
 

Abstract—This paper presents a comparative study between 
a new approach for robust speed estimation in induction motor 
sensorless control, using a reduced order Extended Kalman 
Filter (EKF), and the one performed by the full order EKF. 
The new EKF algorithm uses a reduced order state-space 
model that is discretized in a particular and innovative way. In 
this case only the rotor flux components are estimated, besides 
the rotor speed, while the full order EKF also estimates stator 
current components. This new approach strongly reduces the 
execution time and simplifies the tuning of covariance 
matrices. The performance of speed estimation using both EKF 
techniques is compared with respect to computation effort, 
tuning of the algorithms, speed range including low speeds, 
load torque conditions and robustness relatively to motor 
parameter sensitivity. 
 

I. INTRODUCTION 
Due to lower cost and greater reliability without 

mounting problems, sensorless control methods have been 
making remarkable developments in the most recent years 
[1], [2]. Speed estimation methods are being used that avoid 
the speed measurement set-up and commercial sensorless 
vector-controlled drives are already available. 

There are several speed estimation techniques in the 
literature which are generally classified in [3] as follows: 
slip calculation; direct synthesis from state equations; model 
reference adaptive system (MRAS) [4]; speed adaptive flux 
observer; slot harmonics; injection of auxiliary signal on 
salient rotor to improve the estimation at low speed [5] and 
extended Kalman filter (EKF) based methods, [6], [7]. 

A recent effort in research on sensorless drive control of 
standard induction motors has been the estimation of rotor 
speed from the measurement of stator voltages and currents 
using either the MRAS [4], [8] or the EKF [6], [7] and [9]. 

This work presents a comparative study between full and 
reduced order EKF speed estimation techniques for 
induction motor sensorless control, relatively to 
computation effort, tuning of the algorithms, speed range 
including low speeds, load torque conditions and robustness 
with respect to parameter variation. Firstly, a new approach 
for real-time estimation of mechanical speed and rotor flux 
components using a reduced order EKF is presented and 
secondly, this approach is compared with the full order EKF 
that also estimates stator current components, besides the 
estimation of the speed itself and rotor flux components like 
in [6] and [7]. Instead of these flux components, the rotor 
current ones are estimated in [9] and the magnetizing 

current is estimated in [10]. 
In the new approach only the rotor flux dq components 

are estimated, besides the rotor speed itself. Consequently, 
practical and important improvements are achieved with 
respect to the well known drawbacks associated to the EKF, 
like the computational effort for real-time applications, the 
complexity and the hard tuning of the covariance matrices. 
In fact, with the 3rd order EKF that is obtained, the 
dimension of all matrices of the algorithm becomes small 
enough from a practical point of view. On the one hand the 
computational effort is smaller and, on the other hand, the 
complexity is reduced since the tuning of the algorithm 
becomes simpler, mainly due to the lower dimension of the 
state vector. Thus, the genetic algorithm proposed in [6] is 
not needed any more. Furthermore, if needed, a 2nd order 
approximation becomes practicable and not heavy with the 
special discretization process proposed by the authors in this 
work. 

New improvements as well as important and practical 
aspects are described in this paper. They contribute strongly 
to reduce the execution time of the new algorithm without 
difficulties related to the tuning of covariance matrices. 

The reduced order EKF algorithm has been implemented 
and validated in real-time operation and the performance of 
speed estimation using both EKF techniques are compared 
with respect to computation effort, tuning of the algorithms, 
parameter variation and other important aspects. 

II. FULL AND REDUCED ORDER MODEL STRUCTURES FOR 
THE EXTENDED KALMAN FILTER 

The well-known and established dq dynamic model of a 
squirrel-cage induction motor is represented by its stator and 
rotor space phasors voltage equations and stator and rotor 
flux expressed in terms of stator and rotor currents space 
phasors [11]. 
Considering the induction motor equations in the stator 
reference frame, and eliminating stator flux and rotor 
currents space phasors followed by some algebraic 
manipulations, the following state-space model structure can 
be obtained, where x  means dx

dt : 
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1 0 0 0
0 1 0 0

T Ts s s s s s
sd sq sd sq rd rqy i i i i

    = = ψ ψ     
, (1b) 

The electrical parameters rτ , '
sL , ML  and sR  represent the 

rotor time constant, stator transient inductance, mutual 
inductance and stator resistance, respectively, and ω  is the 
electrical rotor speed in rad/s. The variables ,

s
sd qu  and ,

s
sd qi  

are the stator voltage and current dq components, 
respectively, and ,

s
rd qψ  are the referred rotor flux ones. The 

other parameters of (1) are given by: 

( )' 1 1
s s M ra L R L− −= − + τ , ' 1 1

s rb L − −= τ , ' 1
sc L −= ω , 1

M rd L −= τ  

The state-space model (1) is the type of model structure 
used for speed estimation using full order EKF, like in [6] 
and [7]. The state vector of the state-space model (1), 

 ( ) ( ) ( ) ( ) ( )
Ts s s s

sd sq rd rqx t i t i t t t = ψ ψ  , (2) 

also includes the measured stator current dq components 
besides the rotor flux dq components that must be jointly 
estimated with the rotor speed. The state-vector (2) is then 
extended to rotor speed that becomes a new state variable. 

Instead of the resulting 5th order model, a reduced order 
state-space model structure is now derived for speed 
estimation. It is obtained rewriting (1a), in a different way 
but keeping the general form of ( ) ( ) ( )x t Ax t Bu t= + , and 

( ) ( )y t Cx t= , resulting, respectively, as follows: 
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Equations (3a) and (3b) are the reduced state equation 
and the new output equation, respectively. Thus, the state 
vector and the input and output vectors become, 
respectively: 

 [ ]1 2( ) ( ) ( ) ( ) ( )
T Ts s

rd rqx t t t x t x t = ψ ψ =  , (4a) 

 [ ]1 2( ) ( ) ( ) ( ) ( )
T Ts s

sd squ t i t i t u t u t = =  , (4b) 

 [ ]1 2( ) ( ) ( ) Ty t y t y t= , (4c) 

with the outputs 1y  and 2y  given by: 

 ( )1 '
1

s s s
sd s M r sd s sdy u R L i L i−= − + τ − , (5a) 

 ( )1 '
2

s s s
sq s M r sq s sqy u R L i L i−= − + τ − . (5b) 

A. Full order EKF 
For speed estimation using a full order EKF, the model 

structure given by (1a) and (1b) is discretized directly using 
the following and well known relationships [12]: 

2 2 3 3 2 2 3

,
2! 3! 2! 3!

s s s s
d s d s

A T A T ABT A BT
A I AT B BT= + + + + = + + + . (6) 

Furthermore, the state vector (2) is extended to rotor 
speed, as follows, 

 ( ) ( ) ( ) ( ) ( ) ( )
Ts s s s

e sd sq rd rqx k i k i k k k k = ψ ψ ω   (7) 

It is assumed that the real speed varies like a random 
walk, according to: 

 ( 1) ( ) ( )k k r kωω + = ω +  (8) 

with ( )r kω  white Gaussian noise. Considering the discrete 
output matrix dC C= , and applying an approximation of 
(6) to (1a) a 5th order nonlinear state-space model is 
obtained. Then the denominated full order EKF can be used. 
Normally the approximation to the linear terms of (6) is 
used, which is acceptable if the sampling time sT  is small 
enough. This procedure is similar to compute the derivatives 
in (1a) by means of the well-known Euler’s formula. 

B. Reduced order EKF 
For the reduced order model (3), proposed in this work, 

an innovative discretization process is applied. Although the 
state equation (3a) had been discretized using (6) the 
discrete output equation corresponding to (3b) was obtained 
directly with the first derivative of the stator current 
components computed not by means of Euler’s 
approximation but using a filter of the type [13]: 

 
1

, ,
0

1 ( )
k

n

sd q i sd q k st t is

i C i t iT
T

−

= =
≈ −∑ . (9) 

It is only required that the delay introduced by the filter 
be similar to the one introduced by the approximation used 
in (6). For a sampling frequency of 5kHz the 
approximations: 

 d sA I AT≈ +  and d sB BT≈ , (10a) 

, , , ,
,

11 ( ) 18 ( 1) 9 ( 2) 2 ( 3)
6k

sd q sd q sd q sd q
sd q t t

s

i k i k i k i k
i

T=

− − + − − −
≈ , (10b) 

have been used successfully with very good results. The 
matrices Ad and Bd are the discrete forms of A and B. The 
state vector (4a) is extended to the rotor speed as a new state 
variable to be jointly estimated with the rotor flux 
components and the extended state vector is given by: 

31 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

TTs s
e rd rq e e ex k k k k x k x k x k  = ψ ψ ω =    , (11) 

assuming that the real speed varies according to (8). 
Applying (10a) and (10b) to (3a) and (3b), respectively, and 
adding the equation (8), the following stochastic nonlinear 
reduced order model is obtained: 

 ( )( 1) ( ), ( ), ( )e e sx k f x k u k r k+ = =  
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The reduced order EKF can now be applied to the 
nonlinear model described by (12) to (14) and the state 
vector is estimated in order to minimize the prediction error, 

( ) ( ) ( )k y k y kε = − . 

C. Comparison relatively to the dimension of the matrices 
When the full order EKF based on (1) is used, the 

dimension of the state vector (7) is 5 1×  and the system, 
distribution and output matrices, ( dA , dB  and dC ) have 
dimensions of 5 5× , 5 2×  and 2 5× , respectively. 
Furthermore, the system noise covariance matrix (Q) has 
dimension of 5 5× , that is to say we have 5 diagonal 
elements to be tuned. On the other hand, the gradient 
matrices F and H of the EKF algorithm presented in the 
appendix section have dimensions of 5 5×  and 2 5× , 
respectively. When the reduced order EKF based on (3) is 
used, the dimension of the new state vector (11) is 3 1×  and 
those matrices have the following dimensions: 3 3× , 3 2× , 
2 3× , 3 3× , 3 3×  and 2 3× , respectively. Consequently, 
the global computational effort is reduced and we need to 
tune only 3 elements in the diagonal system noise 
covariance matrix, instead of 5. Actually, we have to tune 
just 2 elements since, among the 3 ones, 2 of them can be 
equal. 

Another important advantage of the proposed reduced 
order model is that the matrices A , B  and C , do not 
depend neither on the stator parameters nor on the first 
derivative of the stator current components as can be seen in 
description (3). These parameters and derivatives only 
appear in the virtual outputs calculated according to (14). 
So, we can expect a good robustness with respect to these 
drawbacks since they can be taken into account by tuning 
conveniently the measurement noise covariance matrix. This 
means that the errors due to these factors are converted to a 
lack of confidence in the measures. 

III. EXPERIMENTAL RERSULTS 
Both EKF algorithms have been investigated with 

simulation tests by means of Simulink. The real-time 
validation and comparison have been performed using the 
dSPACE ACE kit based on the DS1103 controller board. It 
was used a 3kW, 400V, 6.3A, 50Hz, 1430rpm, squirrel-cage 
induction motor (ref. LSFMV100) with an incremental 

encoder and loaded by a programmable powder brake (ref. 
FP15/30) from Leroy Somer, to achieve the experimental 
results shown in this section. The focus of this work is the 
comparison of both EKF identification algorithms which 
were widely tested in real-time operation using the dSPACE 
kit. The induction motor has been controlled by an ABB 
frequency converter of the ACS600’s family, with open 
loop speed control. 

For both algorithms the speed estimation is based on the 
stator voltage and current dq components. In the practical 
implementation, these signals, expressed in the stator 
reference frame, are filtered with analogue elliptic low-pass 
pre-filters of fifth order with a 500Hz cutoff frequency. A 
sampling frequency of 5 kHz was used, and the speed 
estimation is computed with the same cadency. 

The electrical parameters of the induction motor were 
previously estimated by means of the identification 
techniques proposed by the same authors in the references 
[14] and [15]. The estimated values of the parameters are 
the following: 160msrτ = , ' 10mHsL = , = 200mHML  

and 2.4sR = Ω . 

A. Some implementation details 
The state variables have very different magnitudes since 

the rotor flux has amplitude close to one and the nominal 
electrical speed is about 300 rad/s. This happens in the 
extended sate vector (11) used by the reduced order EKF. In 
the implementation scheme, within a simulink block, the 
third state, corresponding to the rotor speed, was scaled as 
follows: 

 3( ) ( ), with  0.0032ex k K k   Kω ω= ω = . (15) 

The problems related to these different sizes are twofold: 
firstly, numerical problems can arise and, secondly, the 
states with reduced size can be estimated with significant 
errors. On the other hand, the speed scaling according to 
(15) gives another advantage of practical interest. Although 
with different dynamics, the state variables have 
approximately the same magnitude and the tuning of the 
diagonal elements of the system covariance matrix become 
similar. Moreover, since the two components of the rotor 
flux have the same magnitude and dynamics, only two 
elements of the system covariance matrix (Q) must be 
tuned: 

 ( )11 22 33 33 22 11,0 , with  Q diag Q Q Q   Q Q Q= ≈ =   . (16) 

In (16) diag defines a diagonal matrix, with 0ijQ = . 
For the full order EKF, the extended state vector (7) also 

includes the stator current dq components which should be 
equally scaled being an additional requirement. In this case 
the following scaling procedure was used: 

 
1 2 5
( ) ( ), ( ) ( ), ( ) ( )s s

e i sd e i sq ex k K i k x k K i k x k K kω= = = ω . (17) 

In (17) the scaling factors iK  and Kω  are equal to 0.2 
and 0.0032, respectively. Therefore, the tuning of the 
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system covariance matrix becomes more difficult since it 
has now five elements: 

 ( )11 22 33 44 55 ,0Q diag Q Q Q Q Q=    , (18) 

with 55 22 11 44 33Q Q Q Q Q≈ = ≈ = . 
Furthermore, in both algorithms, the measurement noise 

covariance matrix has been fixed as follows: 

 [ ]( )11 22 22 11,0 , with  1mR diag R R R R= = = . (19) 

If the measurement noise covariance matrix is normalized 
as in (19), the tuning of both EKF algorithms will be 
simplified since it will be achieved just by means of the 
system covariance matrices (16) and (18), respectively, for 
reduced and full EKF. The above considerations are very 
important because the EKF tuning is performed in an ad hoc 
way and becomes much simpler with the reduced order EKF 
than with the full order one. 

B. Initialization of the EKF algorithms 
The full order EKF was initialized as follows: 

 [ ](0) 0.1 0.1 0 0 0 T
ex = , (20a) 

 ( )8 8 8 8(0) 10 10 10 10 0 ,0P diag − − − − =   , (20b) 

( )6 6 5 5 6(0) 10 10 10 10 10 ,0Q Q diag − − − − − = =   , (20c) 

and the reduced order EKF initialization becomes simpler 
and was performed as follows: 

 [ ](0) 0 0 0 T
ex = , (21a) 

 ( )8 8(0) 10 10 0 ,0P diag − − =   , (21b) 

 ( )6 6 7(0) 10 10 10 ,0Q Q diag − − − = =   . (21c) 

The effect of the state covariance matrix (P) of prediction 
error, given by (20b) and (21b) in case of full  and reduced 
order EKF, respectively, is not important after the first 
instants. Moreover, its initialization is not critical in both 
EKF algorithms. 

C. Transient versus steady-state performance 
The system covariance matrices Q, given by (20c) and 

(21c), play an important role in the behavior of the 
algorithms mainly the elements Q33 in (21c) and Q55 in 
(20c), which control directly the gain of the EKF 
algorithms, relatively to the estimated speed. Fig. 1 and 2 
show the effect in the estimated speed when tuning Q55 and 
Q33 which are used in full and reduced order EKF, 
respectively. 

In fig. 1, the rotor speed was estimated using the reduced 
order EKF with: 

 ( )6 6 5 5 610 10 10 10 10 ,0Q diag − − − − − =    (22) 

In fig. 2 the element Q55 of (22) was changed from 10-6 to 
10-5. With respect to the reduced order EKF, the rotor speed 

was estimated with: 

 ( )6 6 710 10 10 ,0Q diag − − − =    (23) 

In fig. 2 the element Q33 of (23) was changed from 10-7 to 
10-6. The main conclusions from the analysis of fig. 1 and 2 
are the following: firstly, the performance of both EKF 
algorithms is very similar and, secondly, it is a compromise 
between transient and steady-state operation of the motor. 
This means that the error in the estimated speed can be very 
low in transient conditions being higher in steady-state 
operation and vise-versa. 

 

 
Fig. 1.   Comparison of the transient versus steady-state performance of the 
full  and reduced order EKF with Q55=10-6 and Q33=10-7, respectively. (a) 

reference, measured and estimated speeds in a speed reversal from 1500−  
to 1500+ rpm. (b) speed error in rad/s. 

 

 
Fig. 2.   The same of fig. 1 but with Q55=10-5 and Q33=10-6. 

D. Comparison of the sensitivity to parameter variation 
A series of tests were achieved in order to compare the 

behavior of the algorithms with respect to parameter 
variation. The performance depends on speed range and 
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load torque but the main conclusion is that it is similar for 
both algorithms. At high speeds, above some hundreds of 
rpm, the speed error is reduced even with full load as shown 
in fig. 3(a) to 3(d). The electrical parameters were varied in 
a range of ±50% around their estimated values, at a constant 
speed of 1500 rpm, with nominal torque. 

The higher errors happen under full load at low speeds as 
shown in fig. (4). Once again, the electrical parameters were 
varied in a range of ±50% but at a constant speed of 100 
rpm. The magnitude of the errors in the estimated speed is 
similar for both algorithms. In both fig. 3 and 4, the errors 
were filtered with a non-causal filter in order to guarantee 
the legibility of the comparison since the errors are very 
noisy, and to avoid the delay in the filtered errors. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3.   Comparison of full and reduced order EKF at 1500 rpm, under full 
load, when the electrical parameters are varied from -50% to +50%. Error 

(%) in the estimated speed for variation of: (a) rotor time constant, (b) stator 
transient inductance, (c) mutual inductance and (d) stator resistance. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4.   The same of fig. 3 but with the motor running at a constant speed 
of 100 rpm. 

E. Comparison in general dynamic conditions 
The performance of both EKF algorithms can be 

compared by the analysis of fig. 5. A period of 40 seconds 
is shown in fig. 5(a) with a series of reversals between 
different speeds values and steady-state zones, including 
nominal, low as well as zero speed zones.  

 

 
(a) 
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(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 5.   Performance of the EKF algorithms in general dynamic conditions: 
(a) comparison in a series of transients and steady-state zones during 40 

seconds; (b) absolute errors in rad/s; (c) to (f) magnifications of (a). 

Fig. 5(b) shows the absolute errors of the estimated 
speeds in rad/s. Some details are focused from fig. 5(c) to 
fig. 5(f), with magnifications of fig. 5(a). As can be seen the 
performance of the reduced order EKF is as good as the full 
order one either in transient or in steady-state operation. Fig. 
6 shows the performance of both EKF algorithms in 
continuous dynamic operation. The speed reference consists 
of a square waveform with frequency about 1.7 Hz. In fig. 7 

the speed reference (square wave with period of 4s and 30 
rpm of amplitude), measured and estimated speeds are 
shown. The load torque is about 10 Nm. 
 

 
Fig. 6.   Performance of the EKF algorithms with speed reversals between 

±1500 rpm. The frequency of the speed reference is 1.7 Hz. 
 

 
Fig. 7.   Performance of the EKF algorithms with speed reversals between 
±30 rpm. The period of speed reference is 4s and the load torque is 10 Nm. 
 

F. Comparison of the execution times 
The execution times (in µs) of both EKF algorithms are 

presented in some detail in table I. In this case the absolute 
times are not the most important since they can be reduced 
if the EKF algorithms are implemented in a low level 
programming language instead of a high level one such as 
Simulink. Moreover, they also depend on the hardware. The 
EKF algorithms were implemented using the DS1103 
controller board from dSPACE company. What is important 
here is to compare the difference between the execution 
time of the reduced order EKF with the full order one. The 
steps referred in the first column of table I are shown in the 
appendix section. It becomes clear from the analysis of table 
I that the global computation effort is strongly reduced from 
14.2µs with the full order EKF to 7.6µs with the reduced 
order EKF. 

TABLE I 
Execution times of the EKF algorithms. 
 Execution times (µs) 

Blocks of the EKF Full order Reduced order 
Steps: 1 and 2 1.6 0.48 
Steps: 4 and 6 0.9 0.12 
Steps: 3 and 5 4 11.2 
Steps: 7 and 8 1.1 2.4 

Total: 7.6 14.2 
 

G. Convergence limits relatively to errors in parameters 
The range of parameter variation that keeps the 

convergence of the algorithms was also compared and the 
results are shown in table II. All parameters, each one in its 
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turn, were varied during real-time operation under the worst 
conditions, that is to say, with continuous reversals between 
±100 rpm with nominal torque. The behaviors of both 
algorithms are similar. However, the reduced order EKF 
tends to diverge easier than the full order one above the 
higher limits of stator transient inductance, mutual 
inductance and stator resistance. The stator transient 
inductance is used directly in (3b) whereas in (1a) the 
inverse value is used. This justifies the difference in table II. 

TABLE II 
Parameter variation that keeps the convergence of the algorithms with 

continuous reversals between ±100 rpm with nominal torque. 
 Range of variation 

Parameter Full order EKF Reduced order EKF 
τr(ms) 40 →  >1000 40 →  >1000 

Ls’(mH) >0 →  >80 0 →  50 
LM(mH) 0 →  350 0 →  350 
Rs (Ω ) 0.2 →  3.4 0 →  3.4 

 

IV. CONCLUSION 
A new approach for robust speed estimation in high-

performance induction motor drives, namely, in sensorless 
control, was presented. It is based on a reduced order EKF 
algorithm and on an innovative methodology used in the 
state-space model discretization. A comparative study 
between full and reduced order EKF algorithms was 
presented. A series of simulation and experimental tests 
have been achieved using both EKF algorithms. The results 
have demonstrated a good performance of the reduced order 
EKF algorithm with respect to the parameter’s variation and 
noise in the full range of load torque and speed. The 
performance of the new EKF algorithm has proved to be as 
good as the one obtained with the full order EKF. Some 
difficulties appear at very low speeds (below a few 
hundreds of rpm), as it happens with the full order EKF, 
where the error in the estimated speed can become 
significant if the parameters are not precisely known, mainly 
for the mutual inductance. A series of real-time tests using 
the dSPACE ACE kit based on DS1103 controller board 
proved the conclusions of the simulation research and some 
experimental results were presented. 

The main conclusion and contribution of this work is that 
the well-known drawbacks of the EKF, like heavy 
computational effort for real-time applications, complexity 
and hard tuning of noise covariance matrices are widely 
overcome using the proposed reduced order EKF. Very 
important and practical aspects and new improvements were 
introduced that strongly reduce the execution time of the 
new algorithm and simplify the tuning of covariance 
matrices, since the number of elements to be adjusted is 
reduced. In fact, the execution time of the new algorithm is 
about half of the full order EKF and the tuning of the 
algorithm is not hard any more when compared with the full 
order EKF and no more complex and time-consuming 
procedures are required for this purpose as suggested in [6]. 

APPENDIX 

Steps of the EKF algorithm: 
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9. Go to step 1
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