs 1y  and 2y  given by: 
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III. THE REDUCED-ORDER EXTENDED KALMAN FILTER 

Normally, the continuous-time state-space model (1) is 
discretized using the approximation given by the linear 
terms of the Taylor’s series development which is accept-
able if the sampling time Ts is small enough. For the re-
duced-order model (2), suggested in this work, an innova-
tive discretization process is proposed. Thus, the state equa-
tion (2a) is discretized using the following and well known 
relationships [12]: 
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but the discrete output equation corresponding to (2b) is 
obtained directly with the first derivative of the stator cur-
rent components computed by means of a filter of the type 
[13]: 
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The only requirement is that the delay introduced by the 
filter be similar to the one introduced by the approximation 
used in (3). 

For a sampling frequency of 5kHz the approximations: 
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have been used successfully with very good results. The 
matrices Ad and Bd are the discrete forms of A and B. More-
over, the state vector is extended to the rotor speed as a 
new state variable to be jointly estimated with the rotor flux 
components, and the extended state vector is given by: 

1 2 3( ) ( ) ( ) ( ) ( ) ( ) ( )
T Ts s

e rd rq e e ex k k k k x k x k x k = ψ ψ ω ==     . 

Assuming ( 1) ( )k kω + = ω , that is to say, the speed does 
not change during the sampling interval, the following sto-
chastic nonlinear model is obtained: 

( )( 1) ( ), ( ), ( )e e sx k f x k u k r k+ = =  

( )
( )

1 1
1 3 2 1 1

1 1
3 1 2 2 2

3 3

1 ( ) ( ) ( ) ( ) ( )

( ) ( ) 1 ( ) ( ) ( )

( ) ( )

r s e e e s M r s s

e e s r s e M r s s

e s

T x k x k x k T L T u k r k

x k x k T T x k L T u k r k

x k r k

− −

− −

 − τ − + τ +

= + − τ + τ +


+

 (5a) 

[ ]1 2( ) ( ) Ty y k y k= =  

( )
( )

1
1 1 3 2 1

1
2 3 1 2 2

( ), ( ) ( ) ( ) ( ) ( )
( ), ( ) ( ) ( ) ( ) ( )

e m r e e e m

e m e e r e m

h x k r k x t x t x t r k
h x k r k x t x t x t r k

−

−

 −τ − + = = 
− τ + 

 (5b) 

( )
( )

1 '

1

1 '
2

( ) ( )( )
( ) ( ) ( )

k

k

s s
sd s M r sd s sd t t

s s
sq s M r sq s sq t t

u k R L i k L iy k
y

y k u k R L i k L i

−

=

−

=

 − + τ − = = 
− + τ − 

 (5c) 

The EKF can now be applied to the non-linear model 
described by (5a) to (5c) and the state vector is estimated in 
order to minimize the prediction error, ( ) ( ) ( )k y k y kε = − . 

If a full-order EKF based on the model (1) was used, the 
dimension of the state vector, ex , would be 5 1×  and the 
system, distribution and output matrices, (Ad, Bd and Cd) 
would have dimensions of 5 5× , 5 2×  and 2 5× , respec-
tively. Furthermore, the system noise covariance matrix 
would have dimension of 5 5× , what means that we would 
have 5 diagonal elements to be tuned. On the other hand, 
the gradient matrices of the EKF algorithm would be 5 5×  
and 2 5× . 

If the reduced-order EKF based on (5) is used, the di-
mension of the state vector is 3 1×  and those matrices have 
the following dimensions: 3 3× , 3 2× , 2 3× , 3 3× , 3 3×  
and 2 3× , respectively. Consequently, the global computa-
tional effort is reduced and we need to tune only 3 elements 
in the diagonal system noise covariance matrix, instead of 
5. Actually, we have to tune just 2 elements since, among 
the 3 ones, 2 of them are equal. 

There is another important advantage of the proposed 
reduced-order model. The matrices A, B and C do not de-
pend neither on the stator parameters nor on the first de-
rivative of the stator current components as can be seen in 



 
 

 

description (2). These parameters and derivatives only ap-
pear in the virtual outputs calculated using (5c). So, we can 
expect a good robustness with respect to these drawbacks 
since they can be taken into account by tuning conveniently 
the measurement noise covariance matrix. This means that 
the errors due to these factors are converted to a lack of 
confidence in the measures. 

IV. EXPERIMENTAL RESULTS 

The above-proposed reduced-order EKF algorithm has 
been investigated with simulation tests by means of Simu-
link and the real time validation has been performed using 
the dSPACE ACE kit based on the DS1103 controller 
board. A 3kW, 400V, 1430 rpm, squirrel-cage induction 
motor with an incremental encoder was used, loaded by a 
programmable powder brake, to achieve the experimental 
results shown in this section. 

This work is centered in the reduced-order EKF identifi-
cation algorithm which was widely tested in real time op-
eration using the dSPACE kit. For the time being the induc-
tion motor has been controlled by an ABB frequency con-
verter of the ACS600’s family, with open loop speed con-
trol. 

The speed estimation is based on the stator voltage and 
current dq components. In the practical implementation, 
these signals, expressed in the stator reference frame, are 
filtered with analogue elliptic low-pass pre-filters of fifth 
order with a 500Hz cutoff frequency. A sampling fre-
quency of 5 kHz was used, and the speed estimation is 
computed with the same cadency. 

The electrical parameters of the induction motor were 
previously estimated by means of the identification tech-
niques proposed by the same authors in the references [14] 
and [15]. The estimated values of the parameters are pre-
sented in table 1. 

Table 1: Electrical parameters used in the reduced-order EKF algorithm 

Parameter Estimated value 

rτ  (ms) 160 
'
sL  (mH) 10 

ML  (mH) 200 

sR  (Ω ) 2.4 
 

In the implementation scheme, within a simulink block, 
the third state, corresponding to the rotor speed, was scaled 
as follows: 

3( ) ( ),   0.0032ex k K k   with K= ω = . (6) 

This scaling procedure was performed for numerical and 
practical reasons. On the one hand, the state variables have 
very different magnitudes since the rotor flux has amplitude 
close to one and the nominal electrical speed is about 300 
rad/s. 
 

The result of these different sizes is twofold: numerical 
problems can arise and the states with reduced size can be 
estimated with significant errors. On the other hand, the 
speed scaling as in (6) gives another advantage of practical 
interest: although with different dynamics, the state vari-
ables have approximately the same magnitude and the tun-
ing of the diagonal elements of the system covariance ma-
trix become similar. Moreover, since the two components 
of the rotor flux have the same magnitude and dynamics, 
only two elements of the system covariance matrix (Q) 
must be tuned: 

( )11 22 33 ,0Q diag Q Q Q=    . (7) 

In (7) diag defines a diagonal matrix with 0ijQ =  and 

6
33 22 11 10Q Q Q −≈ = = . (8) 

Furthermore, the measurement noise covariance matrix 
has been fixed as follows: 

[ ]( )11 22 22 11,0 , 1mR diag R R  with  R R= = = . (9) 

The same value for 22R  and 11 ( 1)R =  is possible be-
cause the two outputs in (5c) are similar in terms of magni-
tude and dynamics. Considering (9) the only elements that 
must be tuned are 22 11( )Q Q=  and 33Q  which control the 
dynamics of the reduced-order EKF with respect to flux 
and speed, respectively. This is very important because the 
EKF tuning is performed in an ah hoc way that is much 
simpler with the reduced-order EKF proposed in this paper 
than with a full-order one. 

The state vector and the state covariance matrix were 
initialized, respectively, as follows: 

[ ](0) 0 0 0 T
ex = , (10) 

( )8 8 8(0) 10 10 10 ,0P diag − − − =   . (11) 

A. Transient versus steady-state performance 

The effect of the state covariance matrix given by (11) is 
not important but in the first instants. On the contrary, the 
system covariance matrix Q plays an important role in the 
behavior of the algorithm mainly the element Q33 which 
controls directly the gain of the EKF relatively to the esti-
mated speed. Fig. 1 shows the effect of Q33 in the estimated 
speed when it is selected around the value 

6
11 2210 ( )Q Q−= = . 
The analysis of fig. 1 enables us to conclude that the 

performance of the reduced-order EKF is a compromise 
between transient and steady-state conditions of the motor 
operation. This means that the error in the estimated speed 
can be very low in transient conditions being higher in 
steady-state operation and vise-versa. 

The results of fig. 2 show the performance of the re-
duced-order EKF in continuous dynamic operation. The 
speed reference consists of a square waveform with fre-



 
 

 

quency about 1.7 Hz. The following system covariance ma-
trix was used: 

( )6 6 610 10 10 ,0Q diag − − − =   . 

In fig. 3 is shown the speed reference (square wave with 
period of 4s and 30 rpm of amplitude), and measured and 
estimated speeds. The load torque is about 10 Nm. 

 
Fig. 1 Transient versus steady-state performance of the reduced-order 

EKF. Above: reference, measured and estimated speeds in a speed reversal 
from 1500−  to 1500+ rpm. Bellow: Speed error in rad/s. 

 
Fig. 2 Performance of the reduced-order EKF with speed reversals be-

tween ±1500 rpm. The frequency of the speed reference is 1.7 Hz. 

 
Fig 3 Performance of the algorithm with speed reversals between ±30 rpm. 

The period of speed reference is 4s and the load torque is 10 Nm. 

B. Sensitivity to parameter variation 

A series of tests were achieved in order to evaluate the 
behavior of the algorithm with respect to parameter varia-
tion. The performance depends on speed range and load 
torque. At high speeds, above some hundreds of rpm, the 
speed error is reduced (less than 3.5%) even with full load 
(15 Nm) as shown in fig. 4(a) to 4(d). The electrical pa-
rameters were varied in a range of ±50% around their esti-
mated values, with a constant speed of 1500 rpm, with 
nominal torque. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4 Performance of the reduced-order EKF at 1500 rpm, under full load, 
when the electrical parameters are varied from 50%−  to 50%+ . Error 

(%) in the estimated speed for variation of: (a) rotor time constant, (b) sta-
tor transient inductance, (c) mutual inductance and (d) stator resistance. 



 
 

 

The higher errors happen under full load and at low 
speeds as shown in fig. 5(a) to 5(d). In this case the electri-
cal parameters were varied in a range of ±50% but with a 
constant speed of 100 rpm. 

C. Performance in several conditions of operation 

Fig. 6 to 9 below, show the performance of the EKF al-
gorithm in a series of transients and steady-state zones, in-
cluding load and no load, as well as zero speed. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5 The same as in fig. 4 but with the motor running at a constant speed 
of 100 rpm. 

 
(a) 

 
(b) 

Fig. 6 (a) Test with inversions between nominal speed, followed by a zero 
speed command and new inversions between ±100rpm and ±500rpm. (b) 

Zoom in. Load torque of 10Nm. 

 
(a) 

 
(b) 

Fig. 7 (a) Test with inversions between ±500rpm and ±100rpm, followed 
by a zero speed command and acceleration to nominal speed. (b) Zoom in. 

No load torque. 

One important aspect that was also investigated is the 
range of parameter variation that keeps the convergence of 
the algorithm. All parameters, each one in his turn, were 
varied during real time operation under the worst condi-
tions, that is to say, with continuous reversals between 
±100 rpm with nominal torque. The results are summarized 
in table 2. 

The speed error becomes very high with a rotor time 
constant as low as some tens of ms and the same occurs for 
both limits of the mutual inductance. The estimated speed 
becomes very noisy for values of stator transient inductance 
above 40-50mH. The algorithm becomes quickly unstable 
when the stator resistance is higher than 3.4Ω . 



 
 

 

 
(a) 

 
(b) 

Fig. 8 (a) Test with a start-up followed by an inversion between ±100rpm, 
with no load torque. (b) Zoom in. Perturbations with a load torque of 

10Nm were included in the steady-state zones. 

 
(a) 

 
(b) 

Fig. 9 (a) Test with a start-up followed by an inversion between ±100rpm, 
with load torque of 10Nm. (b) Zoom in. Perturbations with no load torque 

were included in the steady-state zones. 

Table 2: Parameter variation that keeps the convergence of the algorithm 
with continuous reversals between ±100 rpm with nominal torque. 

Parameter Range of variation 

rτ  (ms) 40 →  500 
'
sL  (mH) 0 →  50 

ML  (mH) 0 →  350 

sR  (Ω ) 0 →  3.4 
 

V. CONCLUSIONS 

A new approach to achieve high-performance and robust 
speed estimation in induction motor drives, namely, in sen-
sorless control, utilizing a reduced-order EKF algorithm, 
has been presented in this paper. 

A series of simulation and experimental tests have dem-
onstrated a good performance with respect to the parame-
ter’s variation and noise in the full range of load torque and 
speed. However, at very low speeds (below a few hundreds 
of rpm) the error in the estimated speed can become sig-
nificant if the parameters are not precisely known mainly 
the mutual inductance. A series of real time tests using the 
dSPACE ACE kit based on DS1103 controller board 
proved the conclusions of the simulation research and some 
experimental results were presented. 

The computational effort is reduced and the tuning of 
the algorithm is not hard any more when compared with the 
full-order EKF and no more complex and time-consuming 
procedures are required for this purpose as happened in [6]. 
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