

Equilíbrio líquido-vapor de solventes na presença de solutos não voláteis

Bruno Miguel Ramos Parente

Dissertação apresentada à Escola Superior de Tecnologia e de Gestão de Bragança para obtenção do Grau de Mestre em Engenharia Química

Orientado por Professora Olga Ferreira

> Bragança 2009

Agradecimentos

À Professora Olga Ferreira, minha orientadora, pela disponibilidade, compreensão, incentivo e acima de tudo, pelos conhecimentos transmitidos tanto a nível académico como humano.

A todos os professores, em especial aos do departamento de Eng. Química, que de forma directa contribuíram para a minha formação académica.

A toda a minha família, em especial aos meus pais e irmã, pela oportunidade concedida, pelo apoio, compreensão e por estarem sempre presentes.

À minha namorada, Patrícia, pela atenção, compreensão, paciência e carinho inesgotáveis.

A todos os meus amigos, pela colaboração, apoio e companheirismo ao longo da realização deste trabalho.

A todos vós, o meu mais sincero obrigado!

Resumo

Neste trabalho estudou-se o efeito da adição de alguns sais e líquidos iónicos no equilíbrio líquido-vapor (ELV) de algumas misturas importantes na indústria química, tais como etanol + água, 1-propanol + água, 2-propanol + água, acetona + metanol, acetato de metilo + metanol e clorofórmio + etanol. O conjunto de solutos não voláteis estudados é formado por Ca(NO₃)₂, CuCl₂, NaI, KI, LiNO₃, LiCl, NaSCN, KCH₃COO, CaCl₂, [BMIM][Cl] e [EMIM][triflate].

Em primeiro lugar, realizou-se uma revisão bibliográfica dos dados experimentais existentes na literatura. Depois, seleccionou-se um conjunto de sistemas de ELV para aplicação dos seguintes modelos de previsão do equilíbrio de fases: os modelos de Wilson modificado e NRTL modificado.

No caso da adição de um sal a misturas binárias de solventes verifica-se que, em geral, ambos os modelos conseguem prever de forma qualitativa o deslocamento do azeótropo. Para o modelo de Wilson modificado obtêm-se erros absolutos médios para a composição na fase de vapor $\Delta y=0.049$ e para a temperatura $\Delta T=1.173$ K. Para o modelo NRTL modificado obtêm-se os seguintes valores: $\Delta y=0.048$ e $\Delta T=0.879$ K.

Estes modelos constituem uma ferramenta útil na previsão do ELV de solventes e sais.

Para as misturas contendo dois solventes e um líquido iónico, ambos os modelos descrevem de forma pouco satisfatória o ELV dos dois sistemas ternários estudados (etanol + água + [BMIM][Cl]; 1-propanol + água + [EMIM][triflate]). Será necessário estudar a aplicação desta metodologia a um conjunto mais amplo de sistemas de ELV com líquidos iónicos.

Palavras-chave: modelos termodinâmicos, equilíbrio líquido-vapor, sais, líquidos iónicos.

Abstract

In this work the effect of adding a salt or an ionic liquid on the vapour-liquid equilibria (VLE) of some relevant mixtures in chemical industry such as ethanol + water, 1-propanol + water, 2-propanol + water, acetone + methanol, methyl acetate + methanol and chloroform + ethanol, was studied. The set of selected non-volatile solutes includes Ca(NO₃)₂, CuCl₂, NaI, KI, LiNO₃, LiCl, NaSCN, KCH₃COO, CaCl₂, [BMIM][Cl] and [EMIM][triflate].

First, a bibliographic survey was carried out, to build an experimental database of the VLE data already published in the literature. Then, a set of VLE systems was selected for application of the following phase equilibria prediction models: modified Wilson model and modified NRTL model.

In the case of adding a salt to a binary mixture of solvents, it can be seen that, in general, both models can predict qualitatively the azeotrope displacement. For the modified Wilson model the following average absolute errors are obtained for the vapour phase composition $\Delta y=0.049$ and temperature $\Delta T=1.173$ K. For the modified NRTL model the following values are obtained: $\Delta y=0.048$ e $\Delta T=0.879$ K.

These models are a valuable prediction tool of the vapour-liquid equilibria of mixtures of solvents with salts.

For the systems containing two solvents and an ionic liquid, both models describe unsatisfactorily the VLE of the two ternary systems studied in this work (ethanol + water + [BMIM][Cl]; 1-propanol + water + [EMIM][triflate]). Further study is necessary in order to extend these methodologies to a wider set of VLE systems with ionic liquids.

Keywords: thermodynamic models, vapour-liquid equilibria, salts, ionic liquids.

Índice

1.		Int	roduçã	01		
	1.3	1	Destil	ação extractiva1		
1.2 /		Agent	Agentes separadores em destilação extractiva 2			
	1.3	3	Destil	ação extractiva com sais 3		
		1.3	.1	Casos de estudo 5		
		1.3	.2	Vantagens e desvantagens da destilação extractiva com sal sólido. 6		
	1.4	4	Destil	ação extractiva com líquidos iónicos6		
		1.4	.1	Vantagens e desvantagens da destilação extractiva com líquidos		
		ión	icos			
2.		Mo	delos t	ermodinâmicos9		
	2.3	1	Model	o de Wilson modificado9		
	2.2	2	Model	o NRTL modificado10		
	2.3	3	Softw	are desenvolvido13		
3.		EL\	/ de so	lventes + sais14		
	3.3	1	Base	de dados experimental14		
	3.2	2	Aplica	ção dos modelos de Wilson modificado e NRTL modificado16		
		3.2	.1	Sistema 1-propanol+água+cloreto de cobre (II)16		
		3.2	.2	Sistema acetona+metanol+NaI e acetona+metanol+KI18		
		3.2	.3	Sistema acetona+metanol+LiNO ₃ 21		
		3.2	.4	Sistema acetona+metanol+LiCl23		
		3.2	.5	Sistema acetato de metilo+metanol+NaSCN25		
		3.2	.6	Sistema etanol+água+Ca(NO ₃) ₂ e 2-propanol+água+ Ca(NO ₃) ₂ 26		
		3.2	.7	Sistema etanol+água+KCH ₃ COO29		
		3.2	.8	Sistema acetona+metanol+NaSCN		
		3.2	.9	Sistema clorofórmio+etanol+CaCl ₂ 33		
4.		EL\	/ de so	lventes + LI35		
	4.:	1	Base	de dados experimental35		
	4.2	2	Aplica	ção dos modelos de Wilson modificado e NRTL modificado35		
		4.2	.1	Sistema etanol+água+[BMIM][Cl]35		

	4.2.2	Sistema 1-propanol+água+[EMIM][triflate]	.37
5.	Conclusõe	es e trabalho futuro	.39
6.	Bibliograf	ia	41
Ane	xo A. Base	e de dados experimental (sistema+sal)	.47
Ane	xo B. Parâi	metros dos modelos e constantes da equação de Antoine	.77
Ane	xo C. Tabe	elas dos erros calculados (sistema+sal e sistema+LI)	.80
Ane	xo D. Base	e de dados experimental (sistema+LI)	.85

Índice de figuras

Figura 1. Sequência da destilação extractiva do sistema etanol+água (adaptado de Figura 2. Processo de destilação extractiva com sal (adaptado de Seader e Henley, Figura 3. Processo de destilação extractiva alternativo com sal (adaptado de Figura 4. Destilação extractiva usando líquidos iónicos não voláteis (adaptado de **Figura 5.** ELV para o sistema 1-propanol (1) + água (2) + $CuCl_2$ (3) a 750 mmHg: ----- Sem sal; — Calculado (x₃=0.022); • Experimental (x₃=0.022); - - -Calculado ($x_3=0.069$); \diamond Experimental ($x_3=0.069$); $-\cdot$ – Calculado ($x_3=0.113$); • Experimental (x₃=0.113).....17 **Figura 6.** Diagrama TXy para o sistema 1-propanol $(1) + \text{água} (2) + \text{CuCl}_2 (3)$ a 750 mmHg: ----- TXy Sem sal; — TXy Calculado (x₃=0.022); • TX Experimental $(x_3=0.022); \text{ w Ty Experimental } (x_3=0.022); ---TXy Calculado } (x_3=0.069); \diamond TX$ Experimental (x_3 =0.069); x Ty Experimental (x_3 =0.069); - · - TXy Calculado $(x_3=0.113); \bullet TX Experimental (x_3=0.113); \Delta Ty Experimental (x_3=0.113).17$ **Figura 7.** ELV para o sistema 1-propanol (1) + água (2) + $CuCl_2$ (3) a 750 mmHg: ----- Sem sal; — Calculado (x₃=0.022); • Experimental (x₃=0.022); - - -Calculado ($x_3=0.069$); \diamond Experimental ($x_3=0.069$); $-\cdot$ – Calculado ($x_3=0.113$); • Experimental (x₃=0.113).....17 **Figura 8.** Diagrama TXy para o sistema 1-propanol (1) + água (2) + $CuCl_2$ (3) a 750 mmHg: ----- TXy Sem sal; — TXy Calculado (x₃=0.022); • TX Experimental $(x_3=0.022); x Ty Experimental (x_3=0.022); ---TXy Calculado (x_3=0.069); > TX$ Experimental ($x_3=0.069$); x Ty Experimental ($x_3=0.069$); - · - TXy Calculado $(x_3=0.113); \bullet TX Experimental (x_3=0.113); \Delta Ty Experimental (x_3=0.113).17$ Figura 9. ELV para o sistema acetona (1) + metanol (2) + NaI (3) a 760 mmHg: ----- Sem sal; —— Calculado ($x_3=0.01$); • Experimental ($x_3=0.01$); - - - Calculado $(x_3=0.05); \diamond$ Experimental $(x_3=0.05); - \cdot -$ Calculado (Sat.); • Experimental (Sat.).....19 Figura 10. Diagrama TXy para o sistema acetona (1) + metanol (2) + NaI (3) a 760 mmHg: ----- TXy Sem sal; ······ TX Calculado ($x_3=0.01$); — Ty Calculado $(x_3=0.01); \cdot TX$ Experimental $(x_3=0.01); \times Ty$ Experimental $(x_3=0.01); -- TX$ Calculado ($x_3=0.05$); - · - · Ty Calculado ($x_3=0.05$); \diamond TX Experimental ($x_3=0.05$); x Ty Experimental ($x_3=0.05$); - · - TX Calculado (Sat.); - · · - Ty Calculado (Sat.);

Figura 11. ELV para o sistema acetona (1) + metanol (2) + KI (3) a 760 mmHg: ----- Sem sal; — Calculado (x₃=0.003); • Experimental (x₃=0.003); - - -Figura 12. Diagrama TXy para o sistema acetona (1) + metanol (2) + KI (3) a 760 mmHg: ----- TXy Sem sal; TX Calculado (x₃=0.003); ---- Ty Calculado $(x_3=0.003);$ • TX Experimental $(x_3=0.003);$ # Ty Experimental $(x_3=0.003);$ - - -TX Calculado (Sat.); - · - · Ty Calculado (Sat.); \diamond TX Experimental (Sat.); x Ty Figura 13. ELV para o sistema acetona (1) + metanol (2) + NaI (3) a 760 mmHg: ----- Sem sal; — Calculado (x₃=0.01); • Experimental (x₃=0.01); - - - Calculado $(x_3=0.05); \diamond$ Experimental $(x_3=0.05); - \cdot -$ Calculado (Sat.); • Experimental (Sat.).....20 Figura 14. Diagrama TXy para o sistema acetona (1) + metanol (2) + NaI (3) a 760 mmHg: ----- TXy Sem sal; ······ TX Calculado (x₃=0.01); ---- Ty Calculado $(x_3=0.01);$ • TX Experimental $(x_3=0.01);$ # Ty Experimental $(x_3=0.01);$ - - TX Calculado ($x_3=0.05$); - - - Ty Calculado ($x_3=0.05$); \diamond TX Experimental ($x_3=0.05$); x Ty Experimental ($x_3=0.05$); $-\cdot - TX$ Calculado (Sat.); $-\cdot - Ty$ Calculado (Sat.); • TX Experimental (Sat.); ∆ Ty Experimental (Sat.).....20 Figura 15. ELV para o sistema acetona (1) + metanol (2) + KI (3) a 760 mmHg: ----- Sem sal; — Calculado (x₃=0.003); • Experimental (x₃=0.003); - - -Calculado (Sat.); Experimental (Sat.).20 Figura 16. Diagrama TXy para o sistema acetona (1) + metanol (2) + KI (3) a 760 mmHg: ----- TXy Sem sal; TX Calculado ($x_3=0.003$); — Ty Calculado $(x_3=0.003); \cdot TX$ Experimental $(x_3=0.003); \times Ty$ Experimental $(x_3=0.003); ---$ TX Calculado (Sat.); - · - · Ty Calculado (Sat.); \diamond TX Experimental (Sat.); x Ty Figura 17. ELV para o sistema acetona (1) + metanol (2) + $LiNO_3$ (3) a 750 mmHg: ----- Sem sal; — Calculado ($x_3=0.022$); • Experimental ($x_3=0.022$); - --- Calculado ($x_3=0.088$); \diamond Experimental ($x_3=0.088$); - · - Calculado ($x_3=0.152$); • Experimental (x₃=0.152).....22 Figura 18. Diagrama TXy para o sistema acetona (1) + metanol (2) + LiNO₃ (3) a 750 mmHg: ----- TXy Sem sal; — TXy Calculado (x₃=0.022); • TX Experimental $(x_3=0.022); \text{ w Ty Experimental } (x_3=0.022); ---TXy Calculado } (x_3=0.088); \diamond TX$ Experimental ($x_3=0.088$); x Ty Experimental ($x_3=0.088$); $- \cdot - TXy$ Calculado $(x_3=0.152); \bullet TX Experimental (x_3=0.152); \Delta Ty Experimental (x_3=0.152).22$ Figura 19. ELV para o sistema acetona (1) + metanol (2) + $LiNO_3$ (3) a 750 mmHg: ----- Sem sal; — Calculado ($x_3=0.022$); • Experimental ($x_3=0.022$); - --

- Calculado ($x_3=0.088$); \diamond Experimental ($x_3=0.088$); - · - Calculado ($x_3=0.152$); • Experimental (x₃=0.152).....22 Figura 20. Diagrama TXy para o sistema acetona (1) + metanol (2) + LiNO₃ (3) a 750 mmHg: ----- TXy Sem sal; — TXy Calculado (x₃=0.022); • TX Experimental $(x_3=0.022); \text{ w Ty Experimental } (x_3=0.022); ---TXy Calculado } (x_3=0.088); \diamond TX$ Experimental ($x_3=0.088$); x Ty Experimental ($x_3=0.088$); - · - TXy Calculado $(x_3=0.152); \bullet TX Experimental (x_3=0.152); \Delta Ty Experimental (x_3=0.152).22$ **Figura 21.** ELV para o sistema acetona (1) + metanol (2) + LiCl (3) a 760 mmHg: ----- Sem sal; — Calculado (x₃=0.005); • Experimental (x₃=0.005); - - -Calculado ($x_3=0.05$); \diamond Experimental ($x_3=0.05$); $- \cdot -$ Calculado (Sat.); • Figura 22. Diagrama TXy para o sistema acetona (1) + metanol (2) + LiCl (3) a 760 mmHg: ----- TXy Sem sal; — TXy Calculado (x₃=0.005); • TX Experimental $(x_3=0.005); \text{ w Ty Experimental } (x_3=0.005); --- TXy Calculado } (x_3=0.05); \diamond TX$ Experimental ($x_3=0.05$); x Ty Experimental ($x_3=0.05$); - · - TXy Calculado (Sat.); • TX Experimental (Sat.); Δ Ty Experimental (Sat.)......24 Figura 23. ELV para o sistema acetona (1) + metanol (2) + LiCl (3) a 760 mmHg: ----- Sem sal; — Calculado (x₃=0.005); • Experimental (x₃=0.005); – – – Calculado ($x_3=0.05$); \diamond Experimental ($x_3=0.05$); $- \cdot -$ Calculado (Sat.); • Figura 24. Diagrama TXy para o sistema acetona (1) + metanol (2) + LiCl (3) a 760 mmHg: ----- TXy Sem sal; — TXy Calculado (x₃=0.005); • TX Experimental $(x_3=0.005); \text{ w Ty Experimental } (x_3=0.005); --- TXy Calculado } (x_3=0.05); \diamond TX$ Experimental ($x_3=0.05$); x Ty Experimental ($x_3=0.05$); $-\cdot - TXy$ Calculado (Sat.); • TX Experimental (Sat.); Δ Ty Experimental (Sat.).....24 Figura 25. ELV para o sistema acetato de metilo (1) + metanol (2) + NaSCN (3) a 760 mmHg: ----- Sem sal; — Calculado (x₃=0.01); • Experimental (x₃=0.01); – - Calculado (x₃=0.04); \diamond Experimental (x₃=0.04); - \cdot Calculado (Sat.); \bullet Figura 26. Diagrama TXy para o sistema acetato de metilo (1) + metanol (2) + NaSCN (3) a 760 mmHg: ----- TXy Sem sal; ---- TXy Calculado (x₃=0.01); • TX Experimental ($x_3=0.01$); x Ty Experimental ($x_3=0.01$); - – TXy Calculado (x₃=0.04); \diamond TX Experimental (x₃=0.04); x Ty Experimental (x₃=0.04); - - TXy Calculado (Sat.); • TX Experimental (Sat.); Δ Ty Experimental (Sat.).....25 Figura 27. ELV para o sistema acetato de metilo (1) + metanol (2) + NaSCN (3) a 760 mmHg: ----- Sem sal; — Calculado (x₃=0.01); • Experimental (x₃=0.01); – - - Calculado ($x_3=0.04$); \diamond Experimental ($x_3=0.04$); - - Calculado (Sat.); •

Figura 28. Diagrama TXy para o sistema acetato de metilo (1) + metanol (2) + NaSCN (3) a 760 mmHg: ----- TXy Sem sal; — TXy Calculado ($x_3=0.01$); • TX Experimental ($x_3=0.01$); x Ty Experimental ($x_3=0.01$); - – TXy Calculado $(x_3=0.04); \diamond TX$ Experimental $(x_3=0.04); x$ Ty Experimental $(x_3=0.04); - - TXy$ Calculado (Sat.); • TX Experimental (Sat.); Δ Ty Experimental (Sat.)......26 **Figura 29.** ELV para o sistema etanol $(1) + \text{água} (2) + Ca(NO_3)_2 (3)$ a 380 mmHg: — Calculado (1.038 molal); • Experimental (1.038 molal); - - - Calculado (2.049 molal); ♦ Experimental (2.049 molal).....27 **Figura 30.** Diagrama TXy para o sistema etanol $(1) + \text{água} (2) + Ca(NO_3)_2 (3)$ a 380 mmHg: — TXy Calculado (1.038 molal); • TX Experimental (1.038 molal); ж Ty Experimental (1.038 molal); - - TXy Calculado (2.049 molal); \diamond TX Experimental (2.049 molal); x Ty Experimental (2.049 molal)......27 **Figura 31.** ELV para o sistema 2-propanol (1) + água (2) + $Ca(NO_3)_2$ (3) a 380 mmHg: ; — Calculado (1.038 molal); • Experimental (1.038 molal); – – – **Figura 32.** Diagrama TXy para o sistema 2-propanol $(1) + \text{água} (2) + Ca(NO_3)_2$ (3) a 380 mmHg: — TXy Calculado (1.038 molal); • TX Experimental (1.038 molal); \times Ty Experimental (1.038 molal); -- TXy Calculado (2.073 molal); \diamond TX Experimental (2.073 molal); x Ty Experimental (2.073 molal)......28 **Figura 33.** ELV para o sistema etanol (1) + água (2) + $Ca(NO_3)_2$ (3) a 380 mmHg: ----- Calculado (1.038 molal); • Experimental (1.038 molal); ---- Calculado (2.049 molal); \diamond Experimental (2.049 molal)......28 Figura 34. Diagrama TXy para o sistema etanol (1) + água (2) + $Ca(NO_3)_2$ (3) a 380 mmHg: — TXy Calculado (1.038 molal); • TX Experimental (1.038 molal); ж Ty Experimental (1.038 molal); - - - TXy Calculado (2.049 molal); \diamond TX **Figura 35.** ELV para o sistema 2-propanol (1) + água (2) + $Ca(NO_3)_2$ (3) a 380 mmHg: — Calculado (1.038 molal); • Experimental (1.038 molal); - - -**Figura 36.** Diagrama TXy para o sistema 2-propanol (1) + água (2) + $Ca(NO_3)_2$ (3) a 380 mmHg: — TXy Calculado (1.038 molal); • TX Experimental (1.038 molal); # Ty Experimental (1.038 molal); -- TXy Calculado (2.073 molal); \diamond TX Experimental (2.073 molal); x Ty Experimental (2.073 molal)......29 **Figura 37.** ELV para o sistema etanol (1) +água $(2) + KCH_3COO (3)$ a 750 mmHg: ----- Sem sal; — Calculado ($x_3=0.025$); • Experimental ($x_3=0.025$); – – – Calculado ($x_3=0.050$); \diamond Experimental ($x_3=0.050$); $-\cdot$ – Calculado ($x_3=0.085$); • Experimental (x₃=0.085)......30

Figura 38. Diagrama TXy para o sistema etanol $(1) + \text{água} (2) + \text{KCH}_3\text{COO} (3)$ a 750 mmHg: ----- TXy Sem sal; — TXy Calculado (x₃=0.025); • TX Experimental $(x_3=0.025); \text{ w Ty Experimental } (x_3=0.025); ---TXy Calculado } (x_3=0.050); \diamond TX$ Experimental ($x_3=0.050$); x Ty Experimental ($x_3=0.050$); $-\cdot$ – TXy Calculado $(x_3=0.085); \bullet TX Experimental (x_3=0.085); \Delta Ty Experimental (x_3=0.085).30$ **Figura 39.** ELV para o sistema etanol $(1) + \text{água} (2) + \text{KCH}_3\text{COO} (3)$ a 750 mmHg: ----- Sem sal; — Calculado (x₃=0.025); • Experimental (x₃=0.025); – – – Calculado ($x_3=0.050$); \diamond Experimental ($x_3=0.050$); $-\cdot$ - Calculado ($x_3=0.085$); • Experimental (x₃=0.085)......31 Figura 40. Diagrama TXy para o sistema etanol (1) + água (2) + KCH₃COO (3) a 750 mmHg: ----- TXy Sem sal; — TXy Calculado (x₃=0.025); • TX Experimental $(x_3=0.025); \text{ w Ty Experimental } (x_3=0.025); ---TXy Calculado } (x_3=0.050); \diamond TX$ Experimental ($x_3=0.050$); x Ty Experimental ($x_3=0.050$); - · - TXy Calculado $(x_3=0.085); \bullet TX Experimental (x_3=0.085); \Delta Ty Experimental (x_3=0.085).31$ Figura 41. ELV para o sistema acetona (1) + metanol (2) + NaSCN (3) a 760 mmHg: ----- Sem sal; — Calculado (x_3 =0.01); • Experimental (x_3 =0.01); - - -Calculado ($x_3=0.07$); \diamond Experimental ($x_3=0.07$); $-\cdot$ - Calculado (Sat.); • **Figura 42.** Diagrama TXy para o sistema acetona (1) + metanol (2) + NaSCN (3) a 760 mmHg: ----- TXy Sem sal; — TXy Calculado $(x_3=0.01)$; • TX Experimental $(x_3=0.01); x Ty Experimental (x_3=0.01); - - TXy Calculado (x_3=0.07); TX$ Experimental ($x_3=0.07$); x Ty Experimental ($x_3=0.07$); $-\cdot - TXy$ Calculado (Sat.); • TX Experimental (Sat.); Δ Ty Experimental (Sat.)......32 Figura 43. ELV para o sistema acetona (1) + metanol (2) + NaSCN (3) a 760 mmHg: ----- Sem sal; — Calculado ($x_3=0.01$); • Experimental ($x_3=0.01$); - - -Calculado ($x_3=0.07$); \diamond Experimental ($x_3=0.07$); $- \cdot -$ Calculado (Sat.); • **Figura 44.** Diagrama TXy para o sistema acetona (1) + metanol (2) + NaSCN (3) a 760 mmHg: ----- TXy Sem sal; — TXy Calculado (x₃=0.01); • TX Experimental $(x_3=0.01); \text{ w Ty Experimental } (x_3=0.01); - - TXy Calculado (x_3=0.07); \diamond TX$ Experimental ($x_3=0.07$); x Ty Experimental ($x_3=0.07$); - · - TXy Calculado (Sat.); Figura 45. ELV para o sistema clorofórmio (1) + etanol (2) + CaCl₂ (3) a 705 **Figura 46.** Diagrama TXy para o sistema clorofórmio (1) + etanol (2) + CaCl₂ (3) a 705 mmHg: ----- TXy Sem sal; — TXy Calculado (Sat.); • TX Experimental (Sat.);

Figura 47. ELV para o sistema clorofórmio (1) + etanol (2) + $CaCl_2$ (3) a 705 Figura 48. Diagrama TXy para o sistema clorofórmio (1) + etanol (2) + CaCl₂ (3) a 705 mmHg: ----- TXy Sem sal; — TXy Calculado (Sat.); • TX Experimental (Sat.); ж Ту Experimental (Sat.)......34 Figura 49. ELV para o sistema etanol (1) + água (2) + [BMIM][Cl] (3) a 760 mmHg: —— Calculado (20% em massa); • Experimental (20% em massa); – – – Figura 50. Diagrama TXy para o sistema etanol (1) + água (2) + [BMIM][Cl] (3) a 760 mmHg: — TXy Calculado (20% em massa); • TX Experimental (20% em massa); x Ty Experimental (20% em massa); - - TXy Calculado (30% em massa); \diamond TX Experimental (30% em massa); x Ty Experimental (30% em massa). Figura 51. ELV para o sistema etanol (1) + água (2) + [BMIM][Cl] (3) a 760 mmHg: —— Calculado (20% em massa); • Experimental (20% em massa); – – – Figura 52. Diagrama TXy para o sistema etanol (1) + água (2) + [BMIM][Cl] (3) a 760 mmHg: — TXy Calculado (20% em massa); • TX Experimental (20% em massa); x Ty Experimental (20% em massa); - - TXy Calculado (30% em massa); \diamond TX Experimental (30% em massa); x Ty Experimental (30% em massa). Figura 53. ELV para o sistema 1-propanol (1) + água (2) + [EMIM][triflate] (3) a 750 mmHg: ----- Sem LI; — Calculado (x₃=0.057); • Experimental (x₃=0.057); --- Calculado (x₃=0.191); \diamond Experimental (x₃=0.191); $-\cdot$ - Calculado (x₃=0.306); Figura 54. Diagrama TXy para o sistema 1-propanol (1) + água (2) + [EMIM][triflate] (3) a 750 mmHg: ----- TXy Sem LI; ---- TXy Calculado $(x_3=0.057);$ • TX Experimental $(x_3=0.057);$ # Ty Experimental $(x_3=0.057);$ - - -TXy Calculado ($x_3=0.191$); \diamond TX Experimental ($x_3=0.191$); x Ty Experimental $(x_3=0.191); - \cdot - TXy$ Calculado $(x_3=0.306); \bullet TX$ Experimental $(x_3=0.306); \Delta Ty$ Experimental (x₃=0.306)......37 **Figura 55.** ELV para o sistema 1-propanol (1) +água (2) + [EMIM][triflate] (3) a 750 mmHg: ----- Sem LI; — Calculado (x₃=0.057); • Experimental (x₃=0.057); – - Calculado (x₃=0.191); \diamond Experimental (x₃=0.191); $-\cdot$ Calculado (x₃=0.306); Figura 56. Diagrama TXy para o sistema 1-propanol (1) + água (2) + [EMIM][triflate] (3) a 750 mmHg: ----- TXy Sem LI; ---- TXy Calculado (x₃=0.057); • TX Experimental (x₃=0.057); ж Ty Experimental (x₃=0.057); - - -

Índice de tabelas

Tabela 1. Casos de estudo da destilação extractiva com sais sólidos (Lei et al.,
2003)
Tabela 2. Influência de vários sais sólidos e solventes líquidos na volatilidade
relativa do etanol e água (Lei et al., 2003)5
Tabela3.TabelaresumodosdadosdeELVrecolhidosnaliteratura
(sistema+sal)14
Tabela A.1. Base de dados experimentais (solvente+sal)
Tabela A.2. Base de dados experimentais de ELV (sistema binário/ternário+sal).55
Tabela B.1. Parâmetros dos modelos e constantes de Antoine
Tabela C.1. Erros correspondentes ao sistema 1-propanol+água+CuCl2 a 750
mmHg82
Tabela C.2. Erros correspondentes ao sistema acetona+metanol+NaI a 760
mmHg
Tabela C.3. Erros correspondentes ao sistema acetona+metanol+KI a /60
mmHg
Tabela C.4. Erros correspondentes ao sistema acetona+metanoi+LINO ₃ a 750
Tabala C.F. Even conversion dentre an eleteral content in the standard like a 700
mmHa
Tabela C.6. Erros calculados para o sistema acetato de metilo+metapol+NaSCN a
760 mmHa
Tabela C 7 Erros correspondentes ao sistema etapol+água+Ca(NO ₂), a 380
mmHa
Tabela C.8. Erros correspondentes ao sistema 2-propanol+áqua+Ca(NO ₃) ₂ a 380
mmHg
Tabela C.9. Erros correspondentes ao sistema etanol+água+KCH ₃ COO a 750
mmHg
Tabela C.10. Erros correspondentes ao sistema acetona+metanol+NaSCN a 760
mmHg
Tabela C.11. Erros correspondentes ao sistema clorofórmio+etanol+CaCl ₂ a 705
mmHg
Tabela C.12. Erros correspondentes ao sistema etanol+água+[BMIM][CI] a 760
mmHg85
Tabela C.13. Erros correspondentes ao sistema 1-propanol+água+[EMIM][triflate]
a 750 mmHg85
Tabela D.1. Base de dados experimentais (solvente+LI)86
Tabela D.2. Base de dados experimentais de ELV (sistema binário+LI)

1. Introdução

Neste trabalho pretende-se estudar o efeito da adição de sais no equilíbrio líquidovapor de misturas importantes na indústria química (e.g., sistema água+etanol). Neste capítulo, efectuar-se-á uma pequena introdução ao processo de separação por destilação extractiva com sais ou líquidos iónicos. No capítulo 2, apresentam-se os dois modelos termodinâmicos utilizados na representação do equilíbrio líquidovapor (ELV): o modelo de Wilson modificado e o modelo NRTL modificado. No capítulo 3 apresentam-se a base de dados experimentais e, também, os resultados obtidos para a previsão do ELV de sistemas contendo solventes e sais. No capítulo 4 apresenta-se o mesmo tipo de informação relativa ao ELV de sistemas contendo solventes e líquidos iónicos. Finalmente, no capítulo 5 apresentam-se as principais conclusões e algumas sugestões de trabalho futuro.

1.1 Destilação extractiva

A destilação extractiva é muito aplicada na indústria e tem-se tornado num dos métodos de separação mais importantes na engenharia química. Uma das aplicações é a separação de hidrocarbonetos com pontos de ebulição próximos como, por exemplo, as misturas C_4 , C_5 e C_6 . Outra aplicação é a separação de misturas que formam um azeótropo, tais como álcool/água, acido acético/água, acetona/metanol, metanol/acetato de metilo, etanol/acetato de etilo, acetona/etil éter, entre outros (Lei *et al.*, 2003).

A facilidade da separação de uma dada mistura com componentes chave *i* e *j* é dada pela volatilidade relativa α_{ij} :

$$\alpha_{ij} = \frac{y_i/x_i}{y_j/x_j} = \frac{\gamma_i P_i^0}{\gamma_j P_j^0} \tag{1}$$

Na equação anterior, $x \in y$ correspondem às fracções molares da fase líquida e fase de vapor, respectivamente. O coeficiente de actividade é dado por γ e a pressão de vapor do componente puro é dada por P^0 . Para alterar a volatilidade relativa o mais possível, de forma a separar os componentes da mistura é introduzido um solvente. Este solvente deve alterar a razão γ_i/γ_j , desde que a razão P_i^0/P_j^0 se mantenha constante, para pequenas alterações de temperatura. Na presença de um solvente, a razão γ_i/γ_j é chamada selectividade S_{ij} :

$$S_{ij} = \begin{pmatrix} \frac{\gamma_i}{\gamma_j} \end{pmatrix}$$
(2)

Na alteração da volatilidade relativa, o solvente escolhido deve ser facilmente separado dos produtos de destilação, através de uma diferença elevada do ponto

de ebulição entre o solvente e os componentes a ser separados. Outros critérios, como, por exemplo, corrosão ou preços devem também ser levados em conta. No entanto, a volatilidade relativa (que é consistente com a selectividade) é o factor mais importante. Quando os solventes são classificados em termos de volatilidade relativa (ou selectividade), o solvente com a volatilidade relativa mais elevada é considerado como sendo o solvente mais promissor para a tarefa da separação. Isto pode indicar que, do ponto de vista económico, o uso do solvente com a maior volatilidade relativa irá sempre dar o mais baixo custo anual do processo de destilação extractiva (Momoh, 1991).

A título de exemplo, na Figura 1 está representada uma sequência de destilação extractiva, para o sistema etanol/água. A mistura é alimentada à primeira coluna, saindo na base uma corrente de água pura e, no topo, uma fracção de água que não foi possível separar, devido à existência de um azeótropo. Esta percentagem é misturada com um solvente e ambos são alimentados a uma segunda coluna. Nesta coluna, devido à presença do solvente, que vai alterar a volatilidade da mistura, vai-se dar a separação do azeótropo, saindo, no topo da coluna etanol puro e na base da coluna água juntamente com solvente. Finalmente, a corrente de base da coluna 2 vai ser alimentada a uma terceira coluna, onde se vai dar a separação da água e do solvente, saindo a água no topo da coluna, enquanto o solvente sai na base e é reciclado.

Figura 1. Sequência da destilação extractiva do sistema etanol+água (adaptado de Seader e Henley, 2006).

1.2 Agentes separadores em destilação extractiva

Os principais factores que influenciam o processo de destilação extractiva são o processo de separação e os agentes separadores. Depois de definido o processo de separação, o passo seguinte é a escolha de um solvente adequado, que permita a obtenção de uma elevada capacidade de separação. Posteriormente, este solvente deve ser optimizado, de forma a melhorar a capacidade de separação, assim como,

diminuir a razão entre o solvente e a carga de líquido da coluna de destilação extractiva. Actualmente, existem quatro tipos de agentes separadores usados no processo de destilação extractiva: sal sólido, solvente líquido, combinação do solvente líquido com sal sólido e líquido iónico (Lei *et al.*, 2003).

Neste trabalho estudou-se a utilização de sais sólidos e líquidos iónicos como agentes de separação.

1.3 Destilação extractiva com sais

Nesta secção descreve-se brevemente o processo de destilação extractiva, usando como agente de separação um sal sólido dissolvido.

Em certos sistemas em que a solubilidade o permite, é possível usar um sal sólido dissolvido na fase líquida, como agente separador para a destilação extractiva. O chamado efeito do sal no equilíbrio líquido-vapor (ELV) diz respeito à capacidade de um sal sólido, que foi dissolvido numa fase líquida contendo um ou mais componentes voláteis, para alterar a composição de equilíbrio de vapor sem que o próprio sal esteja presente no vapor. Ao componente da alimentação cuja composição na fase de vapor em equilíbrio foi aumentada, diz-se que foi "salted out" pelo sal, enquanto os restantes componentes são "salted in" (Lei et al., 2003).

O processo de destilação extractiva com sal é ligeiramente diferente do processo mostrado na Figura 1. A diferença reside no facto do sal ser recuperado numa unidade de recuperação própria, enquanto o solvente é recuperado numa coluna de destilação (Barba *et al.*, 1985; Furter, 1992, 1993).

Na Figura 2 apresenta-se um diagrama de fluxo exemplificativo do efeito do sal na destilação extractiva. O sal sólido, que deve ser solúvel em certa medida em ambos os componentes constituintes da mistura a separar, é alimentado no topo da coluna sendo dissolvido, em estado estacionário, em ebulição num refluxo pouco antes de entrar na coluna. O sal sólido, se for não volátil, flui inteiramente para baixo na coluna, residindo somente na fase líquida. A recuperação do sal a partir do produto da base para reciclo é feita ou por secagem parcial ou total, em vez da posterior operação de destilação para recuperar agentes de separação líquidos.

Na Figura 2, o ponto 1 representa a coluna de destilação extractiva, o ponto 2 o equipamento de recolha de sal, a corrente 3 representa o sal recuperado e, por fim, o ponto 4 corresponde ao tanque de refluxo.

Figura 2. Processo de destilação extractiva com sal (adaptado de Seader e Henley, 2006).

Diversas variações do processo da Figura 2 são possíveis. Na Figura 3, apresentase um diagrama de fluxo alternativo.

Figura 3. Processo de destilação extractiva alternativo com sal (adaptado de Seader e Henley, 2006).

Na Figura 3, o ponto 1 representa a coluna de destilação extractiva, o ponto 2 é o tanque de evaporação, a corrente 3 representa uma solução de sal e, finalmente, o ponto 4 representa o tanque de refluxo.

Uma vantagem deste processo é que não há dificuldade na recuperação do sal, apenas por evaporação e é um processo de operação conveniente.

Por exemplo, um sistema contendo um azeótropo pode ser separado, primeiro pelo processo de destilação simples levando quase à eliminação do azeótropo sem adicionar qualquer agente de separação, depois pela destilação extractiva com a presença do sal sólido, usualmente contendo pequenas quantidades para serem separados e, em seguida, a pureza final é obtida por uma destilação adicional sem sal sólido. O sal sólido é, geralmente, recuperado por evaporação (Lei *et al.*, 2003).

1.3.1 Casos de estudo

Lei *et al.* (2003) apresentam um conjunto de casos de estudos relativos a diversas separações aplicando a destilação extractiva com sais sólidos, que se apresentam resumidamente na tabela seguinte.

Tabela 1. Casos de estudo da destilação extractiva com sais sólidos (Lei et al., 2003).

Mistura	Sal	Processo/Indústria
Etanol + Água	KCH ₃ COO e NaCH ₃ COO	Holz Industrie Acetien Geselleschaft
Isopropanol + Água	CaCl ₂	Ishikawajima Harima Heavy industries (Japão)
Ácido nítrico + Água	$Mg(NO_3)_2$	Hercules Inc. (EUA)

A separação de etanol e água é a aplicação mais importante da destilação extractiva com um sal sólido. A influência de vários sais na volatilidade relativa do etanol e da água foi investigada por Duan *et al.* (1980) e os resultados estão listados na Tabela 2, onde a razão do volume da solução azeotrópica etanol – água e o agente de separação é 1.0 e a concentração de sal é 0.2 g_{sal}/mL_{solvente}.

Pode ser observado na Tabela 2 que, quanto maior for a valência do ião metálico, maior vai ser o efeito do sal. Quer dizer, $AlCl_3 > CaCl_2 > NaCl; Al(NO_3)_3 > Cu(NO_3)_2$ > KNO₃. Além disso, o efeito dos aniões é diferente, com a seguinte ordem $Ac^- > Cl^- > NO_3^-$.

Agente de separação	Volatilidade relativa
Sem agente	1.01
Etilenoglicol	1.85
Cloreto de cálcio saturado	3.13
Acetato de potássio	4.05
Etileno glicol + NaCl	2.31
Etileno glicol + CaCl ₂	2.56
Etileno glicol + SrCl ₂	2.60
Etileno glicol + AlCl ₃	4.15
Etileno glicol + KNO3	1.90
Etileno glicol + Cu(NO ₃) ₂	2.35
Etileno glicol + Al(NO ₃) ₃	2.87
Etileno glicol + KCH ₃ COO	2.40
Etileno glicol + K ₂ CO ₃	2.60

Tabela 2. Influência de vários sais sólidos e solventes líquidos na volatilidade relativa do etanol e água (Lei *et al.*, 2003).

1.3.2 Vantagens e desvantagens da destilação extractiva com sal sólido

Seader e Henley (2006) e Lei *et al.* (2003) apresentam um conjunto de vantagens e desvantagens associadas ao processo de destilação extractiva com sal. As principais vantagens são:

- O sal tem uma boa capacidade de separação, uma vez que os iões do sal são capazes de causar maiores efeitos do que as moléculas do agente líquido;
- Elevada capacidade de produção e baixo consumo de energia;
- O sal não é incorporado no produto, desde que seja não volátil;
- Os vapores dos sais não são inalados pelos operadores.

Os principais inconvenientes são:

- Problemas de corrosão, principalmente com soluções aquosas de sal cloreto, que pode exigir um material mais resistente, por exemplo, aço inoxidável;
- Outro potencial problema é a alimentação e dissolução do sal para o refluxo;
- O refluxo deve ser mantido perto do ponto de ebulição para evitar a precipitação do sal já dissolvido;
- Possibilidade do aumento do teor de espumas na coluna, devido à presença de sal dissolvido;
- Possibilidade de cristalização do sal no interior da coluna. No entanto, a concentração dos componentes menos voláteis, aumenta para baixo na coluna, logo, a solubilidade do sal aumenta à medida que vai descendo, enquanto a sua concentração permanece relativamente constante. Portanto, a possibilidade de entupimento devido à formação de sólidos na coluna é altamente improvável.

1.4 Destilação extractiva com líquidos iónicos

Tal como a destilação extractiva com sal sólido, solvente líquido ou a combinação de ambos, em certos sistemas onde a solubilidade o permite é possível usar um líquido iónico dissolvido na fase líquida, como agente de separação (Lei *et al.*, 2003).

A destilação extractiva com líquidos iónicos como agente de separação é um método inovador para a separação da mistura etanol/água (Arlt *et al.*, 2001), visto que o líquido iónico aumenta a volatilidade relativa do etanol em relação à água. O processo de destilação extractiva com líquido iónico pode ser o mesmo que o processo de destilação extractiva com sal sólido.

Os líquidos iónicos são normalmente uma mistura de catiões orgânicos com aniões inorgânicos e são agentes de separação promissores devido às suas propriedades, tais como, existência no estado líquido à temperatura ambiente, baixa viscosidade, estabilidade térmica, boa solubilidade e baixa corrosibilidade (Huang *et al.*, 2008). Os líquidos iónicos são chamados "solventes verdes". Quando estes são usados na destilação extractiva, consideram-se os seguintes aspectos (Huang *et al.*, 2008):

- Pressão de vapor desprezável, o que significa que o líquido iónico não contamina o produto no topo da coluna;
- Uma vasta gama líquida com um ponto de fusão de 300 °C de temperatura;
- Uma vasta gama de materiais incluindo materiais inorgânicos, orgânicos e materiais poliméricos são solúveis em líquidos iónicos, que assegura que os líquidos iónicos têm solubilidade suficiente para separar os componentes, e podem levar a um aumento da volatilidade relativa na fase líquida;
- Potencial de ser reciclado e reutilizado;
- Devido à sua não volatilidade, os líquidos iónicos são facilmente recuperáveis dos componentes a serem separados, e a maneira mais simples é através da evaporação;

Dentro dos líquidos iónicos disponíveis comercialmente para a destilação extractiva os mais relevantes são: [BMIM][BF₄], [EMIM][BF₄] e [BMIM][Cl] (Huang *et al.*, 2008).

Seiler *et al.* (2004) investigaram a possibilidade de utilizar estes líquidos iónicos como agentes de separação na desidratação do etanol. Foi demonstrado que estes líquidos iónicos aumentam notavelmente a volatilidade relativa do etanol relativamente à água, na seguinte ordem: [BMIM][CI] > [EMIM][BF4] > [BMIM][BF4]. Na figura seguinte, podemos visualizar o diagrama do processo, onde o ponto 1 representa a coluna principal, o ponto 2 uma câmara flash e o ponto 3 uma coluna *stripping*.

Figura 4. Destilação extractiva usando líquidos iónicos não voláteis (adaptado de Seiler et al., 2004).

1.4.1 Vantagens e desvantagens da destilação extractiva com líquidos iónicos

A destilação extractiva com líquido iónico como agente de separação é um processo recente, que possibilita a produção de produtos de elevada qualidade e pureza. Lei *et al.* (2003) e Huang *et al.* (2008) apresentam um conjunto de vantagens e desvantagens relativamente a este processo. As principais vantagens são:

- O líquido iónico não poderá contaminar o destilado devido ao facto de ser não volátil o que reduz consideravelmente a energia necessária;
- As propriedades dos líquidos iónicos (solubilidade, selectividade, viscosidade e estabilidade térmica) podem ser adaptadas;
- É apenas exigida uma coluna de destilação, o que representa um consumo mais baixo de energia;
- Fácil operação;
- Altas selectividades, o que leva a uma elevada capacidade de separação.

As principais desvantagens são:

- A preparação do líquido iónico por vezes é demorada e os preços do material usado para a sintetização do líquido iónico são elevados;
- O líquido iónico contendo aniões halogéneos é caro e tem uma estabilidade insuficiente a longo prazo para aplicações de hidrólise;
- Podem formar-se pequenas quantidades de substâncias tóxicas e corrosivas durante a hidrólise;
- Estas desvantagens podem atrasar a aplicação desta técnica na indústria, mesmo que as vantagens desta técnica sejam muito atractivas.

2. Modelos termodinâmicos

Neste trabalho foram testados dois modelos termodinâmicos na descrição do ELV de várias misturas binárias de solventes contendo sais sólidos e líquidos iónicos dissolvidos:

- Modelo de Wilson modificado (Tan, 1987), apresentado na secção 2.1;

- Modelo NRTL modificado (Tan, 1990), apresentado na secção 2.2.

2.1 Modelo de Wilson modificado

Tan (1987) propôs uma expressão para a energia livre molar em excesso, G^E, a uma dada temperatura T, semelhante à proposta por Wilson:

$$\frac{G^E}{RT} = \sum_i X_i ln \left[(A_{si} - 1)X_i + \sum_j A_{ij}X_j \right]$$
(3)

Em que,

$$A_{ij} = \frac{v_j}{v_i} exp\left[-\frac{g_{ji}-g_{ii}}{RT}\right]$$
(4)

$$A_{si} = \frac{v_{si}}{v_i} exp\left[-\frac{g_{si} - g_{ii}}{RT}\right]$$
(5)

A equação (4) caracteriza a interacção solvente-solvente entre as moléculas de solvente na região remota onde as moléculas de solvente estão "esquecidas" da presença de sal dissolvido do mesmo modo definido por Wilson para os sistemas sem sal. Os parâmetros v_i e v_j representam o volume molar da fase líquida para os solventes $i \in j$, respectivamente. R representa a constante dos gases ideais, T representa a temperatura e $g_{ji} \in g_{ii}$ representam as energias de interacção entre solventes j- $i \in i$ -i, respectivamente. A equação (5) descreve a interacção salsolvente no sistema. Para um sistema sem sal, a equação (3) é reduzida à equação de Wilson para sistemas sem sal como mostrado na equação (6):

$$\frac{G^E}{RT} = -\sum_i X_i ln \sum_j A_{ij} X_j \tag{6}$$

O coeficiente de actividade γ_k , do componente solvente, k, num sistema contendo sal vem dado pela seguinte equação:

$$ln\gamma_k = -ln\left[(A_{sk} - 1)X_k + \sum_j A_{kj}X_j\right] + \left[\frac{\sum_j A_{kj}X_j}{(A_{sk} - 1)X_k + \sum_j A_{kj}X_j}\right] - \left[\sum_i \frac{A_{ik}X_i}{(A_{si} - 1)X_i + \sum_j A_{ij}X_j}\right]$$
(7)

$$\gamma_k = \frac{Y_k \pi}{X_k P_k^0} \tag{8}$$

Em que Y_k é a composição da fase de vapor em equilíbrio com um líquido de composição em base sem sal, X_k num sistema de pressão total, π . P_k^0 é a pressão de saturação de vapor do solvente puro, para um determinado ponto de bolha da

mistura líquida. As expressões derivadas para o modelo proposto satisfazem a equação de Gibbs Duhem.

Para uma mistura binária de solventes contendo um sal dissolvido obtêm-se as seguintes expressões para a energia molar livre da mistura e os coeficientes de actividade:

$$\frac{G^{E}}{RT} = -[X_1 \ln(A_{s1}X_1 + A_{12}X_2) + X_2 \ln(A_{s2}X_2 + A_{21}X_1)]$$
(9)

$$ln\gamma_1 = -\ln(A_{s1}X_1 + A_{12}X_2) + X_2\Phi$$
(10)

$$ln\gamma_2 = -\ln(A_{s2}X_2 + A_{21}X_1) - X_1\Phi$$
(11)

$$\Phi = \frac{A_{12}}{A_{s_1}X_1 + A_{12}X_2} - \frac{A_{21}}{A_{s_2}X_2 + A_{21}X_1}$$
(12)

Para um sistema de um único solvente contendo sal dissolvido, as duas expressões correspondentes tornam-se:

$$\frac{G^E}{RT} = -\ln A_{s1} \tag{13}$$

$$ln\gamma_1 = -lnA_{s1} \tag{14}$$

Tendo em conta que:

$$\gamma_1 = \frac{\pi}{P_1^0} \tag{15}$$

$$A_{s1} = \frac{P_1^0}{\pi}$$
(16)

Em que P_1^0 é a pressão de vapor de saturação do solvente puro correspondente ao ponto de bolha do sistema que contém o solvente com sal.

A equação (16) fornece, no entanto, uma base simples e conveniente para o cálculo dos parâmetros de interacção sal-solvente, A_{si} . Consequentemente, para um sistema de uma mistura de solventes, é apenas necessário determinar o ponto de bolha do solvente contendo sal dissolvido a determinada concentração e pressão do sistema. Calculando P_i^0 através da equação de Antoine, A_{si} pode também ser determinado através da equação (16). Com os parâmetros da interacção solvente-solvente de Wilson, A_{ij} , para os sistemas de solventes sem sal e, conhecendo todos os parâmetros A_{si} dos componentes que contêm o sal dissolvido, o equilíbrio líquido-vapor do sistema contendo sal pode ser avaliado pelas equações (7) e (8) deste modelo.

2.2 Modelo NRTL modificado

O modelo de Wilson modificado (Tan, 1987), tal como a equação de Wilson, não é capaz de descrever a instabilidade da fase líquida. Isto limita a sua aplicação a

sistemas que não exibem miscibilidade parcial na fase líquida sob as condições dadas.

A expressão para a energia de Gibbs em excesso para um sistema de solventes multicomponente contendo um soluto dissolvido pode ser derivada da mesma forma que Renon e Prausnitz (1968) no desenvolvimento do modelo "*Non-Random Two Liquid*" (NRTL) para uma mistura multicomponente sem a presença de um soluto não volátil dissolvido.

Relativamente à interacção solvente-solvente, considera-se X_{ji} como a fracção molar local para a interacção entre o par de componentes solvente *j* e *i* e que, entre os mesmos componentes solventes *i* essa fracção seja X_{ii} . Baseado na composição em base sem soluto, e tendo em conta a mistura não aleatória como sugerido por Renon e Prausnitz (1968), a relação entre X_{ji} e X_{ii} vem dada por:

$$\frac{x_{ji}}{x_{ii}} = \frac{x_j}{x_i} G_{ji} \tag{17}$$

Em que,

$$G_{ji} = \exp[-\alpha_{ji}\tau_{ji}] \tag{18}$$

e,

$$\tau_{ji} = \left[\frac{(g_{ji} - g_{ii})}{_{RT}}\right]$$
(19)

Nestas equações, g_{ji} e g_{ii} representam as energias de interacção entre solventes *j-i* e *i-i*, respectivamente, α_{ji} é o parâmetro de não aleatoriedade para a interacção entre os solventes *j* e *i*. A composição do sistema é dada pela seguinte equação:

$$\sum_{j} X_{ji} = 1 \tag{20}$$

E X_{ii} é então dada por,

$$X_{ii} = \frac{X_i}{\sum_j X_j G_{ji}}$$
(21)

Na presença de um soluto dissolvido, a fracção molar do soluto solvatado pelo solvente *i* por mole da mistura de solventes, X_{is} , pode ser expressa como:

$$\frac{X_{is}}{X_{ss}} = \frac{X_i}{N_s} G_{is}$$
(22)

$$G_{is} = exp[-\alpha_{is}\tau_{is}] \tag{23}$$

$$\tau_{is} = \left[\frac{(g_{is} - g_{ss})}{RT}\right]$$
(24)

Em que N_s é o número de moles de soluto por mole da mistura de solventes, g_{is} e g_{ss} são as energias de interacção entre o soluto e o solvente *i* e entre o próprio soluto, respectivamente na presença de soluto solvatado:

$$\sum_{i} X_{is} = 1 \tag{25}$$

Em que,

$$X_{ss} = \frac{N_s}{\sum_i X_i G_{is}}$$
(26)

A energia livre de Gibbs em excesso para a mistura de solventes multicomponente na presença de um soluto dissolvido, $Q_s[=g_s^E/RT]$, por unidade molar da mistura de solventes e uma quantidade de soluto N_{s_r} é então dada por:

$$Q_s = \sum_i X_i [\sum_j X_{ji} \tau_{ji}] + \sum_i X_{is} \tau_{is}$$
(27)

O primeiro termo na equação (27) descreve a variação da energia livre em excesso relativa à interacção solvente-solvente e, o segundo termo, reflecte a variação devido à interacção soluto-solvente por unidade molar da mistura de solventes, em composição de base sem soluto. Substituindo os parâmetros das equações (17)-(26), a equação (27) torna-se:

$$Q_s = \sum_i X_i \left[\frac{\sum_j X_j G_{ji} \tau_{ji}}{\sum_k X_k G_{ki}} + \frac{G_{is} \tau_{is}}{\sum_k X_k G_{ks}} \right]$$
(28)

O coeficiente de actividade, γ_m^s para o solvente, *m*, na presença de um soluto dissolvido vem dado por:

$$\ln \gamma_m^s = \left[\frac{\sum_j X_j G_{jm} \tau_{jm}}{\sum_k X_k G_{km}}\right] + \sum_i \frac{X_i G_{mi}}{\sum_k X_k G_{ki}} * \left[\tau_{mi} - \frac{\sum_j X_j G_{ji} \tau_{ji}}{\sum_k X_k G_{ki}}\right] + \left[\frac{\sum_i X_i G_{is} \tau_{is}}{\sum_k X_k G_{ks}}\right] + \frac{G_{ms}}{\sum_k X_k G_{ks}} \left[\tau_{ms} - \frac{\sum_i X_i G_{is} \tau_{is}}{\sum_k X_k G_{ks}}\right]$$
(29)

Num sistema sem soluto, como apenas as moléculas de solvente estão presentes τ_{is} torna-se τ_{ii} , que é zero para todos os componentes solventes. O coeficiente de actividade, γ_m^0 , para o solvente, m, é então dado pela equação (30), que é idêntica à dada por Renon e Prausnitz (1968):

$$\ln \gamma_m^0 = \left[\frac{\sum_j X_j G_{jm} \tau_{jm}}{\sum_k X_k G_{km}}\right] + \sum_i \frac{X_i G_{mi}}{\sum_k X_k G_{ki}} * \left[\tau_{mi} - \frac{\sum_j X_j G_{ji} \tau_{ji}}{\sum_k X_k G_{ki}}\right]$$
(30)

Os últimos dois termos do lado esquerdo da equação (29) quantificam o efeito do soluto dissolvido no coeficiente de actividade do solvente m. A melhor forma de expressar este efeito é mostrada na equação (31):

$$\frac{\gamma_m^s}{\gamma_m^0} = \exp\left[\frac{\sum_i X_i G_{is} \tau_{is}}{\sum_k X_k G_{ks}} + \frac{G_{ms}}{\sum_k X_k G_{ks}} \left\{ \tau_{ms} - \frac{\sum_i X_i G_{is} \tau_{is}}{\sum_k X_k G_{ks}} \right\}\right]$$
(31)

Para uma mistura binária de solventes, os coeficientes de actividade, são dados pelas equações (32) e (33):

$$\ln \gamma_1^s = X_2^2 \left[\frac{G_{21}^2 \tau_{21}}{(X_1 + X_2 G_{21})^2} + \frac{G_{12} \tau_{12}}{(X_2 + X_1 G_{12})^2} \right] + \left[\frac{X_2 G_{1S} G_{2S}(\tau_{1S} - \tau_{2S})}{(X_1 G_{1S} + X_2 G_{2S})^2} \right] + \left[\frac{X_1 G_{1S} \tau_{1S} + X_2 G_{2S} \tau_{2S}}{(X_1 G_{1S} + X_2 G_{2S})^2} \right]$$
(32)

$$\ln \gamma_2^s = X_1^2 \left[\frac{G_{12}^2 \tau_{12}}{(X_2 + X_1 G_{12})^2} + \frac{G_{21} \tau_{21}}{(X_1 + X_2 G_{21})^2} \right] + \left[\frac{X_1 G_{1s} G_{2s} (\tau_{2s} - \tau_{1s})}{(X_1 G_{1s} + X_2 G_{2s})^2} \right] + \left[\frac{X_1 G_{1s} \tau_{1s} + X_2 G_{2s} \tau_{2s}}{(X_1 G_{1s} + X_2 G_{2s})^2} \right]$$
(33)

As equações correspondentes para as misturas binárias de solventes, sem a presença do soluto, são as mesmas que as derivadas por Renon e Prausnitz (1968) e são dadas pelas equações (34) e (35):

$$\ln \gamma_1^0 = X_2^2 \left[\frac{G_{21}^2 \tau_{21}}{(X_1 + X_2 G_{21})^2} + \frac{G_{12} \tau_{12}}{(X_2 + X_1 G_{12})^2} \right]$$
(34)

$$\ln \gamma_2^0 = X_1^2 \left[\frac{G_{12}^2 \tau_{12}}{(X_2 + X_1 G_{12})^2} + \frac{G_{21} \tau_{21}}{(X_1 + X_2 G_{21})^2} \right]$$
(35)

No caso de um sistema contendo um único solvente e um soluto dissolvido, a equação (29) reduz-se a:

$$\ln \gamma_m^s = \tau_{ms} = \ln \left[\frac{\pi}{P_m^0} \right]_{T_{sm}, N_s}$$
(36)

Ou,

$$(g_{ms} - g_{ss}) = RT \ln \left[\frac{\pi}{P_m^0}\right]_{T_{sm}, N_s}$$
(37)

Em que, P_m^0 é a pressão de vapor de saturação do solvente *m*, T_{sm} o ponto bolha do mesmo solvente, que contém o soluto dissolvido na mesma concentração que a mistura correspondente à pressão do sistema, π . Esta relação fornece a base para prever o efeito do soluto dissolvido no equilíbrio líquido-vapor da mistura de solventes. A diferença das energias de interacção dos solventes (g_{ji} - g_{ii}) e o parâmetro de não aleatoriedade, α_{ij} , podem ser obtidos através de uma regressão não linear dos dados de equilíbrio líquido-vapor da mistura de solventes, sem o soluto dissolvido. O parâmetro (g_{is} - g_{ss}) descreve o efeito do soluto dissolvido que pode ser obtido através da equação (37).

2.3 Software desenvolvido

Para a previsão do ELV dos sistemas em estudo desenvolveram-se dois programas para a realização dos cálculos relativos aos vários sistemas, usando o *software* comercial Matlab. Nos capítulos 3 e 4, apresentam-se os resultados obtidos.

3. ELV de solventes + sais

3.1 Base de dados experimental

Neste trabalho realizou-se uma revisão bibliográfica sobre dados experimentais de ELV de solventes e sais. No anexo A encontra-se uma tabela detalhada com a informação recolhida na literatura (sistema, sal utilizado, composição de sal, temperatura, pressão e presença/ausência de dados dos solventes puros com sal). Em seguida, apresenta-se uma tabela resumo dos dados de ELV recolhidos na literatura.

Sistema	Sal
Água	Pb(NO ₃) ₂ , AgNO ₃ , TiNO ₃ , CsI, MgCl ₂ , NaCl, LiCl, LiBr, LiI, BaCl ₂ ,
	$Mg(NO_3)_2$, $Ca(NO_3)_2$, K_2CO_3 , $ZnSO_4$, $SrCl_2$, Li_2SO_4 , $Na_2S_2O_3$, $NaBr$, KIO_3 ,
	RbCl, ZnCl ₂ , NiCl ₂ , Ni(NO ₃) ₂ , MgBr ₂ , CaCl ₂ , KNO ₃ , KCl, BaCl ₂ , MnSO ₄ ,
	KNO ₃ , UO ₂ (NO ₃) ₂ , NaNO ₃ , NaNO ₂
Metanol	NaClO, KBr, KI, RbI, LiCl, LiBr, NaSCN, NaI, KCH ₃ CO ₂ , NH ₄ SCN, NaBr,
	CaCl ₂ , NaOH, CuCl ₂ , NaCl, KSCN, CsI, Et ₄ NBr, Bu ₄ NBr, Bu ₄ NClO ₄ , Bu ₄ NI,
	Am₄NBr
Etanol	ZnCl ₂ , NaI, LiCl, LiBr, K ₂ SO ₄ , LiI, CuCl ₂ , KC ₂ H ₃ O ₂
2-Propanol	CaCl ₂ , NaI
2-Metil-1-Butanol	CaCl ₂
Acetonitrilo	NaI
1-Butanol	CaCl ₂ , LiCl, Ca(NO ₃) ₂
2-Butanol	CaCl ₂
1-Propanol	CaCl ₂
Ác. Propanóico + Água	NaNO ₃ , KNO ₃ , KBr, Pb(NO ₃) ₂ , NaCl, CaCl ₂ , AlCl ₃ , NH ₄ Cl, KCl
Dimetilsulfóxido + Água	NaClO ₄
Metanol + Água	MgSO ₄ , CuCl ₂ , NaBr, NaCl, KCl, KBr, KNO ₃ , K ₂ SO ₄ , Na ₂ SO ₄ , NaI, KI,
	NH_4Cl , $CdCl_2$, Hg_2Cl_2 , $NaCH_3CO_2$, $LiCl$, NaF , $NaNO_3$, $LiBr+ZnCl_2$, $CaCl_2$,
	Na ₂ HPO ₄ , KCH ₃ COO, Pb(NO ₃) ₂
2-Propanol + Tetracloreto	CaCl ₂ , KI
de carbono	
Acetona + Tetracloreto de	KI, NaCl
carbono	
2-butanona + Água	NaCl, NaBr
Ác. Clorídrico + Água	NaI, CaCl ₂ , NaCl
Ác. Nítrico + Água	ThNO ₃
Ác. Acético + Água	NH ₄ Cl, Na ₂ SO ₄ , NaCl, KCl, CaCl ₂ , KI, KBr, LiCH ₃ CO ₂ , SrCl ₂ , BaCl ₂ ,
	KCH ₃ CO ₂ , NaCH ₃ CO ₂ , K ₂ SO ₄
Água + 2-propanol	CaCl ₂ , NaCl, ZnCl ₂ , NaBr, Ca(NO ₃) ₂ , C ₁₆ H ₃₆ INBr, LiBr, LiCl, KNO ₃ , MgBr ₂
Acetato de etilo + Etanol	KCH ₃ CO ₂ , LiCl, NaI
Metanol + 1-Propanol	NaI, CaCl ₂
Metanol + 2-Propanol	NaI
Etanol + 1-Propanol	NaI, CaCl ₂

Tabela 3. Tabela resumo dos dados de ELV recolhidos na literatura (sistema+sal).

Etanol + 2-Propanol	BaI ₂ , NaI
Etanol + Acetato de etilo	NaI, LiCl, LiNO ₃ , CaCl ₂ , KCH ₃ COO
Metanol + Etanol	LiCl, CaCl ₂ , NaI, NH ₄ I
1-Propanol + Água	CuCl ₂ , NaCl, NaBr, KBr, CaCl ₂ , NH ₄ Cl, KCl, LiCl
Água + Fenol	NaCl
Etanol + Água	NaBr, KBr, NaI, KI, Ca(NO ₃) ₂ , NaCl, CaCl ₂ , KNO ₃ , Na ₂ SO ₄ , NaNO ₃ , NH ₄ I,
	HgCl ₂ , NH ₄ Cl, KCl, CH ₃ OC ₁₀ H ₇ , KCH ₃ COO, LiCl, CuCl ₂ , NaCH ₃ COO
Acetona + Metanol	Cd(CH ₃ CO ₂) ₂ , KSCN, NaSCN, NaI, NaBr, KCH ₃ CO ₂ , LiCl, ZnCl ₂ , KI, LiNO ₃ ,
	CaBr ₂ , CaCl ₂ , NaCl, NH ₄ Cl
Metanol + Benzeno	Mg(CH ₃ CO ₂) ₂ , NaCl, CaCl ₂ , ZnCl ₂
Acet. de etilo + Metanol	LiNO ₃ , CaCl ₂ , NaI, Mg(NO ₃) ₂ , HgCl ₂ , KI, NH ₄ SCN, KSCN
Acet. de metilo + Metanol	LiNO ₃ , KCH ₃ CO ₂ , LiCl, CaCl ₂ , Ca(NO ₃) ₂ , NaSCN
Clorofórmio + Etanol	CaCl ₂
Água + Piridina	CaCl ₂ , NaCl, ZnCl ₂ , NaI, Na ₂ SO ₄
MTBE + Metanol	LiCl, CaCl ₂
Ác. Fórmico + Água	NaCl, MgCl ₂
Água + Álcool benzílico	NaCl
Ciclohexano + Metanol	NaCl
Acet. de etilo+2-Propanol	NaCl, CaCl ₂ , ZnCl ₂
Acetato de etilo + Água	NaCl, CaCl ₂ , ZnCl ₂
Etilamina + Água	LiNO ₃ , LiBr
1-Propanol + 2-Propanol	NaI, CaCl ₂
Água + 1,3-Propanodiol	LiBr
Etanol + 2-Propanol	BaI ₂ , NaI
Tetrahidrofurano+Metanol	LiBr
Etanol + Benzeno	MgCl ₂ , LiCl, CaCl ₂ , ZnCl ₂
Hexano + 2-Propanol	CaCl ₂
Benzeno + Piridina	NaCl, CaCl ₂ , ZnCl ₂
Glicerol + Água	NaCl
n-Hexano + Etanol	KCH ₃ CO ₂ , LiBr
Hexeno + 1-Etanol	KCH ₃ CO ₂ , LiBr
Acetona + Água	KCl, NH ₄ Cl, CaCl ₂ , NaCl, LiCl, NaBr, KI, KBr
Anilina + Água	NaCl, NaI, NH ₄ Cl, NH ₄ I
Etanol + 1-Butanol	LiCl
Propenol + Água	CaCl ₂
Etanol+Tolueno	NaCH ₃ COO
Água+Dioxano	NaC ₂ H ₃ O ₂ , NaCl, KC ₇ H ₅ O ₂
Tetrahidrofurano+Água	CaCl ₂ , NaCl
Ác. Clorídrico + Cloreto	NaCl, HCl
de sódio + Água	
Água+Etanol+2-Propanol	NaNO ₃ , NaCl, KCl, CH ₃ COOH
Amoniaco+Água+Metanol	NaCl, Na ₂ SO ₄
Água+Etanol+1-Propanol	NaCl, KCl, Cu ₂ SO ₄
Água+Etanol+1-Butanol	NaCl, KCl, NH ₄ Cl
Etanol+Água+Etilenoglicol	CaCl ₂

3.2 Aplicação dos modelos de Wilson modificado e NRTL modificado

Nesta secção vão ser apresentados os resultados e a análise da aplicação dos modelos de Wilson modificado e NRTL modificado a alguns sistemas.

Estes sistemas foram escolhidos, uma vez que estão disponíveis os dados relativos aos solventes puros com sal, indispensáveis para a aplicação desta metodologia e, adicionalmente, são dados posteriores à revisão feita por Tan (1987, 1990).

Os parâmetros dos modelos e as constantes da equação de Antoine apresentam-se no anexo B. Para cada sistema calcularam-se os erros absolutos em relação à composição, $\Delta y = |y_{1,cal} - y_{1,exp}|$, e em relação à temperatura, $\Delta T = |T_{cal} - T_{exp}|$ e o respectivo desvio padrão σ . Os valores dos erros para cada sistema em função da concentração de sal apresentam-se no anexo C.

3.2.1 Sistema 1-propanol+água+cloreto de cobre (II)

Vercher *et al.* (2005) estudaram a adição do sal cloreto de cobre (II) com diferentes concentrações de sal, à mistura de solventes 1-propanol (1) + água (2). O azeótropo existente nesta mistura não é eliminado, à medida que a concentração de sal aumenta.

O efeito da adição deste sal à mistura foi comparado com o efeito da adição de outros sais, como por exemplo, cloreto de cálcio (Iliuta *et al.*, 1996a), nitrato de cálcio (Vercher *et al.*, 1999), nitrato de lítio (Vercher *et al.*, 2002) e cloreto de lítio (Vercher *et al.*, 2004a), e o efeito observado foi menor. Por exemplo, os sais de cálcio têm a capacidade de eliminar o azeótropo completamente com pequenas quantidades de sal, ao passo que os sais de lítio produzem uma importante mudança do ponto azeotrópico, embora não o consigam eliminar. Através da representação dos dados experimentais podemos observar que a adição do sal provoca um ligeiro aumento da fracção molar de 1-propanol na fase de vapor e o deslocamento do azeótropo para valores de X₁ superiores, embora o azeótropo não seja eliminado com o aumento da concentração de sal.

Aplicando os modelos de Wilson modificado e NRTL modificado na descrição do ELV deste sistema, verifica-se que estes descrevem de uma forma satisfatória os dados experimentais, isto é, acompanham o deslocamento do azeótropo para valores de X_1 e temperatura superiores.

Nas figuras seguintes, apresentam-se os resultados obtidos para alguns valores de concentração de sal, aplicando o modelo de Wilson modificado (Figuras 5 e 6) e o modelo NRTL modificado (Figuras 7 e 8).

Figura 5. ELV para o sistema 1-propanol (1) + água (2) + CuCl₂ (3) a 750 mmHg: ----- Sem sal; — Calculado (x_3 =0.022); • Experimental (x_3 =0.022); - - Calculado (x_3 =0.069); ♦ Experimental (x_3 =0.069); - · - Calculado (x_3 =0.113); • Experimental (x_3 =0.113).

Figura 7. ELV para o sistema 1-propanol (1) + água (2) + CuCl₂ (3) a 750 mmHg: ----- Sem sal; — Calculado ($x_3=0.022$); • Experimental ($x_3=0.022$); - - - Calculado ($x_3=0.069$); \diamond Experimental ($x_3=0.069$); - · - Calculado ($x_3=0.113$); • Experimental ($x_3=0.113$).

Figura 6. Diagrama TXy para o sistema 1propanol (1) + água (2) + CuCl₂ (3) a 750 mmHg: ----- TXy Sem sal; — TXy Calculado (x_3 =0.022); • TX Experimental (x_3 =0.022); **x** Ty Experimental (x_3 =0.022); - - TXy Calculado (x_3 =0.069); \diamond TX Experimental (x_3 =0.069); x Ty Experimental (x_3 =0.069); - - TXy Calculado (x_3 =0.113); • TX Experimental (x_3 =0.113); Δ Ty Experimental (x_3 =0.113).

Figura 8. Diagrama TXy para o sistema 1propanol (1) + água (2) + CuCl₂ (3) a 750 mmHg: ----- TXy Sem sal; — TXy Calculado (x₃=0.022); • TX Experimental (x₃=0.022); \times Ty Experimental (x₃=0.022); --- TXy Calculado (x₃=0.069); \diamond TX Experimental (x₃=0.069); x Ty Experimental (x₃=0.069); -·- TXy Calculado (x₃=0.113); • TX Experimental (x₃=0.113); Δ Ty Experimental (x₃=0.113).

Para o modelo de Wilson modificado os erros absolutos médios obtidos foram $\Delta y=0.041$ e $\Delta T=0.830$ K e para o modelo NRTL modificado os erros absolutos médios obtidos foram $\Delta y=0.038$ e $\Delta T=0.608$ K. Através da análise destes erros podemos ver que o modelo NRTL modificado prevê com melhor precisão, uma vez que os erros médios, $\Delta y \in \Delta T$, são menores.

3.2.2 Sistema acetona+metanol+NaI e acetona+metanol+KI

Iliuta e Thyrion (1995) estudaram o efeito da adição dos sais NaI e KI com diferentes concentrações de sal, à pressão constante de 760 mmHg, à mistura de solventes acetona (1) + metanol (2).

O ponto azeotrópico do sistema binário sem sal foi encontrado à fracção molar de acetona igual a 0.783 e à temperatura de 55.4 °C.

Ambos os sais produzem um efeito "*salting out*" sobre a acetona, isto é, a fracção molar da acetona na fase de vapor aumenta com o aumento da concentração de sal e o azeótropo desloca-se para valores de X_1 superiores ou é completamente eliminado.

Usando o sal NaI com uma fracção molar de 0.010 o ponto azeotrópico foi alterado para 0.915, e para cerca de 0.980 para uma fracção molar de sal igual a 0.015. Para fracções molares de sal superiores a 0.015 o azeótropo da mistura é eliminado.

Usando o sal KI, o ponto azeotrópico da mistura foi alterado para aproximadamente 0.800 para uma fracção molar de sal de 0.003, e para cerca de 0.850 nas condições de saturação.

As experiências com o sal KI não foram realizadas noutras concentrações, devido à menor solubilidade deste sal em acetona.

Nas figuras seguintes, apresentam-se os resultados obtidos para alguns valores de concentração de sal (NaI ou KI), aplicando o modelo de Wilson modificado (Figuras 9 a 12) e o modelo NRTL modificado (Figuras 13 a 16).

Aplicando os modelos de Wilson modificado e NRTL modificado aos dados experimentais do sistema acetona+metanol+NaI, podemos ver que estes descrevem bem os dados experimentais para as várias concentrações de sal, mas à medida que a concentração de sal aumenta, os erros tornam-se cada vez maiores, principalmente na saturação, onde os modelos se afastam, principalmente o modelo de Wilson modificado.

Figura 9. ELV para o sistema acetona (1) + metanol (2) + NaI (3) a 760 mmHg: ----- Sem sal; — Calculado ($x_3=0.01$); • Experimental ($x_3=0.01$); - - Calculado ($x_3=0.05$); \diamond Experimental ($x_3=0.05$); - · - Calculado (Sat.); • Experimental (Sat.).

Figura 10. Diagrama TXy para o sistema acetona (1) + metanol (2) + NaI (3) a 760 mmHg: ----- TXy Sem sal; ----- TX Calculado (x_3 =0.01); --- Ty Calculado (x_3 =0.01); • TX Experimental (x_3 =0.01); # Ty Experimental (x_3 =0.01); - - TX Calculado (x_3 =0.05); - · - · Ty Calculado (x_3 =0.05); \Leftrightarrow TX Experimental (x_3 =0.05); x Ty Experimental (x_3 =0.05); - · - TX Calculado (Sat.); - · · - Ty Calculado (Sat.); • TX Experimental (Sat.); Δ Ty Experimental (Sat.).

Figura 11. ELV para o sistema acetona (1) + metanol (2) + KI (3) a 760 mmHg: ----- Sem sal; — Calculado ($x_3=0.003$); • Experimental ($x_3=0.003$); – – – Calculado (Sat.); \diamond Experimental (Sat.).

Figura 12. Diagrama TXy para o sistema acetona (1) + metanol (2) + KI (3) a 760 mmHg: ----- TXy Sem sal; ----- TX Calculado ($x_3=0.003$); ---- Ty Calculado ($x_3=0.003$); • TX Experimental ($x_3=0.003$); \times Ty Experimental ($x_3=0.003$); ----TX Calculado (Sat.); - · - · Ty Calculado (Sat.); \diamond TX Experimental (Sat.); x Ty Experimental (Sat.).

Figura 13. ELV para o sistema acetona (1) + metanol (2) + NaI (3) a 760 mmHg: ----- Sem sal; — Calculado ($x_3=0.01$); • Experimental ($x_3=0.01$); - - Calculado ($x_3=0.05$); \diamond Experimental ($x_3=0.05$); - · - Calculado (Sat.); • Experimental (Sat.).

Figura 14. Diagrama TXy para o sistema acetona (1) + metanol (2) + NaI (3) a 760 mmHg: ----- TXy Sem sal; ----- TX Calculado (x_3 =0.01); --- Ty Calculado (x_3 =0.01); • TX Experimental (x_3 =0.01); # Ty Experimental (x_3 =0.01); - - TX Calculado (x_3 =0.05); - · - · Ty Calculado (x_3 =0.05); \Leftrightarrow TX Experimental (x_3 =0.05); x Ty Experimental (x_3 =0.05); - · - TX Calculado (Sat.); - · · - Ty Calculado (Sat.); • TX Experimental (Sat.); Δ Ty Experimental (Sat.).

62 60 58 56 54 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 X₁,Y₁

70

68

66

64

Figura 15. ELV para o sistema acetona (1) + metanol (2) + KI (3) a 760 mmHg: ----- Sem sal; — Calculado ($x_3=0.003$); • Experimental ($x_3=0.003$); – – – Calculado (Sat.); \diamond Experimental (Sat.).

Figura 16. Diagrama TXy para o sistema acetona (1) + metanol (2) + KI (3) a 760 mmHg: ----- TXy Sem sal; ----- TX Calculado ($x_3=0.003$); ---- Ty Calculado ($x_3=0.003$); • TX Experimental ($x_3=0.003$); * Ty Experimental ($x_3=0.003$); ----TX Calculado (Sat.); - · - · Ty Calculado (Sat.); \diamond TX Experimental (Sat.); x Ty Experimental (Sat.).

É também visível que os modelos acompanham o deslocamento do azeótropo para valores de X_1 e temperatura superiores e, na saturação, o modelo NRTL modificado, consegue prever a quebra do azeótropo, enquanto que o modelo de Wilson modificado não.

Relativamente aos erros calculados, obtiveram-se os seguintes erros para o modelo de Wilson, $\Delta y=0.036 e \Delta T=0.949 K$, e para o modelo NRTL, $\Delta y=0.027 e \Delta T=0.316 K$. Através da análise destes valores, podemos ver que o modelo NRTL se ajusta melhor, uma vez que os erros obtidos são menores.

No caso do sistema acetona+metanol+KI, podemos ver que ambos os modelos descrevem de forma satisfatória os dados experimentais para as concentrações de sal. Na saturação, as curvas referentes à temperatura afastam-se e os erros obtidos são mais elevados, principalmente para o modelo NRTL modificado.

É também visível que os modelos acompanham o deslocamento do azeótropo para valores de X_1 e temperatura superiores.

Analisando os erros médios calculados, para o modelo de Wilson modificado obtémse $\Delta y=0.011$ e $\Delta T=0.191$ K, e para o modelo NRTL obtivemos $\Delta y=0.010$ e $\Delta T=0.516$ K. Relativamente à temperatura, o modelo de Wilson modificado apresenta um erro médio significativamente menor.

3.2.3 Sistema acetona+metanol+LiNO₃

Vercher *et al.* (2006) estudaram o efeito da adição do sal LiNO₃ à mistura binária acetona (1) + metanol (2), à pressão constante de 750 mmHg.

Os dados experimentais do sistema binário acetona + metanol mostram um ponto azeotrópico para $X_1=0.782$ e T = 54.95 °C.

É possível constatar que a presença de nitrato de lítio provoca um aumento da volatilidade relativa da acetona e um deslocamento do azeótropo para valores superiores de X₁. Este comportamento torna-se mais evidente com o aumento da concentração de sal.

Este sal tem a capacidade de eliminar o azeótropo, com pequenas concentrações de sal. Com uma fracção molar acima de 0.022 o azeótropo já foi completamente eliminado.

O efeito produzido por este sal é maior do que o produzido por iodeto de sódio (Iliuta e Thyrion, 1995), tiocianato de sódio (Iliuta e Thyrion, 1996b) e brometo de cálcio (Al-Asheh e Banat, 2005).

Nas Figuras 17 e 18 apresentam-se os resultados obtidos, para alguns valores de concentração de LiNO₃ aplicando o modelo de Wilson modificado e nas Figuras 19 e 20 aplicando o modelo NRTL modificado.

Figura 17. ELV para o sistema acetona (1) + metanol (2) + LiNO₃ (3) a 750 mmHg: ----- Sem sal; — Calculado (x_3 =0.022); • Experimental (x_3 =0.022); - - - Calculado (x_3 =0.088); ♦ Experimental (x_3 =0.088); - · - Calculado (x_3 =0.152); • Experimental (x_3 =0.152).

Figura 18. Diagrama TXy para o sistema acetona (1) + metanol (2) + LiNO₃ (3) a 750 mmHg: -----TXy Sem sal; — TXy Calculado (x_3 =0.022); • TX Experimental (x_3 =0.022); ж Ty Experimental (x_3 =0.022); --- TXy Calculado (x_3 =0.088); \diamond TX Experimental (x_3 =0.088); x Ty Experimental (x_3 =0.088); -·- TXy Calculado (x_3 =0.152); • TX Experimental (x_3 =0.152); Δ Ty Experimental (x_3 =0.152).

Figura 19. ELV para o sistema acetona (1) + metanol (2) + LiNO₃ (3) a 750 mmHg: ----- Sem sal; — Calculado ($x_3=0.022$); • Experimental ($x_3=0.022$); - - Calculado ($x_3=0.088$); \diamond Experimental ($x_3=0.088$); - Calculado ($x_3=0.152$); • Experimental ($x_3=0.152$).

Figura 20. Diagrama TXy para o sistema acetona (1) + metanol (2) + LiNO₃ (3) a 750 mmHg: ----- TXy Sem sal; — TXy Calculado (x_3 =0.022); • TX Experimental (x_3 =0.022); **ж** Ty Experimental (x_3 =0.022); - - - TXy Calculado (x_3 =0.088); \diamond TX Experimental (x_3 =0.088); x Ty Experimental (x_3 =0.088); - - TXy Calculado (x_3 =0.152); • TX Experimental (x_3 =0.152); Δ Ty Experimental (x_3 =0.152).
Os modelos conseguem descrever qualitativamente o deslocamento do azeótropo para valores de X₁ superiores, e para a concentração de sal mais elevada o modelo NRTL consegue prever a quebra do azeótropo, enquanto que o modelo de Wilson não. Para o modelo de Wilson modificado os valores dos erros obtidos foram Δy =0.039 e ΔT =0.517 K e para o modelo NRTL modificado foram Δy =0.041 e ΔT =0.585 K.

3.2.4 Sistema acetona+metanol+LiCl

Iliuta *et al.* (1998) estudaram o efeito da adição do sal cloreto de lítio à mistura de acetona (1) e metanol (2), à pressão atmosférica.

O ponto azeotrópico existente na mistura foi alterado de 0.783 para 0.910, para uma fracção molar de sal de 0.005, para 0.950 para uma fracção molar de sal de 0.0075, para 0.975 para uma fracção molar de sal de 0.01 e para 0.985 nas condições de saturação.

A adição de cloreto de lítio à mistura acetona + metanol, resulta num grande aumento da fracção molar de acetona na fase vapor, nomeadamente nas condições de saturação. No entanto, o azeótropo existente nesta mistura não desaparece, mesmo em condições de saturação.

Aplicando os modelos de Wilson modificado e NRTL modificado a este sistema, podemos ver que estes descrevem de uma forma satisfatória os dados experimentais, prevendo o deslocamento qualitativo do azeótropo para valores de X₁ superiores. No caso do modelo NRTL modificado, este prevê erradamente a quebra do azeótropo em condições de saturação. Para o modelo de Wilson modificado os valores dos erros obtidos foram Δy =0.063 e ΔT =0.528 K e para o modelo NRTL modificado foram Δy =0.064 e ΔT =0.712 K. O modelo de Wilson modificado é aquele que descreve melhor este sistema.

Nas figuras seguintes, apresentam-se os resultados obtidos, para alguns valores de concentração de LiCl, aplicando o modelo de Wilson modificado (Figuras 21 e 22) e o modelo NRTL modificado (Figuras 23 e 24).

Figura 21. ELV para o sistema acetona (1) + metanol (2) + LiCl (3) a 760 mmHg: ----- Sem sal; ---- Calculado ($x_3=0.005$); • Experimental ($x_3=0.05$); - - - Calculado ($x_3=0.05$); \diamond Experimental ($x_3=0.05$); - · - Calculado (Sat.); • Experimental (Sat.).

Figura 22. Diagrama TXy para o sistema acetona (1) + metanol (2) + LiCl (3) a 760 mmHg: -----TXy Sem sal; — TXy Calculado ($x_3=0.005$); • TX Experimental ($x_3=0.005$); \times Ty Experimental ($x_3=0.005$); - - TXy Calculado ($x_3=0.05$); \diamond TX Experimental ($x_3=0.05$); \times Ty Experimental ($x_3=0.05$); - - TXy Calculado (Sat.); • TX Experimental (Sat.); Δ Ty Experimental (Sat.).

Figura 23. ELV para o sistema acetona (1) + metanol (2) + LiCl (3) a 760 mmHg: ----- Sem sal; ---- Calculado ($x_3=0.005$); • Experimental ($x_3=0.05$); - - - Calculado ($x_3=0.05$); \diamond Experimental ($x_3=0.05$); - · - Calculado (Sat.); • Experimental (Sat.).

Figura 24. Diagrama TXy para o sistema acetona (1) + metanol (2) + LiCl (3) a 760 mmHg: -----TXy Sem sal; — TXy Calculado (x_3 =0.005); • TX Experimental (x_3 =0.005); \times Ty Experimental (x_3 =0.005); --- TXy Calculado (x_3 =0.05); \diamond TX Experimental (x_3 =0.05); x Ty Experimental (x_3 =0.05); - · - TXy Calculado (Sat.); • TX Experimental (Sat.); Δ Ty Experimental (Sat.).

3.2.5 Sistema acetato de metilo+metanol+NaSCN

Iliuta *et al.* (1996c) estudaram o efeito da adição do sal tiocianato de sódio, à mistura de acetato de metilo (1) e metanol (2), à pressão atmosférica.

Este sal é muito solúvel em metanol e também solúvel em acetato de metilo, permitindo um estudo experimental numa ampla gama de concentrações de sal, abaixo da saturação. Além disso, o azeótropo presente neste sistema é de grande importância a nível industrial, no processo de produção do poli(álcool vinílico). O ponto azeotrópico do sistema binário sem sal foi encontrado para uma fracção molar de X₁ igual a 0.668 e T=53.85 °C.

A adição deste sal à mistura de solventes, à pressão atmosférica, resulta num grande aumento da fracção molar do éster na fase de vapor à medida que a concentração de sal aumenta, em especial na saturação, quando comparado com o sistema sem sal. O ponto azeotrópico foi alterado para cerca de X_1 igual a 0.702, 0.73, 0.80, 0.88 e 0.95 para as fracções molares de sal iguais a 0.01, 0.02, 0.03, 0.04 e 0.05, respectivamente. Na saturação, o azeótropo presente na mistura de solventes foi eliminado.

Nas figuras seguintes, apresentam-se os resultados obtidos, para alguns valores de concentração de NaSCN, aplicando o modelo de Wilson modificado (Figuras 25 e 26) e o modelo NRTL modificado (Figuras 27 e 28).

Figura 25. ELV para o sistema acetato de metilo (1) + metanol (2) + NaSCN (3) a 760 mmHg: -----Sem sal; — Calculado ($x_3=0.01$); • Experimental ($x_3=0.01$); – – Calculado ($x_3=0.04$); \diamond Experimental ($x_3=0.04$); – · – Calculado (Sat.); • Experimental (Sat.).

Figura 27. ELV para o sistema acetato de metilo (1) + metanol (2) + NaSCN (3) a 760 mmHg: ----- Sem sal; — Calculado ($x_3=0.01$); • Experimental ($x_3=0.01$); - - Calculado ($x_3=0.04$); \diamond Experimental ($x_3=0.04$); - · -Calculado (Sat.); • Experimental (Sat.).

Figura 28. Diagrama TXy para o sistema acetato de metilo (1) + metanol (2) + NaSCN (3) a 760 mmHg: ----- TXy Sem sal; — TXy Calculado ($x_3=0.01$); • TX Experimental ($x_3=0.01$); \times Ty Experimental ($x_3=0.01$); - - TXy Calculado ($x_3=0.04$); \diamond TX Experimental ($x_3=0.04$); \times Ty Experimental ($x_3=0.04$); - · - TXy Calculado (Sat.); • TX Experimental (Sat.); Δ Ty Experimental (Sat.).

Aplicando os modelos de Wilson modificado e NRTL modificado aos dados experimentais do sistema em estudo, verifica-se que estes descrevem de uma forma satisfatória os dados experimentais. Para o modelo de Wilson modificado os valores dos erros obtidos foram Δy =0.028 e ΔT =0.892 K e para o modelo NRTL modificado foram Δy =0.024 e ΔT =0.547 K.

É também visível nas representações gráficas que os modelos prevêem o deslocamento do azeótropo para valores de X₁ superiores. Na saturação, erros absolutos médios relativos à temperatura são bastante mais elevados, principalmente para o modelo de Wilson modificado. Apenas o modelo NRTL modificado é capaz de descrever a quebra do azeótropo em condições de saturação.

3.2.6 Sistema etanol+água+Ca(NO₃)₂ e 2-propanol+água+ Ca(NO₃)₂

Polka e Gmehling (1994) mediram o ELV dos sistemas etanol, água e nitrato de cálcio e 2-propanol, água e nitrato de cálcio, a 380 mmHg, com o objectivo de verificar se o azeótropo se deslocava para valores de $X_{álcool}$ mais elevados ou se era eliminado, com a adição de pequenas concentrações de sal.

A adição deste sal resulta num aumento considerável da fracção molar do álcool na fase vapor, em comparação com o sistema sem sal.

Para o sistema etanol + água + nitrato de cálcio já não existe azeótropo, mesmo a baixas concentrações de sal (1,038 molal).

A solubilidade do nitrato de cálcio em 2-propanol não é suficiente para obter resultados experimentais para concentrações elevadas de álcool, no caso do sistema 2-propanol + água + nitrato de cálcio.

Nas Figuras 29 a 32, apresentam-se os resultados obtidos para ambos os sistemas, aplicando o modelo de Wilson modificado e nas Figuras 33 a 36 aplicando o modelo NRTL modificado.

Figura 29. ELV para o sistema etanol (1) + água (2) + Ca(NO₃)₂ (3) a 380 mmHg: — Calculado (1.038 molal); • Experimental (1.038 molal); – – – Calculado (2.049 molal); \diamond Experimental (2.049 molal).

Figura 30. Diagrama TXy para o sistema etanol (1) + água (2) + Ca(NO₃)₂ (3) a 380 mmHg: — TXy Calculado (1.038 molal); • TX Experimental (1.038 molal); \times Ty Experimental (1.038 molal); – – – TXy Calculado (2.049 molal); \diamond TX Experimental (2.049 molal); \times Ty Experimental (2.049 molal).

Figura 31. ELV para o sistema 2-propanol (1) + água (2) + Ca(NO₃)₂ (3) a 380 mmHg: ; — Calculado (1.038 molal); • Experimental (1.038 molal); - – Calculado (2.073 molal); \diamond Experimental (2.073 molal).

Figura 32. Diagrama TXy para o sistema 2propanol (1) + água (2) + $Ca(NO_3)_2$ (3) a 380 mmHg: — TXy Calculado (1.038 molal); • TX Experimental (1.038 molal); ***** Ty Experimental (1.038 molal); - - - TXy Calculado (2.073 molal); \diamond TX Experimental (2.073 molal); x Ty Experimental (2.073 molal).

Figura 33. ELV para o sistema etanol (1) + água (2) + Ca(NO₃)₂ (3) a 380 mmHg: — Calculado (1.038 molal); • Experimental (1.038 molal); – – – Calculado (2.049 molal); \diamond Experimental (2.049 molal).

Figura 34. Diagrama TXy para o sistema etanol (1) + água (2) + Ca(NO₃)₂ (3) a 380 mmHg: — TXy Calculado (1.038 molal); • TX Experimental (1.038 molal); ***** Ty Experimental (1.038 molal); - - - TXy Calculado (2.049 molal); \diamond TX Experimental (2.049 molal); **x** Ty Experimental (2.049 molal).

Figura 35. ELV para o sistema 2-propanol (1) + água (2) + Ca(NO₃)₂ (3) a 380 mmHg: — Calculado (1.038 molal); • Experimental (1.038 molal); - – Calculado (2.073 molal); \diamond Experimental (2.073 molal).

Figura 36. Diagrama TXy para o sistema 2propanol (1) + água (2) + Ca(NO₃)₂ (3) a 380 mmHg: — TXy Calculado (1.038 molal); • TX Experimental (1.038 molal); \times Ty Experimental (1.038 molal); -- - TXy Calculado (2.073 molal); \diamond TX Experimental (2.073 molal); x Ty Experimental (2.073 molal).

Para o sistema etanol + água os erros médios relativos ao modelo de Wilson modificado foram $\Delta y=0.046$ e $\Delta T=0.844$ K e para o modelo NRTL modificado $\Delta y=0.056$ e $\Delta T=1.350$ K. Analisando estes valores, pode verificar-se que o modelo de Wilson modificado se ajusta melhor aos dados experimentais.

Relativamente ao sistema 2-propanol + água os erros obtidos para o modelo de Wilson modificado foram $\Delta y=0.092 e \Delta T=1.919 K e para o modelo NRTL modificado foram <math>\Delta y=0.084 e \Delta T=1.103 K$. Para este sistema, o modelo NRTL ajusta-se melhor aos dados experimentais.

Como podemos ver nas figuras, os modelos conseguem prever apenas um ligeiro deslocamento do azeótropo para os dois sistemas, apresentando erros elevados em y e T.

3.2.7 Sistema etanol+água+KCH₃COO

Zemp e Francesconi (1992) estudaram o efeito a adição do sal acetato de potássio com diferentes fracções molares de sal (0.025, 0.050, 0.085 e 0.150), à mistura de solventes etanol e água, à pressão de 750 mmHg.

Através dos dados do ELV medidos para esta mistura, verifica-se que o ponto azeotrópico desaparece para fracções molares de sal superiores a 0.066.

Aplicando os modelos de Wilson modificado e NRTL modificado, verifica-se que estes não descrevem satisfatoriamente o ELV deste sistema. Para o modelo de Wilson modificado os valores dos erros obtidos foram $\Delta y=0.077$ e $\Delta T=0.968$ K e para o modelo NRTL modificado foram $\Delta y=0.089$ e $\Delta T=0.893$ K. Relativamente à composição, o valor médio dos erros é relativamente elevado para ambos os modelos. Adicionalmente, para este sistema, os modelos não conseguem prever a quebra do azeótropo.

Nas figuras seguintes, apresentam-se os resultados obtidos, para alguns valores de concentração de KCH₃COO, aplicando o modelo de Wilson modificado (Figuras 37 e 38) e o modelo NRTL modificado (Figuras 39 e 40).

Figura 37. ELV para o sistema etanol (1) + água (2) + KCH₃COO (3) a 750 mmHg: ----- Sem sal; — Calculado (x_3 =0.025); • Experimental (x_3 =0.025); - - - Calculado (x_3 =0.050); \diamond Experimental (x_3 =0.050); - · - Calculado (x_3 =0.085); • Experimental (x_3 =0.085).

Figura 38. Diagrama TXy para o sistema etanol (1) + água (2) + KCH₃COO (3) a 750 mmHg: -----TXy Sem sal; — TXy Calculado ($x_3=0.025$); • TX Experimental ($x_3=0.025$); * Ty Experimental ($x_3=0.025$); - – TXy Calculado ($x_3=0.050$); \diamond TX Experimental ($x_3=0.050$); x Ty Experimental ($x_3=0.050$); - · – TXy Calculado ($x_3=0.085$); • TX Experimental ($x_3=0.085$); Δ Ty Experimental ($x_3=0.085$).

Figura 39. ELV para o sistema etanol (1) + água (2) + KCH₃COO (3) a 750 mmHg: ----- Sem sal; — Calculado (x_3 =0.025); • Experimental (x_3 =0.025); − − Calculado (x_3 =0.050); ♦ Experimental (x_3 =0.050); − · − Calculado (x_3 =0.085); • Experimental (x_3 =0.085).

Figura 40. Diagrama TXy para o sistema etanol (1) + água (2) + KCH₃COO (3) a 750 mmHg: ----- TXy Sem sal; — TXy Calculado ($x_3=0.025$); • TX Experimental ($x_3=0.025$); ***** Ty Experimental ($x_3=0.025$); - - - TXy Calculado ($x_3=0.050$); \diamond TX Experimental ($x_3=0.050$); x Ty Experimental ($x_3=0.050$); - - TXy Calculado ($x_3=0.085$); • TX Experimental ($x_3=0.085$); Δ Ty Experimental ($x_3=0.085$).

3.2.8 Sistema acetona+metanol+NaSCN

Iliuta e Thyrion (1996b) estudaram o efeito da adição do sal NaSCN com fracções molares na gama 0.01-0.13 e na saturação, no ELV do sistema binário acetona + metanol, a 760 mmHg. O sal NaSCN foi escolhido devido à sua alta solubilidade em metanol e apreciável solubilidade em acetona, tornando-se assim possível estudá-lo numa ampla gama de composições de sal.

Usando o sal NaSCN, o ponto azeotrópico foi alterado para 0.834 com uma fracção molar de sal igual a 0.01 e para 0.99 com uma fracção molar de sal igual a 0.03. Para fracções molares de sal superiores a 0.03 o azeótropo da mistura de solventes foi eliminado. O efeito produzido por este sal foi comparado com o efeito produzido pelo NaI (Iliuta e Thyrion, 1995), que também foi estudado neste trabalho. Assim, para a mesma concentração de sal, a influência do NaI na composição da fase de vapor é maior do que a do NaSCN.

Nas Figuras 41 e 42, apresentam-se os resultados obtidos, para alguns valores de concentração de NaSCN, aplicando o modelo de Wilson modificado e nas Figuras 43 e 44 aplicando o modelo NRTL modificado.

Figura 41. ELV para o sistema acetona (1) + metanol (2) + NaSCN (3) a 760 mmHg: ----- Sem sal; — Calculado ($x_3=0.01$); • Experimental ($x_3=0.01$); - - Calculado ($x_3=0.07$); Experimental ($x_3=0.07$); - · - Calculado (Sat.); • Experimental (Sat.).

Figura 42. Diagrama TXy para o sistema acetona (1) + metanol (2) + NaSCN (3) a 760 mmHg: ----- TXy Sem sal; — TXy Calculado ($x_3=0.01$); • TX Experimental ($x_3=0.01$); ***** Ty Experimental ($x_3=0.01$); - - TXy Calculado ($x_3=0.07$); ***** TX Experimental ($x_3=0.07$); ***** Ty Experimental ($x_3=0.07$); - - TXy Calculado (Sat.); • TX Experimental (Sat.); ***** Ty Experimental (Sat.).

Figura 43. ELV para o sistema acetona (1) + metanol (2) + NaSCN (3) a 760 mmHg: ----- Sem sal; — Calculado ($x_3=0.01$); • Experimental ($x_3=0.01$); - - Calculado ($x_3=0.07$); \diamond Experimental ($x_3=0.07$); - · - Calculado (Sat.); • Experimental (Sat.).

Figura 44. Diagrama TXy para o sistema acetona (1) + metanol (2) + NaSCN (3) a 760 mmHg: -----TXy Sem sal; — TXy Calculado (x_3 =0.01); • TX Experimental (x_3 =0.01); **ж** Ty Experimental (x_3 =0.01); - - TXy Calculado (x_3 =0.07); \diamond TX Experimental (x_3 =0.07); **x** Ty Experimental (x_3 =0.07); - - TXy Calculado (Sat.); • TX Experimental (Sat.); Δ Ty Experimental (Sat.).

Aplicando os modelos de Wilson modificado e NRTL modificado a este sistema, verifica-se que estes descrevem de uma forma razoável os dados experimentais. No entanto, na saturação, estes modelos tendem a desviar-se indicando erros mais elevados, no que respeita à temperatura. Para o modelo de Wilson modificado os valores dos erros médios obtidos foram $\Delta y=0.034$ e $\Delta T=1.588$ K, e para o modelo NRTL modificado os erros médios foram $\Delta y=0.021$ e $\Delta T=0.667$ K. Tendo em conta estes valores, o modelo que melhor se ajusta aos dados experimentais é o modelo NRTL modificado.

É também visível que os modelos acompanham o deslocamento do azeótropo para valores de X₁ mais elevados, no entanto, o modelo de Wilson modificado não consegue prever a quebra do azeótropo, enquanto o modelo NRTL consegue prever essa quebra na saturação.

3.2.9 Sistema clorofórmio+etanol+CaCl₂

Darwish e Al-Anber (1997) mediram o ELV dos sistemas clorofórmio + etanol e clorofórmio + etanol + $CaCl_2$ em condições de saturação, a 705 mmHg, com o objectivo de estudar o efeito produzido pelo sal nesta mistura.

O sal utilizado produz um ligeiro aumento da fracção molar do clorofórmio na fase de vapor, mas o azeótropo mantém-se praticamente igual ao sistema sem sal.

Nas figuras seguintes, apresentam-se os resultados obtidos, para alguns valores de concentração de CaCl₂, aplicando o modelo de Wilson modificado (Figuras 45 e 46) e o modelo NRTL modificado (Figuras 47 e 48).

Figura 45. ELV para o sistema clorofórmio (1) + etanol (2) + CaCl₂ (3) a 705 mmHg: ----- Sem sal;
Calculado (Sat.); • Experimental (Sat.).

Figura46.DiagramaTXyparaosistemaclorofórmio(1)+etanol(2)+CaCl2(3)a705mmHg:-----TXySemsal;—TXyCalculado(Sat.);•TXExperimental(Sat.);жTyExperimental(Sat.).

Figura 47. ELV para o sistema clorofórmio (1) + etanol (2) + CaCl₂ (3) a 705 mmHg: ----- Sem sal;
Calculado (Sat.); • Experimental (Sat.).

Figura48.DiagramaTXyparaosistemaclorofórmio(1)+etanol(2)+CaCl2(3)a705mmHg:-----TXySemsal;—TXyCalculado(Sat.);•TXExperimental(Sat.);жTyExperimental(Sat.).

Através da análise destes resultados, podemos ver que os modelos descrevem de uma forma bastante satisfatória os dados experimentais, isto é, acompanham o ligeiro aumento da fracção molar de clorofórmio na fase de vapor e nenhum dos modelos prevê a quebra do azeótropo.

Tendo em conta os erros calculados para o modelo de Wilson modificado ($\Delta y=0.017$ e $\Delta T=1.213$ K) e para o modelo NRTL ($\Delta y=0.019$ e $\Delta T=1.211$ K), ambos os modelos descrevem este sistema de forma semelhante.

4. ELV de solventes + LI

4.1 Base de dados experimental

Neste trabalho realizou-se uma revisão bibliográfica sobre dados experimentais de ELV de solventes e líquidos iónicos. No anexo D encontra-se uma tabela detalhada com a informação recolhida na literatura (sistema, líquido iónico utilizado, composição de líquido iónico, temperatura, pressão e presença/ausência de dados dos solventes puros com liquido iónico).

4.2 Aplicação dos modelos de Wilson modificado e NRTL modificado

Nesta secção vão ser apresentados os resultados e a análise da aplicação dos modelos em estudo a dois sistemas ternários contendo dois solventes e um líquido iónico (LI). A escolha dos sistemas para a aplicação dos modelos seguiu os mesmos critérios dos sistemas com sal.

4.2.1 Sistema etanol+água+[BMIM][Cl]

Zhao *et al.* (2006) mediram o ELV do sistema etanol (1) +água (2) na presença de vários líquidos iónicos ([MMIM][DMP], [EMIM][DEP], [BMIM][Br], [BMIM][CI] e [BMIM][PF₆]), à pressão de 760 mmHg.

O ponto azeotrópico para o sistema binário sem LI foi encontrado para uma fracção molar igual a 0.893.

Os resultados experimentais mostram um aumento da volatilidade relativa do etanol, ou seja, houve um aumento da fracção molar de etanol na fase de vapor, que levou à eliminação do azeótropo.

O efeito produzido pelos diferentes LI foi o seguinte: [BMIM][Cl] > [BMIM][Br] > [BMIM][PF₆] e [MMIM][DMP] > [EMIM][DEP].

Neste trabalho estudou-se apenas o efeito do LI [BMIM][CI]. Os dados dos solventes puros com este LI foram determinados por Calvar *et al.* (2006). O efeito dos restantes LI não foi estudado uma vez que não existiam dados relativos aos solventes puros com LI.

Nas figuras seguintes, apresentam-se os resultados obtidos, para alguns valores de concentração de [BMIM][Cl], aplicando o modelo de Wilson modificado (Figuras 49 e 50) e o modelo NRTL modificado (Figuras 51 e 52).

Figura 49. ELV para o sistema etanol (1) + água (2) + [BMIM][Cl] (3) a 760 mmHg: — Calculado (20% em massa); • Experimental (20% em massa); − − − Calculado (30% em massa); ♦ Experimental (30% em massa).

Figura 50. Diagrama TXy para o sistema etanol (1) + água (2) + [BMIM][Cl] (3) a 760 mmHg: — TXy Calculado (20% em massa); • TX Experimental (20% em massa); ★ Ty Experimental (20% em massa); - - - TXy Calculado (30% em massa); ♦ TX Experimental (30% em massa); x Ty Experimental (30% em massa).

Figura 51. ELV para o sistema etanol (1) + água (2) + [BMIM][Cl] (3) a 760 mmHg: —— Calculado (20% em massa); • Experimental (20% em massa); − − − Calculado (30% em massa); ♦ Experimental (30% em massa).

Figura 52. Diagrama TXy para o sistema etanol (1) + água (2) + [BMIM][Cl] (3) a 760 mmHg: — TXy Calculado (20% em massa); • TX Experimental (20% em massa); ★ Ty Experimental (20% em massa); - - - TXy Calculado (30% em massa); ♦ TX Experimental (30% em massa); x Ty Experimental (30% em massa).

Aplicando os modelos em estudo a este sistema, podemos ver que estes não descrevem de uma forma razoável os dados experimentais, não conseguindo prever a quebra do azeótropo. Para o modelo de Wilson modificado os valores dos erros obtidos foram Δy =0.066 e ΔT =1.268 K e para o modelo NRTL modificado foram Δy =0.072 e ΔT =0.442 K.

4.2.2 Sistema 1-propanol+água+[EMIM][triflate]

Orchillés *et al.* (2008a) fizeram medições do ELV do sistema 1-propanol (1), água (2) e [EMIM][triflate] (3) com o objectivo de estudar o efeito da adição deste LI, à pressão de 750 mmHg. O ponto azeotrópico do sistema binário sem LI foi encontrado para uma fracção molar de X_1 =0.431 e uma temperatura T=87.34 °C. A adição deste LI provocou um aumento da fracção molar de 1-propanol, ou seja, o azeótropo foi deslocado para valores de X_1 mais elevados. No entanto, o efeito provocado pelas várias concentrações de LI estudadas não foi suficiente para eliminar o azeótropo presente neste sistema. Foi estimada por estes autores uma fracção de LI igual a 0.34 para conseguir eliminar este azeótropo.

Nas figuras seguintes, apresentam-se os resultados obtidos, para alguns valores de concentração de [EMIM][triflate], aplicando o modelo de Wilson modificado (Figuras 53 e 54) e o modelo NRTL modificado (Figuras 55 e 56).

Figura 53. ELV para o sistema 1-propanol (1) +água (2) + [EMIM][triflate] (3) a 750 mmHg: -----Sem LI; — Calculado ($x_3=0.057$); •Experimental ($x_3=0.057$); - - Calculado($x_3=0.191$); \diamond Experimental ($x_3=0.191$); - -Calculado ($x_3=0.306$); • Experimental ($x_3=0.306$).

Figura 54. Diagrama TXy para o sistema 1propanol (1) + água (2) + [EMIM][triflate] (3) a 750 mmHg: ----- TXy Sem LI; — TXy Calculado ($x_3=0.057$); • TX Experimental ($x_3=0.057$); ж Ty Experimental ($x_3=0.057$); - - TXy Calculado ($x_3=0.191$); \diamond TX Experimental ($x_3=0.191$); x Ty Experimental ($x_3=0.191$); - · - TXy Calculado ($x_3=0.306$); • TX Experimental ($x_3=0.306$); Δ Ty Experimental ($x_3=0.306$).

Figura 55. ELV para o sistema 1-propanol (1) + água (2) + [EMIM][triflate] (3) a 750 mmHg: -----Sem LI; — Calculado ($x_3=0.057$); • Experimental ($x_3=0.057$); - - Calculado ($x_3=0.191$); \diamond Experimental ($x_3=0.191$); - Calculado ($x_3=0.306$); • Experimental ($x_3=0.306$).

Figura 56. Diagrama TXy para o sistema 1propanol (1) + água (2) + [EMIM][triflate] (3) a 750 mmHg: ----- TXy Sem LI; — TXy Calculado ($x_3=0.057$); • TX Experimental ($x_3=0.057$); ***** Ty Experimental ($x_3=0.057$); - - TXy Calculado ($x_3=0.191$); \diamond TX Experimental ($x_3=0.191$); x Ty Experimental ($x_3=0.191$); - - TXy Calculado ($x_3=0.306$); • TX Experimental ($x_3=0.306$); Δ Ty Experimental ($x_3=0.306$).

Aplicando os modelos em estudo a este sistema, podemos ver que estes não descrevem satisfatoriamente os dados experimentais, apesar dos modelos preverem um ligeiro deslocamento do azeótropo para valores de X₁ mais elevados. Para o modelo de Wilson modificado os valores médios dos erros obtidos foram Δy =0.091 e ΔT =3.545 K e para o modelo NRTL modificado foram Δy =0.076 e ΔT =2.474 K.

5. Conclusões e trabalho futuro

Neste trabalho realizou-se uma revisão bibliográfica de dados experimentais do equilíbrio liquido valor de misturas de solventes na presença de sais e líquidos iónicos. Desta revisão bibliográfica foram seleccionados alguns sistemas de ELV para a aplicação de dois modelos de previsão do equilíbrio de fases: modelo de Wilson modificado e modelo NRTL modificado. Estes sistemas incluem as seguintes misturas binárias de solventes: etanol + água, 1-propanol + água, 2-propanol + água, acetona + metanol, acetato de metilo + metanol e clorofórmio + etanol. O conjunto de solutos não voláteis estudados é formado por Ca(NO₃)₂, CuCl₂, NaI, KI, LiNO₃, LiCl, NaSCN, KCH₃COO, CaCl₂, [BMIM][Cl] e [EMIM][triflate].

No caso da adição de um sal a misturas binárias de solventes verifica-se que, em geral, ambos os modelos conseguem prever de forma qualitativa o deslocamento do azeótropo em termos da fracção molar da fase líquida e da temperatura. Obtiveram-se os seguintes erros absolutos globais relativos à composição da fase de vapor e à temperatura: $\Delta y=0.049$ e $\Delta T=1.173$ K para o modelo de Wilson modificado e $\Delta y=0.048$ e $\Delta T=0.879$ K para o modelo NRTL modificado. Em todos os sistemas, verifica-se uma tendência geral no sentido do aumento dos erros com a composição do sal.

Relativamente à previsão da quebra do azeótropo por adição de um sal, que se observa para sete dos sistemas estudados, o modelo de Wilson modificado não é capaz de o descrever. Por outro lado, o modelo NRTL modificado é capaz de prever de forma qualitativa a quebra do azeótropo para os sistemas acetona + metanol + NaI, acetona + metanol + LiNO₃, acetato de metilo + metanol + NaSCN e acetona + metanol + NaSCN.

Estes modelos constituem assim uma ferramenta útil na previsão do ELV de solventes e sais, utilizando apenas informação experimental relativa à mistura binária de solvente e sal.

Relativamente aos dois sistemas de solventes binários e um liquido iónico estudados neste trabalho, para o sistema etanol + água + [BMIM][Cl], ambos os modelos não conseguem prever a quebra do azeótropo que se verifica experimentalmente. Obtiveram-se os seguintes erros absolutos médios: $\Delta y=0.066$ e $\Delta T=1.268$ K (modelo de Wilson modificado) e $\Delta y=0.072$ e $\Delta T=0.442$ K (modelo NRTL modificado).

Para o sistema 1-propanol + água + [EMIM][triflate], apesar dos modelos preverem um ligeiro deslocamento do azeótropo, estes não descrevem de forma satisfatória o ELV deste sistema ternário, obtendo-se os seguintes erros absolutos

médios: $\Delta y=0.091$ e $\Delta T=3.545$ K (modelo de Wilson modificado) e $\Delta y=0.076$ e $\Delta T=2.474$ K (modelo NRTL modificado).

Numa fase posterior, para uma descrição quantitativa dos sistemas aqui estudados sugere-se uma reparametrização dos modelos utilizando dados experimentais de ELV em toda a gama de composições e/ou a aplicação de modelos mais complexos tais como o modelo NRTL para electrólitos, o modelo UNIFAC, o modelo UNIQUAC, entre outros.

Como trabalho futuro, poder-se-á também aplicar esta metodologia a outros sistemas incluídos na base de dados. Para isso seria necessário obter informação experimental adicional sobre temperaturas de ebulição de um único solvente e um sal.

O modelo NRTL modificado poderá ser ainda aplicado na descrição do equilíbrio líquido-líquido de misturas de solventes e solutos não voláteis e do ELV de misturas com mais de três componentes.

6. Bibliografia

Abraham, M. C.; Abraham, M.; Sangster, J.; J. Chem. Eng. Data, vol.25, 331 (1980)Al-Asheh, S.; Banat, F.; J. Chem. Eng. Data, vol.50, 1789 (2005) Al-Rub, F. A. A.; Banat, F. A.; Simandl, J.; Sep. Sci. Technol., vol.34, 3197 (1999b) Al-Rub, F. A. A.; Datta, R.; Fluid Phase Equilib., vol.81, 83 (2001) Al-Rub, F. A.; Banat, F. A.; Simandl, J.; Chem. Eng. J., vol.74, 205 (1999a) Al-Rub; F. A. A.; Banat, F. A.; Simandl, J.; Chem. Eng. Technol., vol.25, 729 (2002) Al-Sahhaf, T. A.; Jabbar, N. J.; J. Chem. E. Data, vol.38, 522 (1993) Apelblat, A.; J. Chem. Thermodyn., vol.24, 619 (1991) Apelblat, A.; Korin, E.; J. Chem. Thermodyn., vol.30, 459 (1998a) Apelblat, A; Korin E.; J. Chem. Thermodyn., vol.30, 59 (1998b) Arlt, M.; Seiler, M.; Jork, C.; Schneider, T.; *DE Patent NO. 10114734* (2001) Banat, F. A.; Al-Rub, F. A. A.; Simandl, J.; Chem. Eng. Technology, vol.22, 761 (1999)Banat, F.; Al-Asheh, S.; Simandl, J.; Chem. Eng. Process., vol.41, 793 (2002) Banat, F.; Al-Asheh, S.; Simandl, J.; Chem. Eng. Process., vol.42, 759 (2003) Barba, D.; Brandani, V.; Giacomo, G. D.; Chem. Eng. Sci., vol.40, 2287 (1985) Barthel, J.; Lauermann, G.; Neueder, R.; J. Solution Chem., vol.15, 869 (1986) Barthel, J.; Neueder, R.; Lauermann, G.; J. Solution Chem., vol.14, 621 (1985) Batista, S. M.; Francesconi, A. Z.; J. Chem. Eng. Data, vol.43, 38 (1998) Bixon, E.; Guerry, R.; Tassios, D.; J. Chem. Eng. Data, vol.24, 9 (1979) Bogart, M. J. P.; Brunjes, A. S.; Chem. Eng. Prog., vol.44, 95 (1948) Boryta, D. A.; Maas, A. J.; Grant, C. B.; J. Chem. Eng. Data, vol.20, 316 (1975) Calvar, N.; González, B.; Gómez, E.; Domínguez, Á.; Fluid Phase Equilib., vol.259, 51 (2007) Calvar, N.; González, B.; Gómez, E.; Domínguez, Á.; J. Chem. Eng. Data, vol.51, 2178 (2006) Calvar, N.; González, B.; Gómez, E.; Domínguez, Á.; J. Chem. Eng. Data, vol.53, 820 (2008) Calvar, N.; González, B.; Gómez, E.; Domínguez, Á.; J. Chem. Eng. Data, vol.54, 1004 (2009) Chen, D. H. T.; Thompson, A. R.; J. Chem. Eng. Data, vol.15, 471 (1970) Chen, W. C.; Tsai, F. N.; J. Chem. Eng. Data, vol.40, 1151 (1995) Dallos, A.; Ország, I.; Ratkovics, F.; Fluid Phase Equilib., vol.11, 91 (1983) Darwish, N. A.; Al-Anber, Z. A.; Fluid Phase Equilib., vol.131, 259 (1997)

Deckwer, W.D.; J. Chem. Eng. Data, vol.25, 75 (1980) Dernini, S.; Santis, R.; Marrelli, L.; J. Chem. Eng. Data, vol.21, 170 (1976) Devasahayam, E. M. J. R.; Srinivasan, D.; J. Chem. Eng. Data, vol.26, 398 (1981) Dobroserdov, L. L.; Il'ina, V. P.; translated from Zhurnal Prikladnoi Khimii, vol.34, 386 (1961) Dobroservov, L. L.; Bagrov, I. V.; translated from Zhurnal Prikladnoi Khimii, vol.40, 926 (1967) Duan, Z. T.; Lei, L. H.; Zhou, R. Q.; Petrochem. Technol. (China), vol.9, 350 (1980)Felder, R. M.; Rousseau, R. W.; Elementary Principles of Chemical Processes, John Wiley & Sons, Inc. – Third Edition, 640 (2000) Filiz, M.; Gülen, J.; Fluid Phase Equilib., vol.267, 18 (2008) Friese, T.; Schulz, S.; Ulbig, P.; Wagner, K.; Thermochim. Acta, vol.310, 87 (1998) Fu, J.; Fluid Phase Equilib., vol. 237, 219 (2005) Furter, W. F.; Chem. Eng. Commun, vol.116, 35 (1992) Furter, W. F.; Sep. Purif. Meth., vol.22, 1 (1993) Garwin, L.; Hutchison, K. E.; Ind. Eng. Chem., vol.42, 727 (1950) Ge, Y.; Zhang, L.; Yuan, X.; Geng, W.; Ji, J.; J. Chem. Thermodyn., vol.40, 1248 (2008)Gibbard Jr., H. F.; Scatchard, G.; J. Chem. Eng. Data, vol.18, 293 (1973) Gironi, F.; Lamberti, L.: *Fluid Phase Equilib.*, vol.105, 273 (1995) González J. R. A.; Zea M. V.; Anales de Fisica y Quimica, 749 (1967) Hála, E.; Fluid Phase Equilib., vol.13, 311 (1983) Holló, J.; Uzonyi, G.; Lengyel, T.; Russ. J. Phys. Chem., vol.36, 28 (1962) Hongo, M.; Kusunoki, M.; Arai, Y.; J. Chem. Thermodyn., vol.24, 649 (1992) Huang, H. J.; Ramaswamy, S.; Tschirner, U. W.; Ramarao, B. V.; Separation and *Purification Technology*, vol.62, 1 (2008) Iliuta, M. C.; Iliuta, I.; Landauer, O. M.; Thyrion, F. C.; Fluid Phase Equilib., vol.149, 163 (1998) Iliuta, M. C.; Thyrion, F. C.; Fluid Phase Equilib., vol.103, 257 (1995) Iliuta, M. C.; Thyrion, F. C.; Fluid Phase Equilib., vol.121, 235 (1996b) Iliuta, M. C.; Thyrion, F. C.; Landauer, O. M.; J. Chem. Eng. Data, vol.41, 402 (1996a) Iliuta, M. C.; Thyrion, F.C.; Landauer, O. M.; J. Chem. Eng. Data, vol.41, 713 (1996c) Iyoki, S.; Gouda, H.; Ootsuka, S. I.; Uemura, T.; J. Chem. Eng. Data, vol.43, 662 (1998)Iyoki, S.; Iwasaki, S.; Uemura, T.; J. Chem. Eng. Data, vol.35, 429 (1990)

Iyoki, S.; Nakanishi, M.; Yoshida, H.; Okuda, T.; Uemura, T.; *Int. J. Refrig.*, vol.16, 274 (1993)

Jaques, D.; Furter, W. F.; Ind. Eng. Chem., vol.13, 238 (1974)

Jödecke, M.; Kamps, A. P. S.; Maurer, G.; J. Chem. Eng. Data, vol.50, 138 (2005)

Johnson, A. I.; Furter, W. F.; *ADI Auxilliary Publ Proj Document N0 6256* (Library of Congress, Washington D. C.) (1960)

Jork, C.; Seiler, M.; Beste, Y. A.; Arlt, W.; *J. Chem. Eng. Data*, vol.49, 852 (2004) Kamps, A. P. S.; Vogt, M.; Jödecke, M.; Maurer, G.; *Ind. Eng. Chem. Res.*, vol.45, 454 (2006)

Kato, R.; Gmehling, J.; Fluid Phase Equilib., vol.231, 38 (2005)

Kogan, B.; Tsiparis, I. N.; *translated from Zhurnal Prikladnoi Khimii*, vol.41, 2675 (1968)

Kolár, P.; Nakata, H.; Tsuboi, A.; Wang, P.; Anderko, A.; *Fluid Phase Equilib.*, vol. 228, 493 (2005)

Kumagae, Y.; Mishima, K.; Hongo, M.; Kusunoki, M.; Arai, Y.; *The Canadian J. Chem. Eng.*, vol.70, 1180 (1992)

Kumar, M. D.; Rajendran, M.; Fluid Phase Equilib., vol.164, 217 (1999)

Kumar, M. D.; Rajendran, M.; J. Chem. Eng. Data, vol.45, 11 (2000)

Kumar, M. D.; Rajendran, M.; J. Chem. Eng. Japan, vol.31, 749 (1998)

Kupriyanova, I. N.; Belugin, V. F.; *translated from Zhurnal Prikladnoi Khimii*, vol.46, 234 (1973)

Lee H.; Hong, W. H.;, J. Chem. Thermodyn., vol.23, 739 (1991a)

Lee, L. S.; Tsao, Y. Z.; Yang, B. L. M.; *The Canadian J. Chem. Eng.*, vol. 69, 788 (1991b)

Lei, Z.; Li, C.; Chen, B.; Separation and Purification Reviews, vol.218, 121 (2003)

Lei, Z.; Wang, H.; Zhou, R.; Duan, Z.; Chem. Eng. Process., vol.87, 149 (2002)

Lemire, R. J.; Brown, C. P.; Campbell, B.; J. Chem. Eng. Data, vol.30, 421 (1985)

Lindberg, G. W.; Tassios, D.; J. Chem. Eng. Data, vol.16, 52 (1971)

Marinichev A. N.; Russ. J. Appl. Chem., vol.76, 1048 (2003)

Martin, M. C.; Cocero, M. J.; Mato, F.; J. Chem. Eng. Data, vol.39, 538 (1994)

Mato, F.; Cocero, M. J.; Anales de Quimica, vol.84, 93 (1988a)

Mato, F.; Cocero, M.J.; J. Chem. Eng. Data, vol.33, 38 (1988b)

Meranda, D.; Furter, W. F.; AIChe J., vol.18, 111 (1972)

Meranda, D.; Furter, W. F.; AIChe J., vol.20, 103 (1974)

Meyer, T.; Polka, H. M.; Gmehling, J.; J. Chem. Eng. Data, vol.36, 340 (1991)

Miller, E.; J. Chem. Eng. Data, vol.30, 296 (1985)

Miller, E.; J. Chem. Eng. Data, vol.35, 436 (1990)

Momoh, S. O.; Sep. Sci. Technol., vol.26, 729 (1991)

Morillon, V.; Debeaufort, F.; Jose, J.; Tharrault, J. F.; Capelle, M.; Blond, G.; Voilley, A.; Fluid Phase Equilib., vol.155, 297 (1999) Morrison, J. F.; Baker, J. C.; Meredith, H. C.; Newman, K. E.; Walter, T. D.; Massie, J. D.; Perry, R. L.; Cummings, P. T.; J. Chem. Eng. Data, vol.35, 395 (1990) Mun, S. Y.; Lee, H.; J. Chem. Eng. Data, vol.44, 1231 (1999) Narayana, A. S.; Nalk, S. C.; Rath, P.; J. Chem. Eng. Data, vol.30, 483 (1985) Nasehzadeh A.; Noroozian, E.; Omrani H.;, J. Chem. Thermodyn., vol.36, 245 (2004)Nasirzadeh, K.; Moattar, M. T. Z.; J. Mol. Liq., vol.111, 7 (2004) Natarajan, T. S.; Srinivasan, D.; J. Chem. Eng. Data, vol.25, 215 (1980a) Natarajan, T. S.; Srinivasan, D.; J. Chem. Eng. Data, vol.25, 218 (1980b) Oh, S. K.; J. Chem. Eng. Data, vol.42, 1082 (1997) Ohe, S.; Yokoyama, K.; Nakamura, S.; J. Chem. Eng. Data, vol.16, 70 (1971) Orchillés, A. V.; Miguel, P. J.; Vercher, E.; Andreu, A. M.; J. Chem. Eng. Data, vol.53, 2426 (2008a) Orchillés, A. V.; Miguel, P. J.; Vercher, E.; Andreu, A. M.; J. Chem Eng Data, vol.53, 2642 (2008b) Orchillés, A. V.; Miguel, P. J.; Vercher, E.; Andreu, A. M.; J. Chem. Eng. Data, vol.52, 2325 (2007) Patil, K. R.; Tripathi, A. D.; Pathak, G.; Katti, S. S.; J. Chem. Eng. Data, vol.35, 166 (1990) Pepela, C. N.; Dunlop, P. J.; J. Chem. Thermodyn., vol.4, 255 (1972) Pereyra, C.; Ossa, E. M.; J. Chem. Eng. Data, vol.46, 188 (2001) Polka, H. M.; Gmehling, J.; J. Chem. Eng. Data, vol.39, 621 (1994) Prausnitz J. M.; Targovnik J. H.; Ind. Eng. Chem., vol.3, 234 (1958) Rajendran, M.; Renganarayanan, S.; Srinivasan, D.; Fluid Phase Equilib., vol.70, 65 (1991)Ramalho, R. S.; Edgett, N. S.; J. Chem. Eng. Data, vol.9, 324 (1964b) Ramalho, R. S.; James, W.; Carnaham, J. F.; J. Chem. Eng. Data, vol.9, 215 (1964a) Renon, H.; Prausnitz, J. M.; AIChe J., vol.14, 135 (1968) Rieder, R. M.; Thompson, A. R.; Ind. Eng. Chem., vol.42, 379 (1950) Sada E.; Morisue, T.; Miyahara K.;, J. Chem. Eng. Data, vol.20, 283 (1975b) Sada, E.; Kito, S.; Yamaji, H.; Kimura, M.; J. Appl. Chem. Biotechnol., vol.24, 229 (1974) Sada, E.; Morisue, T.; Miyahara, K.; J. Chem. Eng. Of Japan, vol.8, 196 (1975a) Safarov, J. T.; Fluid Phase Equilib., vol. 236, 87 (2005) Safarov, J. T.; Fluid Phase Equilib., vol. 243, 38 (2006)

Safarov, J. T.; J. Chem. Thermodyn., vol.35, 1929 (2003)

Sako, T.; Hakuta, T.; Yoshitome, H.; J. Chem. Eng. Data, vol.30, 224 (1985)

Santiago, I.; Pereyra, C.; Ossa, E. M.; J. Chem. Eng. Data, vol.49, 407 (2004)

Sardroodi, J. J.; Moattar, M. T. Z.; Fluid Phase Equilib., vol.230, 64 (2005)

Schäfer, D.; Vogt, M.; Kamps, A. P. S.; Maurer, G.; *Ind. Eng. Chem. Res.*, vol.47, 5112 (2008)

Schuberth, V. H.; Z. phys. Chemie, vol.258, 1162 (1977)

Seader, J. D.; Henley, E. J.; *Separation Process Principles*, John Wiley & Sons, Inc. – Second Edition, 413 (2006)

Seiler, M.; Jork, C.; Kavarnou, A.; Arlt, W.; Hirsch, R.; *AIChe J.*, vol.50, 2439 (2004)

Sergeeva, V. F.; Mishchenco, M. A.; *translated from Zhurnal Prikladnoi Khimii*, vol.36, 2073 (1963)

Sergeeva, V. F.; translated from Zhurnal Obshchei Khimii, vol.32, 676 (1962)

Shiah, I-Min; Weng, W. L.; Wang, M. C.; Fluid Phase Equilib., vol.170, 297 (2000)

Slusher, J. T.; Decker, K. J.; Liu, H.; Vega, C. A.; Cummings, P. T.; O'Connell, J. P.; J. Chem. Eng. Data, vol.39, 506 (1994)

Subbotina, V. V.; *translated from Zhurnal Prikladnoi Khimii*, vol.42, 204 (1969) Takamatsu, H.; Ohe, S.; *J. Chem. Eng. Data*, vol.48, 277 (2003)

Tan, T. C.; AIChe J., vol.31, 2083 (1985)

Tan, T. C.; Chai, C. M.; Tok, A. T.; Ho, K, W.; *Fluid Phase Equilib.*, vol. 218, 113 (2004)

Tan, T. C.; Chem. Eng. Res. Des., vol.65, 355 (1987)

Tan, T. C.; Gan, S. H.; *Trans IChemE, Part A, Chem. Eng. Res. Des.*, vol.83, 1361 (2005a)

Tan, T. C.; Tan, R.; Soon, L. H.; Ong, S. H. P.; *Fluid Phase Equilib.*, vol.234, 84 (2005b)

Tan, T. C.; Ti, H. C.; Fluid Phase Equilib., vol.43, 91 (1988)

Tan, T. C.; *Trans IChemE – Part A*, vol.68, 93 (1990)

Taraszewska, J.; Palczewska, M. K.; Stankiewicz, D. W.; *Fluid Phase Equilib.*, vol.3, 13 (1979)

Tomasula, P.; Czerwienski, G. J.; Tassios, D.; *Fluid Phase Equilib.*, vol.38, 129 (1987)

Topphoff, M.; Kiepe, J.; Gmehling, J.; J. Chem. Eng. Data, vol.46, 1333 (2001)

Tsiparis, I. N.; Smorigaite, N. Yu.; *translated from Zhurnal Obshchei Khimii*, vol.34, 3867 (1964)

Tursi, R. R.; Thompson, A. R.; Chem. Eng. Prog., vol.47, 304 (1951)

Vercher, E.; Muñoz, R.; Andreu, A. M.; J. Chem. Eng. Data, vol.36, 274 (1991)

Vercher, E.; Orchilés, A. V.; Alfaro, V. G.; Andreu, A. M.; Fluid Phase Equilib., vol.227, 239 (2005) Vercher, E.; Orchillés, A. V.; Miguel, P. J.; Alfaro, V. G.; Andreu, A. M.; Fluid Phase *Equilib.*, vol.250, 131 (2006) Vercher, E.; Orchillés, A. V.; Vázquez, M. I.; Andreu, A. M.; Fluid Phase Equilib., vol.216, 47 (2004a) Vercher, E.; Orchillés, A. V.; Vázquez, M. I.; Andreu, A. M.; J. Chem. Eng. Data, vol.49, 566 (2004b) Vercher, E.; Rojo, F. J.; Andreu, A. M.; J. Chem. Eng. Data, vol.44, 1216 (1999) Vercher, E.; Vázquez, M. I.; Andreu, A. M.; Fluid Phase Equilib., vol.202, 121 (2002)Vercher, E.; Vázquez, M. I.; Andreu, A. M.; J. Chem. Eng. Data, vol.48, 217 (2003) Vercher, E.; Vázquez, M. I.; Andreu, A. M.; J. Chem. Eng. Data, vol.46, 1584 (2001)Wang, J. F.; Li, X. M.; Meng, H.; Li, C. X.; Wang, Z. H.; J. Chem. Thermodyn., vol.41, 167 (2009) Wozny, G.; Fluid Phase Equilib., vol.6, 149 (1981) Yamamoto, H.; Fukase, K.; Shibata, J.; J. Chem. Eng. Data, vol.41, 1066 (1996) Yamamoto, H.; Terano, T.; Nishi, Y.; Tokunaga, J.; J. Chem. Eng. Data, vol.40, 472 (1995b) Yamamoto, H.; Terano, T.; tanagisawa, M.; Tokunaga, J.; The Canadian J. Chem. Eng., vol.73, 779 (1995a) Yamamoto, H; Shibata, J.; J. Chem. Eng. Data, vol.44, 1071 (1999) Yan, W.; Fu, R.; Zhang, R.; Gmehling, J.; J. Chem. Eng. Data, vol.47, 482 (2002) Yan, W.; Rose, C.; Gmehling, J.; J. Chem. Eng. Data, vol.42, 603 (1997) Yan, W.; Rose, C.; Zhu, M.; Gmehling, J.; J. Chem. Eng. Data, vol.43, 585 (1998a) Yan, W.; Rose, C.; Zhu, M.; Gmehling, J.; *J. Chem. Eng. Data*, vol.43, 482 (1998b) Yan, W.; Topphoff, M.; Gmehling, J.; J. Chem. Eng. Data, vol.46, 1623 (2001) Yan, W.; Topphoff, M.; Zhu, M.;Gmehling, J.; J. Chem. Eng. Data, vol.44, 314 (1999)Yang, S.; Lee, C. S.; J. Chem. Eng. Data, vol.43, 558 (1998) Yun, S. H.; Kim, C.; Lee, E. S.; Kim, Y. C.; Fluid Phase Equilib., vol.149, 209 (1998)Zemp, R. J.; Francesconi, A. Z.; J. Chem. Eng. Data, vol.37, 313 (1992) Zhang, L.; Qiao, B.; Ge, Y.; Deng, D.; Ji, J.; J. Chem. Thermodyn., vol.41, 138 (2009) Zhao, J.; Dong, C. C.; Li, C. X.; Meng, H.; Wang, Z. H.; Fluid Phase Equilib., vol.242, 147 (2006)

Anexo A. Base de dados experimental (sistema+sal)

Referências	Sistema	Sal	Composição de sal	Temperatura (K)	Pressão
Fu (2005)	1-butanol	CaCl ₂	0.010-0.050 (fracção molar)	101.0-119.4	53.239-102.344 Kpa
Fu (2005)	1-propanol	CaCl ₂	0.029-0.130 (fracção molar)	88.10-99.38	70.6-100.8 Kpa
Fu (2005)	2-butanol	CaCl ₂	0.011-0.070 (fracção molar)	99.8-109.1	73.332-101.424 Kpa
Santiago <i>et al.</i> (2004)	2-metil-1-butanol	CaCl ₂	9.6 (percentagem mássica)	366.25-402.65	23.3-96.6 Kpa
Santiago <i>et al.</i> (2004)	2-metil-1-butanol	CaCl ₂	3.4 (percentagem mássica)	365.05-401.65	23.3-96.6 Kpa
Santiago <i>et al.</i> (2004)	2-metil-1-butanol	CaCl ₂	1.1 (percentagem mássica)	364.85-401.45	23.3-96.6 Kpa
Santiago <i>et al.</i> (2004)	2-metil-1-butanol	CaCl ₂	7.8 (percentagem mássica)	365.65-402.15	23.3-96.6 Kpa
Santiago <i>et al.</i> (2004)	2-metil-1-butanol	CaCl ₂	9.6 (percentagem mássica)	366.25-402.65	23.3-96.6 Kpa
Santiago <i>et al.</i> (2004)	2-metil-1-butanol	CaCl ₂	10.5 (percentagem mássica)	366.75-403.15	23.3-96.6 Kpa
Santiago <i>et al.</i> (2004)	2-metil-1-butanol	CaCl ₂	3.4 (percentagem mássica)	365.05-401.65	23.3-96.6 Kpa
Santiago <i>et al.</i> (2004)	2-metil-1-butanol	CaCl ₂	5.7 (percentagem mássica)	365.35-401.85	23.3-96.6 Kpa
Santiago <i>et al.</i> (2004)	2-metil-1-butanol	CaCl ₂	7.8 (percentagem mássica)	365.65-402.15	23.3-96.6 Kpa
Santiago <i>et al.</i> (2004)	2-metil-1-butanol	CaCl ₂	1.1 (percentagem mássica)	364.85-401.45	23.3-96.6 Kpa
Santiago <i>et al.</i> (2004)	2-metil-1-butanol	CaCl ₂	10.5 (percentagem mássica)	366.35-402.75	23.3-96.6 Kpa
Santiago <i>et al.</i> (2004)	2-metil-1-butanol	CaCl ₂	5.7 (percentagem mássica)	365.35-401.85	23.3-96.6 Kpa
Fu (2005)	2-propanol	CaCl ₂	0.023-0.104 (fracção molar)	74.30-83.69	71.7-99.8 Кра
Barthel <i>et al.</i> (1986)	2-propanol	NaI	0.06005-1.46462 molal	298.15	0.180-5.106 torr
Barthel <i>et al.</i> (1986)	Acetonitrilo	NaI	0.06025-1.54230 molal	298.15	0.380-8.071 torr
Apelblat e Korin (1998a)	Água	SrCl ₂	saturado	278.15-323.15	0.672-8.152 Kpa
Apelblat (1991)	Água	ZnSO ₄	saturado	288.67-311.40	1.453-5.176 Kpa
Abraham <i>et al.</i> (1980)	Água	TiNO₃	0.050 (fracção molar)	371.65	111.6-482.1 torr
Apelblat (1991)	Água	$Mg(NO_3)_2$	saturado	283.95-311.29	0.737-3.213 Kpa
Apelblat (1991)	Água	K ₂ CO ₃	saturado	284.02-310.79	0.577-2.936 Kpa
Apelblat (1991)	Água	Ca(NO ₃) ₂	saturado	283.15-313.15	0.693-2.624 Kpa
Apelblat e Korin (1998a)	Água	Li ₂ SO ₄	saturado	278.15-322.25	0.733-10.234 Kpa

 Tabela A.1.
 Base de dados experimentais (solvente+sal).

Apelblat e Korin (1998a)	Água	$Na_2S_2O_3$	saturado	277.65-321.45	0.736-6.996 Kpa
Deckwer (1980)	Água	MnSO ₄	0.5-3.5 M	293.15-353.15	0.10-40 torr
Apelblat e Korin (1998a)	Água	$Mg(NO_3)_2$	saturado	273.54-322.25	0.382-5.937 Kpa
Filiz e Gülen (2008)	Água	NaCl	1.9013 molal	342.95-378.65	21.332-101.325 Kpa
Abraham <i>et al.</i> (1980)	Água	NaNO ₃	0.075 (fracção molar)	371.65	111.6-482.1 torr
Apelblat e Korin (1998a)	Água	$UO_2(NO_3)_2$	saturado	280.55-319.05	0.577-7.764 Kpa
Boryta <i>et al.</i> (1975)	Água	LiBr	70 (percentagem mássica)	398.16-448.23	101.8-631.4 torr
Boryta <i>et al.</i> (1975)	Água	LiBr	60 (percentagem mássica)	298.13-423.10	1.799-625.2 torr
Boryta <i>et al.</i> (1975)	Água	LiBr	50 (percentagem mássica)	298.13-398.16	6.138-587.5 torr
Boryta <i>et al.</i> (1975)	Água	LiBr	40 (percentagem mássica)	298.13-373.38	14.39-483.5 torr
Sako <i>et al.</i> (1985)	Água	MgCl ₂	1.051 molal	322.6-388.1	11.33-158.15 Kpa
Sako <i>et al.</i> (1985)	Água	HCI	13.435 molal	323.5-359.9	27.62-158.75 Kpa
Sako <i>et al.</i> (1985)	Água	HCI	13.170 molal	323.7-361.9	23.58-151.04 Kpa
Filiz e Gülen (2008)	Água	KCI	1.4902 molal	343.55-379.15	21.332-101.325 Kpa
Apelblat e Korin (1998b)	Água	RbCl	saturado	278.05-322.35	0.593-7.553 Kpa
Abraham <i>et al.</i> (1980)	Água	AgNO ₃	0.025 (fracção molar)	371.65	111.6-482.1 torr
Kolár <i>et al.</i> (2005)	Água	LiCl+ZnCl ₂	16.7-41.7 + 3.3-8.3 (rácio	339.42-420.79	19.9-101.3 Kpa
			mássico LiCl/ZnCl ₂ =5)		
Patil <i>et al.</i> (1990)	Água	LiI	0.800-10.126 molal	333.15	6.64-19.34 Kpa
Patil <i>et al.</i> (1990)	Água	LiI	0.800-10.126 molal	323.15	4.06-11.98 Kpa
Patil <i>et al.</i> (1990)	Água	LiCl	3.010-18.456 molal	343.15	5.66-27.41 Kpa
Patil <i>et al.</i> (1990)	Água	LiCl	3.010-18.456 molal	333.15	3.37-17.47 Kpa
Patil <i>et al.</i> (1990)	Água	LiCl	3.010-18.456 molal	323.15	1.96-10.78 Kpa
Patil <i>et al.</i> (1990)	Água	LiCl	3.010-18.456 molal	313.15	1.09-6.42 Kpa
Patil <i>et al.</i> (1990)	Água	LiCl	3.010-18.456 molal	303.15	0.58-3.68 Kpa
Kolár <i>et al.</i> (2005)	Água	LiCl	10-30 (percentagem mássica)	340.81 394.47	20.0-101.3 Kpa
Kolár <i>et al.</i> (2005)	Água	ZnCl ₂	30-50 (percentagem mássica)	326.65-385.14	20.0-101.3 Kpa
Iyoki <i>et al.</i> (1990)	Água	LiBr+LiI	10.0-64.5 (percentagem	280.85-383.05	2800 Pa

			mássica)		
Sako <i>et al.</i> (1985)	Água	MgCl ₂	3.102 molal	323.0-393.8	8.94-153.93 Kpa
Kolár <i>et al.</i> (2005)	Água	LiCl+ZnCl ₂	4.3-21.4 + 5.7-28.6 (rácio	309.68-398.45	5.3-101.3 Кра
			mássico LiCl/ZnCl ₂ =0.75)		
Apelblat (1991)	Água	BaCl ₂	saturado	283.87-313.15	0.993-6.573 Kpa
Sako <i>et al.</i> (1985)	Água	CaCl ₂	5.002 molal	322.9-402.7	6.45-160.61 Kpa
Sako <i>et al.</i> (1985)	Água	CaCl ₂	4.086 molal	322.7-398.5	7.73-159.63 Kpa
Sako <i>et al.</i> (1985)	Água	CaCl ₂	3.084 molal	323.1-394.5	9.28-160.80 Kpa
Sako <i>et al.</i> (1985)	Água	CaCl ₂	2.059 molal	323.1-390.5	10.62-157.99 Kpa
Sako <i>et al.</i> (1985)	Água	CaCl ₂	0.9568 molal	339.6-388.8	25.23-163.13 Kpa
Sako <i>et al.</i> (1985)	Água	CaCl ₂	4.104 molal	349.7-397.8	25.26-146.90 Kpa
Filiz e Gülen (2008)	Água	KCI	3.3530 molal	345.55-380.25	21.332-101.325 Kpa
Patil <i>et al.</i> (1990)	Água	LiI	0.800-10.126 molal	313.15	2.41-7.16 Kpa
Filiz e Gülen (2008)	Água	KCI	5.7480 molal	347.75-381.45	21.332-101.325 Kpa
Sako <i>et al.</i> (1985)	Água	MgCl ₂	2.105 molal	323.1-391.1	10.30-159.37 Kpa
Filiz e Gülen (2008)	Água	Ca(NO ₃) ₂	4.0613 molal	348.25-385.15	21.332-101.325 Kpa
Morillon <i>et al.</i> (1999)	Água	Mg(NO ₃) ₂	saturado	233.15-283-15	0.001-10 mmHg
Filiz e Gülen (2008)	Água	KNO ₃	6.5935 molal	347.55-380.25	21.332-101.325 Kpa
Filiz e Gülen (2008)	Água	BaCl ₂	0.5335 molal	343.85-378.45	21.332-101.325 Kpa
Filiz e Gülen (2008)	Água	NaCl	4.2779 molal	346.45-382.15	21.332-101.325 Kpa
Filiz e Gülen (2008)	Água	KNO ₃	2.4726 molal	343.15-377.35	21.332-101.325 Kpa
Patil <i>et al.</i> (1990)	Água	LiI	0.800-10.126 molal	343.15	10.49-30.26 Kpa
Morillon <i>et al.</i> (1999)	Água	NaBr	saturado	233.15-283-15	0.001-10 mmHg
Morillon <i>et al.</i> (1999)	Água	LiI	saturado	233.15-283-15	0.001-10 mmHg
Morillon <i>et al.</i> (1999)	Água	LiBr	saturado	233.15-283-15	0.001-10 mmHg
Morillon <i>et al.</i> (1999)	Água	LiCl	saturado	233.15-283-15	0.001-10 mmHg
Filiz e Gülen (2008)	Água	KNO ₃	4.2387 molal	345.15-379.15	21.332-101.325 Kpa
Morillon <i>et al.</i> (1999)	Água	CaCl ₂	saturado	233.15-283-15	0.001-10 mmHg

	,				
Gibbard e Scatchard (1973)	Água	LiCl	1.0-18.5 molal	298.15-373.15	
Morillon <i>et al.</i> (1999)	Água	MgBr ₂	saturado	233.15-283-15	0.001-10 mmHg
Morillon <i>et al.</i> (1999)	Água	NiNO ₃	saturado	233.15-283-15	0.001-10 mmHg
Morillon <i>et al.</i> (1999)	Água	NiCl ₂	saturado	233.15-283-15	0.001-10 mmHg
Morillon <i>et al.</i> (1999)	Água	ZnCl ₂	saturado	233.15-283-15	0.001-10 mmHg
Apelblat e Korin (1998b)	Água	NaCl	saturado	274.00-323.15	0.490-9.209 Kpa
Apelblat e Korin (1998b)	Água	NaBr	saturado	277.55-323.75	0.481-6.681 Kpa
Morillon <i>et al.</i> (1999)	Água	SrCl ₂	saturado	233.15-283-15	0.001-10 mmHg
Apelblat e Korin (1998b)	Água	NaNO ₃	saturado	277.65-323.15	0.587-8.345 Kpa
Apelblat e Korin (1998b)	Água	NaNO ₂	saturado	278.15-323.15	0.487-7.373 Kpa
Apelblat e Korin (1998b)	Água	KIO ₃	saturado	278.15-317.55	0.755-8.377 Kpa
Morillon <i>et al.</i> (1999)	Água	KNO ₃	saturado	233.15-283-15	0.001-10 mmHg
Sako <i>et al.</i> (1985)	Água	HCI	3.882 molal	323.5-391.9	10.52-161.15 Kpa
Filiz e Gülen (2008)	Água	BaCl ₂	1.2005 molal	344.55-379.15	21.332-101.325 Kpa
Filiz e Gülen (2008)	Água	BaCl ₂	2.0579 molal	345.85-380.15	21.332-101.325 Kpa
Filiz e Gülen (2008)	Água	CaCl ₂	1.0011 molal	344.35-377.95	21.332-101.325 Kpa
Abraham <i>et al.</i> (1980)	Água	NaNO ₃	0.101 (fracção molar)	371.65	111.6-482.1 torr
Sako <i>et al.</i> (1985)	Água	HCI	1.262 molal	323.4-387.5	12.06-157.57 Kpa
Filiz e Gülen (2008)	Água	CaCl ₂	2.2524 molal	345.95-381.55	21.332-101.325 Kpa
Sako <i>et al.</i> (1985)	Água	HCI	1.782 molal	323.8-389.0	11.90-163.83 Kpa
Filiz e Gülen (2008)	Água	CaCl ₂	3.8613 molal	350.95-385.45	21.332-101.325 Kpa
Filiz e Gülen (2008)	Água	CaCl ₂	6.0065 molal	358.95-390.15	21.332-101.325 Kpa
Pepela e Dunlop (1972)	Água	NaCl	0-5.8545 molal	298.15	18.234-23.773 torr
Sako <i>et al.</i> (1985)	Água	HCI	10.042 molal	323.5-385.6	8.77-159.21 Kpa
Filiz e Gülen (2008)	Água	KNO ₃	1.0989 molal	342.25-376.15	21.332-101.325 Kpa
Filiz e Gülen (2008)	Água	Ca(NO ₃) ₂	1.5230 molal	341.85-378.45	21.332-101.325 Kpa
Patil <i>et al.</i> (1990)	Água	LiBr	2.000-15.971 molal	313.15	0.74-6.67 Kpa
Patil <i>et al.</i> (1990)	Água	LiBr	2.000-15.971 molal	323.15	1.33-11.21 Kpa
		-			

Patil <i>et al.</i> (1990)	Água	LiBr	2.000-15.971 molal	333.15	2.31-18.27 Kpa
Sako <i>et al.</i> (1985)	Água	HCI	8.567 molal	324.1-392.1	8.10-162.13 Kpa
Filiz e Gülen (2008)	Água	Ca(NO ₃) ₂	0.6769 molal	340.15-376.45	21.332-101.325 Kpa
Patil <i>et al.</i> (1990)	Água	LiBr	2.000-15.971 molal	303.15	0.39-3.82 Kpa
Filiz e Gülen (2008)	Água	Ca(NO ₃) ₂	2.6108 molal	345.55-383.05	21.332-101.325 Kpa
Patil <i>et al.</i> (1990)	Água	LiBr	2.000-15.971 molal	343.15	3.88-28.84 Kpa
Patil <i>et al.</i> (1990)	Água	LiI	0.800-10.126 molal	303.15	1.36-4.11 Кра
Sako <i>et al.</i> (1985)	Água	HCI	6.644 molal	323.8-394.5	8.65-159.89 Kpa
Subbotina (1969)	Etanol	NaI	0-2.842 molal	308.15	69.65-103.10 mmHg
Subbotina (1969)	Etanol	NaI	0-2.842 molal	298.15	39.42-59.09 mmHg
Subbotina (1969)	Etanol	NaI	0-2.842 molal	293.15	29.02-43.98 mmHg
Subbotina (1969)	Etanol	NaI	0-2.842 molal	283.15	15.20-23.51 mmHg
Subbotina (1969)	Etanol	NaI	0-2.842 molal	278.15	10.85-16.83 mmHg
Subbotina (1969)	Etanol	NaI	0-2.842 molal	318.15	118.90-172.80 mmHg
Subbotina (1969)	Etanol	NaI	0-2.842 molal	288.15	21.02-32.35 mmHg
González e Zea (1967)	Butanol	LiCl	10 g/100 g solvente	398.85	700 mmHg
González e Zea (1967)	Butanol	Ca(NO ₃) ₂	8 g/100 g solvente	388.95	700 mmHg
Lee e Hong (1991a)	Etanol	LiCl	0.0750 (fracção mássica)	293.85-340.65	4.87-54.69 Kpa
González e Zea (1967)	Etanol	Ca(NO ₃) ₂	90.0 g/100 g solvente	359.45	700 mmHg
Lee e Hong (1991a)	Etanol	LiCl	0.0250 (fracção mássica)	293.25-340.75	5.87-64.00 Kpa
Nasehzadeh et al. (2004)	Etanol	LiI	0-2.000 mol/Kg	298.15	6.347-7.870 Kpa
Lee e Hong (1991a)	Etanol	LiCl	0.1500 (fracção mássica)	296.85-342.85	3.00-36.66 Kpa
Lee e Hong (1991a)	Etanol	LiCl	0.0999 (fracção mássica)	297.55-340.95	5.07-46.66 Kpa
Mato e Cocero (1988b)	Etanol	NaI	0.51-2.61 molal	298.15	5.83-7.59 Kpa
Lee e Hong (1991a)	Etanol	LiCl	0.1255 (fracção mássica)	299.75-340.95	4.40-41.46 Kpa
Nasehzadeh et al. (2004)	Etanol	LiCl	0-2.000 mol/Kg	298.15	6.418-7.870 Kpa
Sardroodi e Moattar (2005)	Etanol	ZnCl ₂	0.2190-2.7118 molal	298.15	6.236-7.773 Kpa
Nasehzadeh et al. (2004)	Etanol	LiBr	0-2.000 mol/Kg	298.15	6.39-7.87 Кра

Mato e Cocero (1988b)	Etanol	CuCl ₂	0.51-2.84 molal	298.15	6.8-7.72 Kpa
Safarov (2006)	Etanol	LiBr	0.16974-2.81350 molal	298.15-323.15	4980-29125 Pa
González e Zea (1967)	Etanol	$KC_2H_3O_2$	25.2 g/100 g solvente	352.75	700 mmHg
González e Zea (1967)	Etanol	LiCl	22.8 g/100 g solvente	368.55	700 mmHg
Safarov (2006)	Etanol	LiCl	0.17923-3.75911 molal	298.15-323.15	3837-29127 Pa
Lee e Hong (1991a)	Etanol	LiCl	0.0502 (fracção mássica)	297.15-340.75	6.47-60.80 Kpa
Barthel <i>et al.</i> (1986)	Etanol	NaI	0.03761-1.91322 molal	298.15	0.156-10.655 torr
Bixon <i>et al</i> . (1979)	Metanol	CuCl ₂	0.3868-3.9739 molal	298.05	97.8-122.6 mmHg
Barthel <i>et al.</i> (1985)	Metanol	KBr	0.02-0.7 molal	298.15	0.305-0.886 torr
Tomasula <i>et al.</i> (1987)	Metanol	NaSCN	0-3.3602 molal	298.15	12.82-17.08 Kpa
Tomasula <i>et al.</i> (1987)	Metanol	NaSCN	0-3.3602 molal	313.15	27.08-35.74 Kpa
Bixon <i>et al</i> . (1979)	Metanol	KI	0.3680-1.1219 molal	298.05	119.5-124.3 mmHg
Tomasula <i>et al.</i> (1987)	Metanol	NaI	0-4.3383 molal	313.15	21.70-35.74 Kpa
Tomasula <i>et al.</i> (1987)	Metanol	KCH ₃ COO	0-2.5110 molal	313.15	31.12-35.74 Kpa
Tomasula <i>et al.</i> (1987)	Metanol	NH₄SCN	0-5.1830 molal	298.15	12.54-17.08 Kpa
Tomasula <i>et al.</i> (1987)	Metanol	NH₄SCN	0-5.1830 molal	313.15	26.44-35.74 Kpa
Barthel <i>et al.</i> (1985)	Metanol	NaCl	0.02-0.7 molal	298.15	0.300-1.483 torr
Barthel <i>et al.</i> (1985)	Metanol	NaBr	0.02-0.7 molal	298.15	0.301-4.660 torr
Tomasula <i>et al.</i> (1987)	Metanol	LiBr	0-4.3450 molal	318.15	25.46-44.99 Kpa
Barthel <i>et al.</i> (1985)	Metanol	NaClO	0.02-0.7 molal	298.15	0.447-9.262 torr
Tomasula <i>et al.</i> (1987)	Metanol	NaI	0-4.3383 molal	298.15	10.12-17.08 Kpa
Safarov (2003)	Metanol	LiBr	0.08421-0.26891 (fracção	298.15-398.15	0.1-60 Mpa
			molar)		
Safarov (2005)	Metanol	LiBr	0.22046-11.51477 molal	298.15-323.15	855-54962 Pa
Safarov (2005)	Metanol	LiCl	0.34002-6.17615 molal	298.15-323.15	6517-54623 Pa
Nasirzadeh e Moattar	Metanol	KI	0-0.9790 molal	298.15	16.070-16.958 Kpa
(2004)					
Nasirzadeh e Moattar	Metanol	NH₄SCN	0-4.3511 molal	298.15	13.015-16.958 Kpa

(2004)					
Nasirzadeh e Moattar	Metanol	KSCN	0-2.6971 molal	298.15	14.507-16.958 Kpa
(2004)					
Barthel <i>et al.</i> (1985)	Metanol	KI	0.02-0.7 molal	298.15	0.162-4.988 torr
Barthel <i>et al.</i> (1985)	Metanol	RbI	0.02-0.7 molal	298.15	0.147-2.713 torr
Barthel <i>et al.</i> (1985)	Metanol	CsI	0.02-0.7 molal	298.15	0.226-0.820 torr
Barthel <i>et al.</i> (1985)	Metanol	NaI	0.02-0.7 molal	298.15	0.168-5.706 torr
Barthel <i>et al.</i> (1986)	Metanol	Et₄NBr	0.04641-1.87436 molal	298.15	0.325-10.851 torr
Barthel <i>et al.</i> (1986)	Metanol	Bu₄NBr	0.04405-1.65062 molal	298.15	0.306-10.595 torr
Tomasula <i>et al.</i> (1987)	Metanol	KCH₃COO	0-2.5110 molal	298.15	14.82-17.08 Kpa
Barthel <i>et al.</i> (1986)	Metanol	Bu ₄ NClO ₄	0.04659-2.50341 molal	298.15	0.286-6.545 torr
Tomasula <i>et al.</i> (1987)	Metanol	LiBr	0-4.3450 molal	308.15	15.74-28.14 Kpa
Barthel <i>et al.</i> (1986)	Metanol	Bu ₄ NI	0.04343-0.90730 molal	298.15	0.285-4.216 torr
Barthel <i>et al.</i> (1986)	Metanol	Am₄NBr	0.04993-0.59687 molal	298.15	0.344-3.520 torr
Bixon <i>et al</i> . (1979)	Metanol	NaBr	0.560-1.556 molal	298.05	114.8-123.4 mmHg
Bixon <i>et al</i> . (1979)	Metanol	CaCl ₂	0.3186-2.6345 molal	298.05	89.6-121.7 mmHg
Bixon <i>et al</i> . (1979)	Metanol	NaOH	0.3400-5.9413 molal	298.05	48.6-120.8 mmHg
Bixon <i>et al</i> . (1979)	Metanol	NaI	0.2308-4.5200 molal	298.05	72.8-123.3 mmHg
Tomasula <i>et al.</i> (1987)	Metanol	LiCl	0-4.5800 molal	298.15	9.49-17.07 Kpa
Tomasula <i>et al.</i> (1987)	Metanol	LiCl	0-4.5800 molal	308.15	15.91-28.14 Kpa
Tomasula <i>et al.</i> (1987)	Metanol	LiCl	0-4.5800 molal	318.15	25.83-44.99 Kpa
Tomasula <i>et al.</i> (1987)	Metanol	LiBr	0-4.3450 molal	298.15	9.47-17.07 Kpa
Bixon <i>et al</i> . (1979)	Metanol	LiCl	0.8096-5.3554 molal	298.05	59.3-118.8 mmHg

Boforôncias	Sistema	6-1	Composição do col	Temperatura	Broccão	Solvente
Referencias	Sistema	341	composição de sai	(K)	FIESSAU	puro+sal
Al-Rub <i>et al.</i> (1999a)	1-propanol+água	NaCl	saturado	333.15		S
Al-Rub <i>et al.</i> (1999a)	1-propanol+água	CaCl ₂	0.50 M	333.15		S
Vercher <i>et al.</i> (2004a)	1-propanol+água	LiCl	0.019-0.126 (fracção molar)	360.95-387.25	100 Kpa	S
Al-Rub <i>et al.</i> (1999a)	1-propanol+água	NH ₄ Cl	0.50 M	333.15		S
Vercher <i>et al.</i> (2005)	1-propanol+água	CuCl ₂	0.021-0.023 (fracção molar)	360.95-370.25	100 Kpa	S
Al-Rub <i>et al.</i> (1999a)	1-propanol+água	NaCl	0.50 M	333.15		S
Vercher <i>et al.</i> (2005)	1-propanol+água	CuCl ₂	0.031-0.034 (fracção molar)	361.25-374.85	100 Kpa	S
Vercher <i>et al.</i> (2005)	1-propanol+água	CuCl ₂	0.045-0.046 (fracção molar)	361.55-375.75	100 Kpa	S
Vercher <i>et al.</i> (2005)	1-propanol+água	CuCl ₂	0.067-0.071 (fracção molar)	362.45-377.85	100 Kpa	S
Al-Rub <i>et al.</i> (1999a)	1-propanol+água	NaCl	0.167 M	333.15		S
Vercher <i>et al.</i> (2005)	1-propanol+água	CuCl ₂	0.105-0.119 (fracção molar)	365.35-382.25	100 Kpa	S
Vercher <i>et al.</i> (2005)	1-propanol+água	CuCl ₂	0.089-0.095 (fracção molar)	363.85-379.85	100 Kpa	S
Iliuta <i>et al.</i> (1996a)	1-propanol+água	CaCl ₂	0.02-saturação	361.25-438.25	101.32 Kpa	S
Polka e Gmehling (1994)	2-propanol+água	Ca(NO ₃) ₂	2.073 molal	338.05-357.65	50.66 Kpa	S
Iliuta <i>et al.</i> (1996c)	Acetato de metilo+metanol	NaSCN	0.00-saturação	327.00-352.65	101.32 Kpa	S
Al-Rub <i>et al.</i> (1999b)	Acetona+água	CaCl ₂	0.5 M	333.15		S
Al-Rub <i>et al.</i> (1999b)	Acetona+água	NaCl	saturado	333.15		S
Al-Rub <i>et al.</i> (1999b)	Acetona+água	NaCl	0.5 M	333.15		S
Al-Rub <i>et al.</i> (1999b)	Acetona+água	NaCl	0.167 M	333.15		S
Al-Rub <i>et al.</i> (1999b)	Acetona+água	NH ₄ Cl	0.5 M	333.15		S
Devasahayam e Srinivasan	Acetona+clorofórmio	KI	saturado	330.3-334.2	760 torr	S
(1981)						
Vercher <i>et al.</i> (2006)	Acetona+metanol	LiNO ₃	0.117-0.125 (fracção molar)	330.25-345.95	100 Kpa	S
Vercher <i>et al.</i> (2006)	Acetona+metanol	LiNO ₃	0.021-0.023 (fracção molar)	328.55-338.45	100 Kpa	S
Vercher <i>et al.</i> (2006)	Acetona+metanol	LiNO ₃	0.089-0.093 (fracção molar)	329.75-342.85	100 Kpa	S

Tabela A.2. Base de dados experimentais de ELV (sistema binário/ternário+sal).

Dernini <i>et al.</i> (1976)	Acetona+metanol	NaI	saturado	332.25-353.55	1 atm	S
Vercher <i>et al.</i> (2006)	Acetona+metanol	LiNO ₃	0.065-0.071 (fracção molar)	329.55-341.15	100 Kpa	S
Natarajan e Srinivasan	Acetona+metanol	Cd(CH₃CO	saturado	331.05-343.75	760 mmHg	S
(1980a)		O) ₂				
Vercher <i>et al.</i> (2006)	Acetona+metanol	LiNO ₃	0.043-0.047 (fracção molar)	329.05-339.65	100 Kpa	S
Dernini <i>et al.</i> (1976)	Acetona+metanol	KSCN	saturado	331.15-344.05	1 atm	S
Dernini <i>et al.</i> (1976)	Acetona+metanol	NaSCN	saturado	335.15-352.85	1 atm	S
Vercher <i>et al.</i> (2006)	Acetona+metanol	LiNO ₃	0.143-0.160 (fracção molar)	330.95-348.55	100 Kpa	S
Al-Asheh e Banat (2005)	Acetona+metanol	CaBr ₂	0.3 M	329.35-337.8	1 atm	S
Iliuta <i>et al.</i> (1998)	Acetona+metanol	LiCl	0.005-saturação	328.40-369.65	101.32 Kpa	S
Iliuta e Thyrion (1995)	Acetona+metanol	KI	saturado	328.70-342.35	101.32 Kpa	S
Iliuta e Thyrion (1995)	Acetona+metanol	KI	0.003 (fracção molar)	328.60-338.10	101.32 Kpa	S
Iliuta e Thyrion (1995)	Acetona+metanol	NaI	0.01-saturação	328.80-353.15	101.32 Kpa	S
Dernini <i>et al.</i> (1976)	Acetona+metanol	NaBr	saturado	328.90-340.45	1 atm	S
Al-Asheh e Banat (2005)	Acetona+metanol	CaBr ₂	0.1 M	329.35-337.8	1 atm	S
Al-Asheh e Banat (2005)	Acetona+metanol	CaBr ₂	0.05 M	329.36-337.8	1 atm	S
Dernini <i>et al.</i> (1976)	Acetona+metanol	LiCl	saturado	329.55-369.55	1 atm	S
Dernini <i>et al.</i> (1976)	Acetona+metanol	KCH ₃ COO	saturado	328.75-346.85	1 atm	S
Devasahayam e Srinivasan	Acetona+tetracloreto de	KI	saturado	330.3-349.4	760 torr	S
(1981)	carbono					
Narayana <i>et al.</i> (1985)	Ácido acético+água	K ₂ SO ₄	0.02-23.8 (percentagem	375.15-388.25	740 mmHg	S
			mássica)			
Narayana <i>et al.</i> (1985)	Ácido acético+água	KCI	0-55.32 (percentagem mássica)	390.25-381.35	740 mmHg	S
Narayana <i>et al.</i> (1985)	Ácido acético+água	Na_2SO_4	0-38.8 (percentagem mássica)	378.25-390.25	740 mmHg	S
Vercher <i>et al.</i> (2004b)	Água+ácido acético	KCH ₃ COO	0.0099-0.1199 (fracção molar)	373.55-394.55	100 Kpa	S
Vercher <i>et al.</i> (2004b)	Água+ácido acético	KCH ₃ COO	0.0099-0.1199 (fracção molar)	373.55-394.55	100 Kpa	S
Vercher <i>et al.</i> (2003)	Água+ácido acético	NaCH ₃ COO	0.0038-0.1185 (fracção molar)	373.65-395.25	100 Kpa	S
Vercher <i>et al.</i> (2001)	Água+ácido acético	LiCH ₃ COO	0.021-0.127 (fracção molar)	374.25-394.25	100 Kpa	S

Al-Rub e Datta (2001)	Água+piridina	CaCl ₂	0.04 M	365.15-391.15	705 mmHg	S
Darwish e Al-Anber (1997)	Clorofórmio+etanol	CaCl ₂	saturado	330.4-353.8	94 Kpa	S
Taraszewska <i>et al.</i> (1979)	Dimetilsulfoxido+água	NaClO ₄	0.9 molal	298.15	66.7-2985.1 Pa	S
Zemp e Francesconi (1992)	Etanol+água	KCH ₃ COO	0.150 (fracção molar)	353.65-379.45	101.33 Kpa	S
Zemp e Francesconi (1992)	Etanol+água	KCH ₃ COO	0.025 (fracção molar)	351.55-375.35	101.33 Kpa	S
Zemp e Francesconi (1992)	Etanol+água	KCH ₃ COO	0.050 (fracção molar)	352.15-374.25	101.33 Kpa	S
Zemp e Francesconi (1992)	Etanol+água	KCH ₃ COO	0.066 (fracção molar)	352.35-367.55	101.33 Kpa	S
Zemp e Francesconi (1992)	Etanol+água	KCH ₃ COO	0.085 (fracção molar)	352.65-375.15	101.33 Kpa	S
Polka e Gmehling (1994)	Etanol+água	Ca(NO ₃) ₂	1.038 molal	335.95-356.15	50.66 Kpa	S
Polka e Gmehling (1994)	Etanol+água	Ca(NO ₃) ₂	2.049 molal	337.15-357.65	50.66 Kpa	S
Yamamoto <i>et al.</i> (1995a)	Etanol+água	CaCl ₂	5 (percentagem mássica)	298.15	4.94-7.72 Kpa	S
Yamamoto <i>et al.</i> (1995a)	Etanol+água	NH4I	10 (percentagem mássica)	298.15	4.25-7.72 Kpa	S
Yamamoto <i>et al.</i> (1995a)	Etanol+água	NaI	10 (percentagem mássica)	298.15	4.69-7.48 Kpa	S
Tan e Ti (1988)	Etanol+tolueno	NaCH ₃ COO	saturado	344.75-376.45	636 mmHg	S
Tan e Ti (1988)	Etanol+tolueno	NaCH ₃ COO	saturado	334.45-362.95	414 mmHg	S
Tan e Ti (1988)	Etanol+tolueno	NaCH ₃ COO	saturado	299.15-319.15	77 mmHg	S
Tan e Ti (1988)	Etanol+tolueno	NaCH ₃ COO	saturado	349.05-382.65	757 mmHg	S
Tan e Ti (1988)	Etanol+tolueno	NaCH ₃ COO	saturado	312.95-335.35	153 mmHg	S
Ohe <i>et al.</i> (1971)	Metanol+acet. de etilo	CaCl ₂	saturado	337.85-350.45	1 atm	S
Ohe <i>et al.</i> (1971)	Metanol+acet. de etilo	CaCl ₂	25 (percentagem mássica)	338.45-344.85	1 atm	S
Ohe <i>et al.</i> (1971)	Metanol+acet. de etilo	CaCl ₂	20 (percentagem mássica)	337.25-342.65	1 atm	S
Ohe <i>et al.</i> (1971)	Metanol+acet. de etilo	CaCl ₂	10 (percentagem mássica)	336.65-339.35	1 atm	S
Ohe <i>et al.</i> (1971)	Metanol+acet. de etilo	CaCl ₂	5 (percentagem mássica)	336.05-338.45	1 atm	S
Hála (1983)	Metanol+água	LiCl	0.015-0.217 (fracção molar)	333.15		S
yamamoto <i>et al.</i> (1995b)	Metanol+etanol	NaI	0.098-0.136 (fracção molar)	298.18	7.87-14.50 Kpa	S
Oh (1997)	Metanol+etanol	LiCl	0.08969-0.09952 (fracção	303.15	12.692-19.963	S
			molar)		Кра	
yamamoto <i>et al.</i> (1995b)	Metanol+etanol	NH ₄ I	0.082-0.110 (fracção molar)	298.18	7.82-15.28 Kpa	S

Oh (1997)	Metanol+etanol	LiCl	0.60900-0.70965 (fracção	303.15	5.877-12.965 Kpa	S
			molar)			
Oh (1997)	Metanol+etanol	LiCl	0.32175-0.36072 (fracção	303.15	8.463-16.174 Kpa	S
			molar)			
Oh (1997)	Metanol+etanol	LiCl	0.51875-0.60152 (fracção	303.15	6.464-14.177 Kpa	S
			molar)			
Oh (1997)	Metanol+etanol	LiCl	0.46494-0.53826 (fracção	303.15	6.854-14.982 Kpa	S
			molar)			
Oh (1997)	Metanol+etanol	LiCl	0.75283-0.88377 (fracção	303.15	4.790-10.989 Kpa	S
			molar)			
Oh (1997)	Metanol+etanol	LiCl	0.68629-0.77822 (fracção	303.15	5.415-11.005 Kpa	S
			molar)			
Oh (1997)	Metanol+etanol	LiCl	0.41723-0.47376 (fracção	303.15	7.257-14.884 Kpa	S
			molar)			
Oh (1997)	Metanol+etanol	LiCl	0.24101-0.26936 (fracção	303.15	9.498-17.292 Kpa	S
			molar)			
yamamoto et al. (1995b)	Metanol+etanol	CaCl ₂	0.089-0.129 (fracção molar)	298.18	8.38-15.04 Kpa	S
Oh (1997)	Metanol+etanol	LiCl	0.18513-0.20077 (fracção	303.15	13.722-18.695	S
			molar)		Кра	
Al-Rub <i>et al.</i> (2002)	MTBE+metanol	LiCl	saturado	323.41-343.55	93.57 Kpa	S
Al-Rub <i>et al.</i> (2002)	MTBE+metanol	CaCl ₂	saturado	323.13-337.45	93.57 Kpa	S
Devasahayam e Srinivasan	Tetracloreto de carbono+2-	CaCl ₂	saturado	350.7-357.2	760 torr	S
(1981)	propanol					
Hongo <i>et al.</i> (1992)	1-propanol+2-propanol	CaCl₂	5-15 (fracção molar)	298.15		Ν
Morrison <i>et al.</i> (1990)	1-propanol+água	NaCl	0-0.122 (fracção molar)	359.45-363.65	1 atm	Ν
Morrison <i>et al.</i> (1990)	1-propanol+água	KBr	0-0.153 (fracção molar)	359.95-363.15	1 atm	Ν
Morrison <i>et al.</i> (1990)	1-propanol+água	NaBr	0-0.147 (fracção molar)	360.05-368.25	1 atm	Ν
Morrison <i>et al.</i> (1990)	1-propanol+água	KBr	0-0.153 (fracção molar)	359.95-363.15	1 atm	Ν
Shiah I-Min <i>et al.</i> (2000)	1-propanol+água	KCI	saturado			N
----------------------------------	-----------------------------	-----------------------------------	-----------------------------	---------------	---------------	---
Morrison <i>et al.</i> (1990)	1-propanol+água	NaCl	0-0.122 (fracção molar)	359.45-364.35	1 atm	N
Shiah I-Min <i>et al.</i> (2000)	1-propanol+água	NaCl	saturado			N
Morrison <i>et al.</i> (1990)	1-propanol+água	NaBr	0-0.147 (fracção molar)	360.05-368.25	1 atm	N
Vercher <i>et al.</i> (1999)	1-propanol+água	Ca(NO ₃) ₂	0.09-0.144 (fracção molar)	360.80-371.80	100 Kpa	N
Vercher <i>et al.</i> (2002)	1-propanol+água	LiNO ₃	0.02-0.121 (fracção molar)	361.05-373.95	100 Kpa	N
Yamamoto e Shibata (1999)	2-propanol+1-propanol	NaI	0.138-0.157 (fracção molar)	298.15	2.79-4.79 Kpa	N
Morrison <i>et al.</i> (1990)	2-propanol+água	NaBr	0-0.150 (fracção molar)	353.20-357.70	1 atm	N
Rajendran <i>et al.</i> (1991)	2-propanol+água	NaCl	5 (percentagem mássica)	353.65-362.15	101.3 Kpa	N
Slusher <i>et al.</i> (1994)	2-propanol+água	$C_{16}H_{36}NBr$	1.79 molal	356.85-365.65	1.013 bar	N
Rajendran <i>et al.</i> (1991)	2-propanol+água	NaCl	10 (percentagem mássica)	353.25-359.15	101.3 Kpa	N
Polka e Gmehling (1994)	2-propanol+água	Ca(NO ₃) ₂	1.038 molal	337.85-356.15	50.66 Kpa	N
Slusher <i>et al.</i> (1994)	2-propanol+água	$C_{16}H_{36}NBr$	1.00 molal	354.45-362.15	1.013 bar	N
Shiah I-Min et al. (2000)	2-propanol+água	LiBr	saturado			N
Shiah I-Min <i>et al.</i> (2000)	2-propanol+água	LiCl	saturado			N
Morrison <i>et al.</i> (1990)	2-propanol+água	NaBr	0-0.150 (fracção molar)	353.2-358.0	1 atm	N
Slusher <i>et al.</i> (1994)	2-propanol+água	$C_{16}H_{36}NBr$	5.89 molal	353.25-367.65	1.013 bar	N
Rajendran <i>et al.</i> (1991)	2-propanol+água	ZnCl ₂	15 (percentagem mássica)	357.85-367.15	101.3 Kpa	N
Rajendran <i>et al.</i> (1991)	2-propanol+água	NaCl	15 (percentagem mássica)	353.25-359.15	101.3 Kpa	N
Rajendran <i>et al.</i> (1991)	2-propanol+água	ZnCl ₂	20 (percentagem mássica)	359.55-370.25	101.3 Kpa	N
Rajendran <i>et al.</i> (1991)	2-propanol+água	ZnCl ₂	10 (percentagem mássica)	356.95-367.15	101.3 Kpa	N
Rajendran <i>et al.</i> (1991)	2-propanol+água	ZnCl ₂	5 (percentagem mássica)	355.15-367.15	101.3 Kpa	N
Rajendran <i>et al.</i> (1991)	2-propanol+água	CaCl ₂	15 (percentagem mássica)	356.95-367.15	101.3 Kpa	N
Rajendran <i>et al.</i> (1991)	2-propanol+água	CaCl ₂	10 (percentagem mássica)	356.25-367.35	101.3 Kpa	N
Rajendran <i>et al.</i> (1991)	2-propanol+água	CaCl ₂	5 (percentagem mássica)	354.35-368.35	101.3 Kpa	N
Rajendran <i>et al.</i> (1991)	2-propanol+água	NaCl	20 (percentagem mássica)	353.35-360.55	101.3 Kpa	N
Rajendran <i>et al.</i> (1991)	Acetato de etilo+2-propanol	NaCl	10 (percentagem mássica)	341.25-346.65	101.3 Kpa	N
Rajendran <i>et al.</i> (1991)	Acetato de etilo+2-propanol	ZnCl ₂	5 (percentagem mássica)	348.05-354.65	101.3 Kpa	N

Rajendran <i>et al.</i> (1991)	Acetato de etilo+2-propanol	CaCl ₂	15 (percentagem mássica)	338.65-343.35	101.3 Kpa	N
Rajendran <i>et al.</i> (1991)	Acetato de etilo+2-propanol	CaCl ₂	10 (percentagem mássica)	342.25-347.85	101.3 Kpa	N
Rajendran <i>et al.</i> (1991)	Acetato de etilo+2-propanol	ZnCl ₂	10 (percentagem mássica)	343.25-349.15	101.3 Kpa	N
Rajendran <i>et al.</i> (1991)	Acetato de etilo+2-propanol	ZnCl ₂	15 (percentagem mássica)	341.15-345.15	101.3 Kpa	N
Rajendran <i>et al.</i> (1991)	Acetato de etilo+2-propanol	CaCl ₂	5 (percentagem mássica)	343.25-349.45	101.3 Kpa	N
Rajendran <i>et al.</i> (1991)	Acetato de etilo+2-propanol	NaCl	5 (percentagem mássica)	345.15-350.05	101.3 Kpa	N
Rajendran <i>et al.</i> (1991)	Acetato de etilo+água	NaCl	10 (percentagem mássica)	344.25-350.15	101.3 Kpa	N
Rajendran <i>et al.</i> (1991)	Acetato de etilo+água	CaCl ₂	5 (percentagem mássica)	343.95-348.55	101.3 Kpa	N
Rajendran <i>et al.</i> (1991)	Acetato de etilo+água	CaCl ₂	10 (percentagem mássica)	346.15-352.65	101.3 Kpa	N
Rajendran <i>et al.</i> (1991)	Acetato de etilo+água	ZnCl₂	10 (percentagem mássica)	346.55-352.95	101.3 Kpa	N
Rajendran <i>et al.</i> (1991)	Acetato de etilo+água	NaCl	5 (percentagem mássica)	343.45-346.55	101.3 Kpa	N
Rajendran <i>et al.</i> (1991)	Acetato de etilo+água	ZnCl ₂	15 (percentagem mássica)	347.35-358.65	101.3 Kpa	N
Rajendran <i>et al.</i> (1991)	Acetato de etilo+água	ZnCl ₂	5 (percentagem mássica)	346.25-353.05	101.3 Kpa	N
Mato e Cocero (1988a)	Acetato de etilo+etanol	LiCl	saturado	298.15		N
Topphoff <i>et al.</i> (2001)	Acetato de etilo+etanol	LiCl	0.15 (fracção molar)	348.60-355.76	101.3 Kpa	N
Topphoff <i>et al.</i> (2001)	Acetato de etilo+etanol	LiCl	0.1 (fracção molar)	346.93-352.48	101.3 Kpa	N
Topphoff et al. (2001)	Acetato de etilo+etanol	LiCl	0.075 (fracção molar)	346.27-350.99	101.3 Kpa	N
Topphoff <i>et al.</i> (2001)	Acetato de etilo+etanol	LiCl	0.05 (fracção molar)	345.84-350.37	101.3 Kpa	N
Topphoff <i>et al.</i> (2001)	Acetato de etilo+etanol	LiCl	0.04 (fracção molar)	345.74-350.06	101.3 Kpa	N
Takamatsu e Ohe (2003)	Acetato de etilo+etanol	LiCl	6 (percentagem molar)	313.15		N
Topphoff et al. (2001)	Acetato de etilo+etanol	LiNO ₃	0.125 (fracção molar)	347.47-353.61	101.3 Kpa	N
Topphoff et al. (2001)	Acetato de etilo+etanol	LiNO ₃	0.02 (fracção molar)	345.33-349.54	101.3 Kpa	N
Topphoff <i>et al.</i> (2001)	Acetato de etilo+etanol	LiNO ₃	0.01 (fracção molar)	345.16-349.33	101.3 Kpa	N
Takamatsu e Ohe (2003)	Acetato de etilo+etanol	LiCl	3 (percentagem molar)	313.15		N
Takamatsu e Ohe (2003)	Acetato de etilo+etanol	CaCl ₂	6 (percentagem molar)	313.15		N
Takamatsu e Ohe (2003)	Acetato de etilo+etanol	CaCl ₂	3 (percentagem molar)	313.15		N
Topphoff <i>et al.</i> (2001)	Acetato de etilo+etanol	LiNO ₃	0.005 (fracção molar)	345.00-349.22	101.3 Kpa	N
Mato e Cocero (1988a)	Acetato de etilo+etanol	KCH ₃ COO	saturado	298.15		N

Topphoff et al. (2001)	Acetato de etilo+etanol	LiNO ₃	0.03 (fracção molar)	345.46-349.78	101.3 Kpa	N
Topphoff <i>et al.</i> (2001)	Acetato de metilo+metanol	LiNO ₃	0.01 (fracção molar)	326.83-332.93	101.3 Kpa	N
Topphoff <i>et al.</i> (2001)	Acetato de metilo+metanol	LiNO ₃	0.15 (fracção molar)	329.71-340.81	101.3 Kpa	N
Topphoff <i>et al.</i> (2001)	Acetato de metilo+metanol	LiNO ₃	0.075 (fracção molar)	327.96-335.06	101.3 Kpa	N
Topphoff <i>et al.</i> (2001)	Acetato de metilo+metanol	LiNO ₃	0.005 (fracção molar)	326.75-332.86	101.3 Kpa	N
Topphoff <i>et al.</i> (2001)	Acetato de metilo+metanol	Ca(NO ₃) ₂	saturado	298.15		N
Topphoff et al. (2001)	Acetato de metilo+metanol	LiNO ₃	0.02 (fracção molar)	326.98-333.10	101.3 Kpa	N
Topphoff <i>et al.</i> (2001)	Acetato de metilo+metanol	LiNO ₃	0.04 (fracção molar)	327.31-333.51	101.3 Kpa	N
Topphoff et al. (2001)	Acetato de metilo+metanol	LiNO ₃	0.03 (fracção molar)	327.14-333.32	101.3 Kpa	N
Martin <i>et al.</i> (1994)	Acetato de metilo+metanol	KCH ₃ COO	saturado	298.15	21.23-31.94	N
Topphoff <i>et al.</i> (2001)	Acetato de metilo+metanol	LiNO ₃	0.1 (fracção molar)	328.48-336.67	101.3 Kpa	N
Martin <i>et al.</i> (1994)	Acetato de metilo+metanol	LiCl	saturado	298.15	12.17-28.94	N
Martin <i>et al.</i> (1994)	Acetato de metilo+metanol	CaCl ₂	saturado	298.15		N
Topphoff et al. (2001)	Acetato de metilo+metanol	LiNO ₃	0.125 (fracção molar)	329.03-338.53	101.3 Kpa	N
Topphoff et al. (2001)	Acetato de metilo+metanol	LiNO ₃	0.05 (fracção molar)	327.50-333.81	101.3 Kpa	N
Al-Sahhaf e Jabbar (1993)	Acetona+água	LiCl	6 molal	329.75-347.75	1 atm	N
Kupriyanova e Belugin	Acetona+água	KCI	0.005 mol/mol solvente	333.25-345.82	760 mmHg	N
(1973)						
Kupriyanova e Belugin	Acetona+água	KCI	0.01 mol/mol solvente	333.15-341.65	760 mmHg	N
(1973)						
Kupriyanova e Belugin	Acetona+água	KCI	0.025 mol/mol solvente	332.54-344.15	760 mmHg	N
(1973)						
Kupriyanova e Belugin	Acetona+água	KCI	0.05 mol/mol solvente	334.23-336.72	760 mmHg	N
(1973)						
Al-Sahhaf e Jabbar (1993)	Acetona+água	NaBr	6 molal	324.25-356.15	1 atm	N
Al-Sahhaf e Jabbar (1993)	Acetona+água	KI	4 molal	322.35-360.15	1 atm	N
Al-Sahhaf e Jabbar (1993)	Acetona+água	KBr	4 molal	326.05-362.95	1 atm	N
Al-Sahhaf e Jabbar (1993)	Acetona+água	NaBr	4 molal	324.45-352.25	1 atm	N

Al-Sahhaf e Jabbar (1993)	Acetona+água	LiCl	4 molal	328.85-356.15	1 atm	N
Al-Sahhaf e Jabbar (1993)	Acetona+água	KI	2 molal	327.75-339.35	1 atm	N
Al-Sahhaf e Jabbar (1993)	Acetona+água	KBr	2 molal	328.55-344.85	1 atm	N
Al-Sahhaf e Jabbar (1993)	Acetona+água	NaBr	2 molal	327.65-352.65	1 atm	N
Al-Sahhaf e Jabbar (1993)	Acetona+água	LiCl	2 molal	329.55-340.35	1 atm	N
Shiah I-Min <i>et al.</i> (2000)	Acetona+metanol	KI	saturado			N
Yan <i>et al.</i> (1999)	Acetona+metanol	ZnCl ₂	1.082 molal	318.58-324.84	66.66 Kpa	N
Yan <i>et al.</i> (1999)	Acetona+metanol	ZnCl ₂	1.751 molal	319.54-326.55	66.66 Kpa	N
Yan <i>et al.</i> (1999)	Acetona+metanol	ZnCl ₂	1.502 molal	319.49-326.32	66.66 Kpa	N
Shiah I-Min <i>et al.</i> (2000)	Acetona+metanol	NaI	saturado			N
Yan <i>et al.</i> (1998a)	Acetona+metanol	LiCl	0.500-4.000 molal	312.65		N
Yan <i>et al.</i> (1998a)	Acetona+metanol	LiCl	0.500-4.000 molal	328.15		N
Yan <i>et al.</i> (1999)	Acetona+metanol	ZnCl ₂	2.000 molal	331.46-337.01	101.33 Kpa	N
Yan <i>et al.</i> (1999)	Acetona+metanol	ZnCl ₂	1.502 molal	330.65-336.56	101.33 Kpa	N
Yan <i>et al.</i> (1999)	Acetona+metanol	ZnCl ₂	1.751 molal	330.86-336.73	101.33 Kpa	N
Yan <i>et al.</i> (1999)	Acetona+metanol	ZnCl ₂	1.082 molal	330.15-335.55	101.33 Kpa	N
Yan <i>et al.</i> (1999)	Acetona+metanol	ZnCl ₂	2.000 molal	319.94-326.07	66.66 Kpa	N
Yan <i>et al.</i> (1998a)	Acetona+metanol	ZnCl ₂	0.500-4.000 molal	343.75		N
Yan <i>et al.</i> (1998b)	Acetona+metanol	LiNO ₃	0.0-3.0 molal	343.75		N
Yan <i>et al.</i> (1998b)	Acetona+metanol	LiNO ₃	0.0-3.0 molal	328.15		N
Yan <i>et al.</i> (1998b)	Acetona+metanol	LiNO ₃	0.0-3.0 molal	312.65		N
Kogan e Tsiparis (1968)	Ácido acético+água	NH₄CI	saturado	382.45-388.45	750.8-760.6	N
					mmHg	
Tsiparis e Smorigaite	Ácido acético+água	KBr	0.01-3.0 molar	313.15-333.15	760 mmHg	N
(1964)						
Tsiparis e Smorigaite	Ácido acético+água	KCI	0.01-3.0 molar	313.15-333.15	760 mmHg	N
(1964)						
Tsiparis e Smorigaite	Ácido acético+água	CaCl ₂	0.01-saturação molar	313.15-333.15	760 mmHg	N

(1964)						
Tsiparis e Smorigaite	Ácido acético+água	KI	0.01-3.0 molar	313.15-333.15	760 mmHg	N
(1964)						
Garwin e Hutchison (1950)	Ácido acético+água	CaCl ₂	0-60 (percentagem mássica)	373.15-413.15	1 atm	N
Ramalho <i>et al.</i> (1964a)	Ácido acético+água	SrCl ₂	saturado	382.05-384.45	1 atm	N
Ramalho <i>et al.</i> (1964a)	Ácido acético+água	BaCl ₂	saturado	376.95-380.35	1 atm	N
Kogan e Tsiparis (1968)	Ácido acético+água	NaCl	saturado	378.95-389.95	748.6-759.0	N
					mmHg	
Ramalho <i>et al.</i> (1964a)	Ácido acético+água	CaCl ₂	saturado	395.25-399.35	1 atm	N
Kogan e Tsiparis (1968)	Ácido acético+água	Na_2SO_4	saturado	375.15-390.65	742.0-749.5	N
					mmHg	
Kogan e Tsiparis (1968)	Ácido acético+água	KCI	saturado	333.15	112.0-122.0	N
					mmHg	
Yun <i>et al.</i> (1998)	Ácido fórmico+água	MgCl ₂	2.0 (rácio massico água/MgCl ₂)	378.15-399.65	760 mmHg	N
Yun <i>et al.</i> (1998)	Ácido fórmico+água	MgCl ₂	saturado	374.95-380.75	760 mmHg	N
Yun <i>et al.</i> (1998)	Ácido fórmico+água	MgCl ₂	2.4 (rácio massico água/MgCl ₂)	376.95-389.65	760 mmHg	N
Yun <i>et al.</i> (1998)	Ácido fórmico+água	MgCl ₂	2.8 (rácio massico água/MgCl ₂)	377.55-387.95	760 mmHg	N
Yun <i>et al.</i> (1998)	Ácido fórmico+água	MgCl ₂	3.2 (rácio massico água/MgCl ₂)	379.85-384.65	760 mmHg	N
Banat <i>et al.</i> (2002)	Ácido propiónico+água	NaCl	3 molal	333.15		N
Banat <i>et al.</i> (2002)	Ácido propiónico+água	CaCl ₂	1 molal	333.15		N
Banat <i>et al.</i> (2002)	Ácido propiónico+água	NaCl	1 molal	333.15		N
Banat <i>et al.</i> (2002)	Ácido propiónico+água	NaCl	0.5 molal	333.15		N
Banat <i>et al.</i> (2002)	Ácido propiónico+água	NaCl	2 molal	333.15		N
Banat <i>et al.</i> (2003)	Ácido propiónico+água	CaCl ₂	1.5 molal	333.15	760 mmHg	N
Banat <i>et al.</i> (2003)	Ácido propiónico+água	KBr	1 molal	333.15	760 mmHg	N
Ramalho e Edgett (1964b)	Ácido propiónico+água	NaNO ₃	2.5 (percentagem mássica)	278.18-293.15	760 mmHg	N
Ramalho e Edgett (1964b)	Ácido propiónico+água	KNO ₃	5 (percentagem mássica)	278.18-293.15	760 mmHg	N
Ramalho e Edgett (1964b)	Ácido propiónico+água	KBr	7.5 (percentagem mássica)	278.18-293.15	760 mmHg	N

Banat <i>et al.</i> (2003)	Ácido propiónico+água	NaCl	1.0 molal	323.15		Ν
Banat <i>et al.</i> (2003)	Ácido propiónico+água	NaCl	0.5 molal	323.15		N
Banat <i>et al.</i> (2003)	Ácido propiónico+água	NaCl	0.2 molal	323.15		N
Ramalho e Edgett (1964b)	Ácido propiónico+água	Pb(NO ₃) ₂	10 (percentagem mássica)	278.18-293.15	760 mmHg	Ν
Banat <i>et al.</i> (2003)	Ácido propiónico+água	CaCl ₂	0.5 molal	333.15	760 mmHg	Ν
Banat <i>et al.</i> (2003)	Ácido propiónico+água	KNO3	1 molal	333.15	760 mmHg	Ν
Banat <i>et al.</i> (2003)	Ácido propiónico+água	AICI ₃	0.2 molal	333.15	760 mmHg	Ν
Banat <i>et al.</i> (2003)	Ácido propiónico+água	KCI	1 molal	333.15	760 mmHg	N
Banat <i>et al.</i> (2002)	Ácido propiónico+água	AICI ₃	1 molal	333.15		Ν
Banat <i>et al.</i> (2003)	Ácido propiónico+água	CaCl ₂	1 molal	333.15	760 mmHg	Ν
Banat <i>et al.</i> (2003)	Ácido propiónico+água	CaCl ₂	0.2 molal	333.15	760 mmHg	Ν
Banat <i>et al.</i> (2003)	Ácido propiónico+água	AICI ₃	1.5 molal	333.15	760 mmHg	Ν
Banat <i>et al.</i> (2003)	Ácido propiónico+água	AICI ₃	1 molal	333.15	760 mmHg	Ν
Banat <i>et al.</i> (2003)	Ácido propiónico+água	AICI ₃	0.5 molal	333.15	760 mmHg	Ν
Ramalho e Edgett (1964b)	Acido propiónico+água	$Pb(NO_3)_2$	12.5 (percentagem mássica)	278.18-293.15	760 mmHg	N
Ramalho e Edgett (1964b) Banat <i>et al.</i> (2003)	Acido propiónico+água Ácido propiónico+água	Pb(NO ₃) ₂ AlCl ₃	12.5 (percentagem mássica) 1.0 molal	278.18-293.15 323.15	760 mmHg 	N N
Ramalho e Edgett (1964b) Banat <i>et al.</i> (2003) Banat <i>et al.</i> (2003)	Acido propiónico+água Ácido propiónico+água Ácido propiónico+água	Pb(NO ₃) ₂ AICl ₃ AICl ₃	12.5 (percentagem mássica) 1.0 molal 0.5 molal	278.18-293.15 323.15 323.15	760 mmHg 	N N N
Ramalho e Edgett (1964b) Banat et al. (2003) Banat et al. (2003) Banat et al. (2003)	Acido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água	Pb(NO ₃) ₂ AlCl ₃ AlCl ₃ AlCl ₃	12.5 (percentagem mássica) 1.0 molal 0.5 molal 0.2 molal	278.18-293.15 323.15 323.15 323.15 323.15	760 mmHg 	N N N N
Ramalho e Edgett (1964b) Banat et al. (2003)	Acido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água	Pb(NO ₃) ₂ AICl ₃ AICl ₃ AICl ₃ CaCl ₂	12.5 (percentagem mássica) 1.0 molal 0.5 molal 0.2 molal 0.5 molal	278.18-293.15 323.15 323.15 323.15 323.15 323.15	760 mmHg 	N N N N N
Ramalho e Edgett (1964b) Banat et al. (2003)	Acido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água	Pb(NO ₃) ₂ AlCl ₃ AlCl ₃ AlCl ₃ CaCl ₂ CaCl ₂	12.5 (percentagem mássica) 1.0 molal 0.5 molal 0.2 molal 0.5 molal 0.2 molal	278.18-293.15 323.15 323.15 323.15 323.15 323.15 323.15	760 mmHg 	N N N N N
Ramalho e Edgett (1964b) Banat et al. (2003)	Acido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água	Pb(NO ₃) ₂ AICl ₃ AICl ₃ AICl ₃ CaCl ₂ CaCl ₂ NH ₄ Cl	12.5 (percentagem mássica) 1.0 molal 0.5 molal 0.2 molal 0.5 molal 0.2 molal 1 molal	278.18-293.15 323.15 323.15 323.15 323.15 323.15 323.15 333.15	760 mmHg 	N N N N N N N
Ramalho e Edgett (1964b) Banat et al. (2003)	Acido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água	Pb(NO ₃) ₂ AlCl ₃ AlCl ₃ AlCl ₃ CaCl ₂ CaCl ₂ NH ₄ Cl CaCl ₂	12.5 (percentagem mássica) 1.0 molal 0.5 molal 0.2 molal 0.5 molal 0.2 molal 1 molal 1.0 molal	278.18-293.15 323.15 323.15 323.15 323.15 323.15 323.15 333.15 323.15	760 mmHg	N N N N N N N N
Ramalho e Edgett (1964b) Banat et al. (2003) Banat et al. (2002) Banat et al. (2003) Mun e Lee (1999)	Acido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água	$\begin{array}{c c} Pb(NO_3)_2 \\ \hline AlCl_3 \\ \hline AlCl_3 \\ \hline AlCl_3 \\ \hline CaCl_2 \\ \hline CaCl_2 \\ \hline CaCl_2 \\ \hline NH_4Cl \\ \hline CaCl_2 \\ \hline LiBr \\ \end{array}$	12.5 (percentagem mássica) 1.0 molal 0.5 molal 0.2 molal 0.5 molal 0.2 molal 1 molal 1.0 molal 0.049-0.102 (fracção molar)	278.18-293.15 323.15 323.15 323.15 323.15 323.15 323.15 333.15 323.15 323.15 323.15	760 mmHg 300 mmHg	N N N N N N N N N N N N N N N N N N N
Ramalho e Edgett (1964b) Banat et al. (2003) Banat et al. (2002) Banat et al. (2003) Mun e Lee (1999) Mun e Lee (1999)	Acido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Água+1,3-propanediol Água+1,3-propanediol	Pb(NO ₃) ₂ AlCl ₃ AlCl ₃ AlCl ₃ CaCl ₂ CaCl ₂ NH ₄ Cl CaCl ₂ LiBr	12.5 (percentagem mássica) 1.0 molal 0.5 molal 0.2 molal 0.5 molal 0.2 molal 1 molal 1.0 molal 0.049-0.102 (fracção molar) 0.048-0.102 (fracção molar)	278.18-293.15 323.15 323.15 323.15 323.15 323.15 323.15 333.15 323.15 323.15 392.35-433.55 377.35-417.55	760 mmHg 300 mmHg 160 mmHg	N N N N N N N N N N
Ramalho e Edgett (1964b) Banat et al. (2003) Banat et al. (2002) Banat et al. (2003) Mun e Lee (1999) Mun e Lee (1999) Mun e Lee (1999)	Acido propiónico+águaÁcido propiónico+águaÁgua+1,3-propanediolÁgua+1,3-propanediolÁgua+1,3-propanediol	$\begin{array}{c c} Pb(NO_3)_2 \\ \hline AlCl_3 \\ \hline AlCl_3 \\ \hline AlCl_3 \\ \hline CaCl_2 \\ \hline CaCl_2 \\ \hline CaCl_2 \\ \hline CaCl_2 \\ \hline LiBr \end{array}$	12.5 (percentagem mássica) 1.0 molal 0.5 molal 0.2 molal 0.5 molal 0.2 molal 1 molal 1.0 molal 0.049-0.102 (fracção molar) 0.048-0.102 (fracção molar) 0.007-0.168 (fracção molar)	278.18-293.15 323.15 323.15 323.15 323.15 323.15 323.15 323.15 323.15 323.15 392.35-433.55 377.35-417.55 380.35-487.95	760 mmHg 300 mmHg 160 mmHg 760 mmHg	N N N N N N N N N N N
Ramalho e Edgett (1964b) Banat et al. (2003) Mun e Lee (1999) Mun e Lee (1999) Mun e Lee (1999) Gironi e Lamberti (1995)	Acido propiónico+águaÁcido propiónico+águaÁgua+1,3-propanediolÁgua+1,3-propanediolÁgua+1,3-propanediolÁgua+2-propanol	Pb(NO ₃) ₂ AICl ₃ AICl ₃ AICl ₃ CaCl ₂ CaCl ₂ CaCl ₂ CaCl ₂ LiBr LiBr LiBr MgCl ₂	12.5 (percentagem mássica) 1.0 molal 0.5 molal 0.2 molal 0.5 molal 0.5 molal 0.2 molal 1 molal 1.0 molal 0.049-0.102 (fracção molar) 0.048-0.102 (fracção molar) 0.007-0.168 (fracção molar) 30 (percentagem mássica)	278.18-293.15 323.15 323.15 323.15 323.15 323.15 323.15 323.15 323.15 323.15 392.35-433.55 377.35-417.55 380.35-487.95 353.69-356.78	760 mmHg 300 mmHg 160 mmHg 760 mmHg 760 mmHg	N N
Ramalho e Edgett (1964b) Banat et al. (2003) Banat et al. (2002) Banat et al. (2003) Mun e Lee (1999) Mun e Lee (1999) Mun e Lee (1999) Gironi e Lamberti (1995) Gironi e Lamberti (1995)	Acido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Ácido propiónico+água Água+1,3-propanediol Água+1,3-propanediol Água+2-propanol Água+2-propanol	$\begin{array}{c c} Pb(NO_3)_2 \\ \hline AlCl_3 \\ \hline AlCl_3 \\ \hline AlCl_3 \\ \hline CaCl_2 \\ \hline CaCl_2 \\ \hline CaCl_2 \\ \hline CaCl_2 \\ \hline LiBr \\ \hline LiBr \\ \hline LiBr \\ \hline LiBr \\ \hline MgCl_2 \\ \hline MgCl_2 \\ \hline \end{array}$	12.5 (percentagem mássica) 1.0 molal 0.5 molal 0.2 molal 0.5 molal 0.5 molal 0.2 molal 1 molal 1.0 molal 0.049-0.102 (fracção molar) 0.048-0.102 (fracção molar) 0.007-0.168 (fracção molar) 30 (percentagem mássica) 4 (percentagem mássica)	278.18-293.15 323.15 323.15 323.15 323.15 323.15 323.15 323.15 323.15 392.35-433.55 377.35-417.55 380.35-487.95 353.69-356.78 353.42-370.77	760 mmHg 300 mmHg 160 mmHg 760 mmHg 760 mmHg 760 mmHg 760 mmHg	N N

Gironi e Lamberti (1995)	Água+2-propanol	MgBr ₂	49.36 (percentagem mássica)	354.01-355.66	760 mmHg	Ν
Gironi e Lamberti (1995)	Água+2-propanol	MgBr ₂	36.34 (percentagem mássica)	353.80-357.85	760 mmHg	Ν
Gironi e Lamberti (1995)	Água+2-propanol	MgBr ₂	70 (percentagem mássica)	354.74-355.20	760 mmHg	Ν
Gironi e Lamberti (1995)	Água+2-propanol	MgBr ₂	8 (percentagem mássica)	353.47-370.43	760 mmHg	Ν
Gironi e Lamberti (1995)	Água+2-propanol	MgBr ₂	50 (percentagem mássica)	353.88-354.95	760 mmHg	Ν
Pereyra e Ossa (2001)	Água+ácido acético	CaCl ₂	10 (percentagem mássica)	330.75-337.05	125 mmHg	Ν
Pereyra e Ossa (2001)	Água+ácido acético	CaCl ₂	20 (percentagem mássica)	335.25-340.05	125 mmHg	Ν
Shiah I-Min <i>et al.</i> (2000)	Água+ácido acético	NH₄CI	saturado			N
Pereyra e Ossa (2001)	Água+ácido acético	CaCl ₂	20 (percentagem mássica)	360.85-372.35	400 mmHg	Ν
Shiah I-Min <i>et al.</i> (2000)	Água+ácido acético	Na ₂ SO ₄	saturado			N
Pereyra e Ossa (2001)	Água+ácido acético	CaCl ₂	10 (percentagem mássica)	377.25-391.05	760 mmHg	Ν
Shiah I-Min <i>et al.</i> (2000)	Água+ácido acético	K ₂ SO ₄	saturado			N
Pereyra e Ossa (2001)	Água+ácido acético	CaCl ₂	30 (percentagem mássica)	339.65-346.05	125 mmHg	Ν
Pereyra e Ossa (2001)	Água+ácido acético	CaCl ₂	30 (percentagem mássica)	367.85-377.95	400 mmHg	Ν
Shiah I-Min <i>et al.</i> (2000)	Água+ácido acético	KCI	saturado			Ν
Shiah I-Min <i>et al.</i> (2000)	Água+ácido acético	NaCl	saturado			Ν
Pereyra e Ossa (2001)	Água+ácido acético	CaCl ₂	10 (percentagem mássica)	358.95-371.15	400 mmHg	Ν
Pereyra e Ossa (2001)	Água+ácido acético	CaCl ₂	30 (percentagem mássica)	386.05-397.55	760 mmHg	N
Pereyra e Ossa (2001)	Água+ácido acético	CaCl ₂	20 (percentagem mássica)	379.05-394.75	760 mmHg	N
Prausnitz e Targovnik	Água+dioxano	NaC ₂ H ₃ O ₂	6.3 (rácio mássico água/sal)	361.35-368.35	1 atm	N
(1958)						
Prausnitz e Targovnik	Água+dioxano	NaCl	3.3 (rácio mássico água/sal)	361.65-366.15	1 atm	N
(1958)						
Prausnitz e Targovnik	Água+dioxano	NaCl	10 (rácio mássico água/sal)	362.25-374.45	1 atm	N
(1958)						
Prausnitz e Targovnik	Água+dioxano	KC ₇ H ₅ O ₂	10 (rácio mássico água/sal)	361.25-371.95	1 atm	N
(1958)						
Lee e Hong (1991a)	Água+etanol	LiCl	0.2998 (fracção mássica)	297.15-339.65	3.00-32.86 Kpa	Ν

Lee e Hong (1991a)	Água+etanol	LiCl	0.3504 (fracção mássica)	299.25-339.95	2.93-28.66 Kpa	Ν
Lee e Hong (1991a)	Água+etanol	LiCl	0.2507 (fracção mássica)	296.95-339.85	3.27-37.33 Kpa	Ν
Lee e Hong (1991a)	Água+etanol	LiCl	0.2000 (fracção mássica)	295.05-338.95	3.27-40.40 Kpa	Ν
Lee e Hong (1991a)	Água+etanol	LiCl	0.1501 (fracção mássica)	291.65-339.75	3.00-46.13 Kpa	Ν
Lee e Hong (1991a)	Água+etanol	LiCl	0.1000 (fracção mássica)	289.15-339.65	2.83-48.40 Kpa	Ν
Lee e Hong (1991a)	Água+etanol	LiCl	0.3999 (fracção mássica)	304.15-339.75	3.07-22.73 Kpa	Ν
Tan e Gan (2005a)	Água+etanol+1-butanol	NaCl	saturado	352.95-360.35	760 mmHg	Ν
Tan e Gan (2005a)	Água+etanol+1-butanol	NH₄CI	saturado	353.75-364.55	760 mmHg	Ν
Tan e Gan (2005a)	Água+etanol+1-butanol	KCI	saturado	354.05-367.55	760 mmHg	Ν
Tan <i>et al.</i> (2004)	Água+etanol+2-propanol	KCI	saturado	352.15-376.65	760 mmHg	Ν
Tan <i>et al.</i> (2004)	Água+etanol+2-propanol	NaCl	saturado	351.95-383.05	760 mmHg	Ν
Tan <i>et al.</i> (2004)	Água+etanol+2-propanol	CH₃COOH	saturado	353.25-368.05	760 mmHg	Ν
Tan <i>et al.</i> (2004)	Água+etanol+2-propanol	NaNO ₃	saturado	353.25-368.05	760 mmHg	Ν
Bogart e Brunjes (1948)	Água+fenol	NaCl	0-17 (percentagem mássica)	373.09-422.93	1 atm	Ν
Prausnitz e Targovnik	Água+isopropanol	NaCl	3.3 (rácio mássico água/sal)		1 atm	N
(1958)						
Prausnitz e Targovnik	Água+isopropanol	KC ₇ H ₅ O ₂	3.3 (rácio mássico água/sal)	353.85-365.35	1 atm	Ν
(1958)						
Kumar e Rajendran (1999)	Água+metanol	NH₄CI	5 (percentagem mássica)	303.15		Ν
Kumar e Rajendran (1999)	Água+metanol	CdCl ₂	10 (percentagem mássica)	303.15		Ν
Kumar e Rajendran (1999)	Água+metanol	HgCl₂	5 (percentagem mássica)	303.15		Ν
Iyoki <i>et al.</i> (1993)	Água+metanol	LiBr+ZnCl ₂	11.1-75.1 (percentagem	303.15-393.35	0.89-68.67 Kpa	Ν
			mássica)			
Kumar e Rajendran (1999)	Água+metanol	NH₄CI	10 (percentagem mássica)	303.15		Ν
Kamps <i>et al.</i> (2006)	Água+metanol	Na_2SO_4	0-1.25 molal	314-394	10-390 Kpa	Ν
Kumar e Rajendran (1999)	Água+metanol	CdCl ₂	5 (percentagem mássica)	303.15		Ν
Kumar e Rajendran (1999)	Água+metanol	HgCl₂	10 (percentagem mássica)	303.15		Ν
Kumar e Rajendran (1998)	Água+piridina	ZnCl ₂	10 (percentagem mássica)	366.1-375.8	101.3 Kpa	Ν

Prausnitz e Targovnik	Água+piridina	NaI	2.5 (rácio mássico água/sal)	366.95-370.15	1 atm	Ν
(1958)						
Prausnitz e Targovnik	Água+piridina	Na ₂ SO ₄	5.0 (rácio mássico água/sal)		1 atm	Ν
(1958)						
Kumar e Rajendran (1998)	Água+piridina	ZnCl ₂	saturado	364.6-370.2	101.3 Kpa	Ν
Al-Rub e Datta (2001)	Água+piridina	CaCl ₂	0.08 M	365.05-377.35	705 mmHg	Ν
Kumar e Rajendran (1998)	Água+piridina	ZnCl ₂	5 (percentagem mássica)	367.3-377.1	101.3 Kpa	Ν
Kumar e Rajendran (1998)	Água+piridina	NaCl	5 (percentagem mássica)	357.2-386.9	101.3 Kpa	Ν
Kumar e Rajendran (1998)	Água+piridina	NaCl	10 (percentagem mássica)	375.6-388.5	101.3 Kpa	Ν
Kumar e Rajendran (1998)	Água+piridina	NaCl	saturado	372.1-390.1	101.3 Kpa	Ν
Kumar e Rajendran (1998)	Água+piridina	CaCl ₂	saturado	367.2-381.7	101.3 Kpa	Ν
Kumar e Rajendran (1998)	Água+piridina	CaCl ₂	5 (percentagem mássica)	367.2-383.6	101.3 Kpa	Ν
Kumar e Rajendran (1998)	Água+piridina	CaCl ₂	10 (percentagem mássica)	367.3-383.3	101.3 Kpa	Ν
Al-Rub e Datta (2001)	Água+piridina	CaCl ₂	saturado	364.85-378.25	705 mmHg	Ν
Kumagae <i>et al.</i> (1992)	Alcool alílico+água	CaCl ₂	0-10 (percentagem mássica)	298.15		Ν
Friese <i>et al.</i> (1998)	Álcool benzílico+água	NaCl	0.05 (fracção molar)	298.15		Ν
Friese <i>et al.</i> (1998)	Álcool benzílico+água	NaCl	0.10 (fracção molar)	298.15		Ν
Lee <i>et al.</i> (1991b)	Isopropanol+água	CaCl ₂	0.010-0.127 (fracção molar)	348.18	101.3 Kpa	Ν
Lee <i>et al.</i> (1991b)	Isopropanol+água	LiBr	0.010-0.200 (fracção molar)	348.15	101.3 Kpa	Ν
Lee <i>et al.</i> (1991b)	Isopropanol+água	LiCl	0.050-0.202 (fracção molar)	348.25	101.3 Kpa	Ν
Dobroserdov e Il'ina (1961)	Propanol-água	CaCl ₂	1 M	360.74-371.79	1 atm	Ν
Schäfer <i>et</i> (2008)	Amoníaco+água+metanol	Na ₂ SO ₄	0.877-0.878 molal	353.1-353.2	68.7-177.1 Kpa	Ν
Schäfer <i>et al.</i> (2008)	Amoníaco+água+metanol	NaCl	2.005 molal	353.0-353.2	106.4-205.9 Kpa	Ν
Schäfer <i>et al.</i> (2008)	Amoníaco+água+metanol	NaCl	0.733 molal	353.1-353.2	132.0-253.4 Kpa	Ν
Schäfer <i>et al.</i> (2008)	Amoníaco+água+metanol	NaCl	0.255 molal	351.1	154.6-300.7 Kpa	Ν
Schäfer <i>et al.</i> (2008)	Amoníaco+água+metanol	NaCl	0.356-0.370 molal	393.1-393.4	568.5-980.7 Kpa	Ν
Schäfer <i>et al.</i> (2008)	Amoníaco+água+metanol	Na ₂ SO ₄	0.152 molal	351.1	105.0-203.7 Kpa	N
Schäfer et al. (2008)	Amoníaco+água+metanol	Na ₂ SO ₄	0.998 molal	393.2	265.9-607.0 Kpa	Ν

Schäfer <i>et al.</i> (2008)	Amoníaco+água+metanol	Na ₂ SO ₄	0.151 molal	393.3	398.4-676.1 Kpa	Ν
Schäfer <i>et al.</i> (2008)	Amoníaco+água+metanol	Na ₂ SO ₄	1.005-1.013 molal	393.0-393.3	499.6-810.6 Kpa	Ν
Schäfer <i>et al.</i> (2008)	Amoníaco+água+metanol	NaCl	0.999 molal	393.0-393.2	396.7-683.0 Kpa	Ν
Schäfer <i>et al.</i> (2008)	Amoníaco+água+metanol	NaCl	2.024 molal	392.6	392.4-693.0 Kpa	Ν
Dallos <i>et al.</i> (1983)	Anilina+água	NaCl	2.00 molal	323.15	11.54-11.79 Kpa	Ν
Dallos <i>et al.</i> (1983)	Anilina+água	NaCl	1.00 molal	323.15	11.98-12.23 Kpa	Ν
Dallos <i>et al.</i> (1983)	Anilina+água	NH_4I	3.00 molal	323.15	11.12-11.33 Kpa	Ν
Dallos <i>et al.</i> (1983)	Anilina+água	NH_4I	1.00 molal	323.15	11.98-12.23 Kpa	Ν
Dallos <i>et al.</i> (1983)	Anilina+água	NH ₄ Cl	3.00 molal	323.15	11.35-11.63 Kpa	Ν
Dallos <i>et al.</i> (1983)	Anilina+água	NH ₄ Cl	2.00 molal	323.15	11.57-11.84 Kpa	Ν
Dallos <i>et al.</i> (1983)	Anilina+água	NH ₄ Cl	1.00 molal	323.15	11.97-12.24 Kpa	Ν
Dallos <i>et al.</i> (1983)	Anilina+água	NaI	3.00 molal	323.15	10.72-11.03 Kpa	Ν
Dallos <i>et al.</i> (1983)	Anilina+água	NaI	1.00 molal	323.15	11.93-12.15 Kpa	Ν
Dallos <i>et al.</i> (1983)	Anilina+água	NaCl	3.00 molal	323.15	11.04-11.32 Kpa	N
Sada <i>et al.</i> (1974)	Benzeno+etanol	CaCl ₂	0.143-0.427 molal	298.15	1 atm	Ν
Sada <i>et al.</i> (1974)	Benzeno+etanol	ZnCl ₂	saturado	298.15	1 atm	Ν
Sada <i>et al.</i> (1974)	Benzeno+etanol	ZnCl ₂	0.386 molal	298.15	1 atm	Ν
Sada <i>et al.</i> (1974)	Benzeno+etanol	LiCl	0.280-1.145 molal	298.15	1 atm	N
Sada <i>et al.</i> (1974)	Benzeno+etanol	CaCl ₂	0.123-0.246 molal	298.15	1 atm	Ν
Sada <i>et al.</i> (1974)	Benzeno+etanol	CaCl ₂	0.115-0.525 molal	298.15	1 atm	Ν
Sada <i>et al.</i> (1974)	Benzeno+etanol	CaCl ₂	0.147-0.548 molal	298.15	1 atm	Ν
Sada <i>et al.</i> (1974)	Benzeno+etanol	CaCl ₂	0.170-0.648 molal	298.15	1 atm	Ν
Sada <i>et al.</i> (1974)	Benzeno+etanol	CaCl ₂	0.228-0.661 molal	298.15	1 atm	Ν
Sada <i>et al.</i> (1974)	Benzeno+etanol	CaCl ₂	0.241-1.173 molal	298.15	1 atm	Ν
Sada <i>et al.</i> (1974)	Benzeno+etanol	CaCl ₂	0.285-1.506 molal	298.15	1 atm	Ν
Sada <i>et al.</i> (1974)	Benzeno+etanol	LiCl	0.177-0.513 molal	298.15	1 atm	Ν
Sada <i>et al.</i> (1974)	Benzeno+etanol	LiCl	0.437-1.114 molal	298.15	1 atm	Ν
Sada <i>et al.</i> (1974)	Benzeno+etanol	LiCl	0.215-1.194 molal	298.15	1 atm	Ν

Sada <i>et al.</i> (1974)	Benzeno+etanol	ZnCl₂	1.294 molal	298.15	1 atm	N
Sada <i>et al.</i> (1974)	Benzeno+etanol	ZnCl ₂	0.815 molal	298.15	1 atm	N
Kumar e Rajendran (1998)	Benzeno+piridina	CaCl ₂	5 (percentagem másica)	354.3-384.6	101.3 Kpa	N
Kumar e Rajendran (1998)	Benzeno+piridina	CaCl ₂	10 (percentagem másica)	354.2-386.1	101.3 Kpa	N
Kumar e Rajendran (1998)	Benzeno+piridina	CaCl ₂	saturado	353.6-386.3	101.3 Kpa	N
Kumar e Rajendran (1998)	Benzeno+piridina	ZnCl ₂	5 (percentagem másica)	354.3-383.3	101.3 Kpa	N
Kumar e Rajendran (1998)	Benzeno+piridina	ZnCl ₂	saturado	354.8-380.1	101.3 Kpa	N
Kumar e Rajendran (1998)	Benzeno+piridina	CaCl ₂	15 (percentagem másica)	353.6-385.6	101.3 Kpa	N
Kumar e Rajendran (1998)	Benzeno+piridina	NaCl	saturado	354.2-386.1	101.3 Kpa	N
Friese <i>et al.</i> (1998)	Ciclohexano+metanol	NaCl	0.008 (fracção molar)	298.15		N
Friese <i>et al.</i> (1998)	Ciclohexano+metanol	NaCl	0.004 (fracção molar)	298.15		N
Friese <i>et al.</i> (1998)	Ciclohexano+metanol	NaCl	0.002 (fracção molar)	298.15		N
Mato e Cocero (1988a)	Etanol+1-butanol	LiCl	saturado	298.15		N
Kumagae <i>et al.</i> (1992)	Etanol+1-propanol	CaCl ₂	0-15 (percentagem mássica)	298.15		N
Yamamoto <i>et al.</i> (1996)	Etanol+1-propanol	NaI	0.120-0.139 (fracção molar)	298.15	2.76-6.39 Kpa	N
Tan <i>et al.</i> (2005b)	Etanol+1-propanol+água	Cu ₂ SO ₄	saturado	356.25-358.65	760 mmHg	N
Tan <i>et al.</i> (2005b)	Etanol+1-propanol+água	NaCl	saturado	79.9-95.5	760 mmHg	N
Tan <i>et al.</i> (2005b)	Etanol+1-propanol+água	NaCl	saturado	353.05-355.85	760 mmHg	N
Tan <i>et al.</i> (2005b)	Etanol+1-propanol+água	KCI	saturado	77.8-94.9	760 mmHg	N
Tan <i>et al.</i> (2005b)	Etanol+1-propanol+água	KCI	saturado	350.95-355.85	760 mmHg	N
Tan <i>et al.</i> (2005b)	Etanol+1-propanol+água	Cu ₂ SO ₄	saturado	83.1-89.1	760 mmHg	N
Yan <i>et al.</i> (2001)	Etanol+2-propanol	BaI ₂	1.0 molal	313.45		N
Yan <i>et al.</i> (2001)	Etanol+2-propanol	BaI ₂	0.5 molal	328.45		N
Yan <i>et al.</i> (2001)	Etanol+2-propanol	BaI ₂	1.0 molal	328.45		N
Yamamoto et al. (1996)	Etanol+2-propanol	NaI	0.116-0.142 (fracção molar)	298.15	5.16-6.71 Kpa	N
Yan <i>et al.</i> (2001)	Etanol+2-propanol	BaI ₂	0.5 molal	313.45		N
Yan <i>et al.</i> (2001)	Etanol+2-propanol	BaI ₂	1.5 molal	328.45		N
Yan <i>et al.</i> (2001)	Etanol+2-propanol	BaI ₂	1.5 molal	313.45		N

Yan <i>et al.</i> (2001)	Etanol+2-propanol	BaI ₂	0.5 molal	343.75		Ν
Yan <i>et al.</i> (2001)	Etanol+2-propanol	BaI ₂	1.0 molal	343.75		Ν
Yan <i>et al.</i> (2001)	Etanol+2-propanol	BaI ₂	1.5 molal	343.75		Ν
Yan <i>et al.</i> (1997)	Etanol+acetato de etilo	NaI	0.15-2.0 molal	323.55		Ν
Yan <i>et al.</i> (1997)	Etanol+acetato de etilo	NaI	0.15-2.0 molal	334.35		Ν
Yan <i>et al.</i> (1997)	Etanol+acetato de etilo	NaI	0.15-2.0 molal	343.35		Ν
Yan <i>et al.</i> (1997)	Etanol+acetato de etilo	NaI	0.15-2.0 molal	313.45		Ν
Yan <i>et al.</i> (1997)	Etanol+acetato de etilo	NaI	0.15-2.0 molal	303.15		Ν
Jaques e Furter (1974)	Etanol+água	NH4I	saturado	353.65-358.15	760 mmHg	Ν
Meyer <i>et al.</i> (1991)	Etanol+água	CaCl ₂	0.974 molal	307.55-321.45	123.1 mbar	Ν
Sergeeva e Mishchenco	Etanol+água	CaCl ₂	0-3.0 M (28% etanol)	328.15	239.4-247.3 Kpa	Ν
(1963)						
Shiah I-Min <i>et al.</i> (2000)	Etanol+água	NaCl	saturado			Ν
Meranda e Furter (1974)	Etanol+água	CuCl ₂	saturado		1 atm	Ν
Vercher <i>et al.</i> (1991)	Etanol+água	KCH ₃ COO/	0.060 (fracção molar)	352.45-363.35	766 mmHg	Ν
		NaCH ₃ COO				
Vercher <i>et al.</i> (1991)	Etanol+água	KCH ₃ COO/	0.040 (fracção molar)	351.85-362.95	762 mmHg	Ν
		NaCH ₃ COO				
Meranda e Furter (1972)	Etanol+água	KBr	saturado	298.15-313.15	1 atm	Ν
Meyer <i>et al.</i> (1991)	Etanol+água	NaCl	saturado	306.35-313.25	123.1 mbar	Ν
Meyer <i>et al.</i> (1991)	Etanol+água	NaCl	0.122 molal	316.65-332.05	199.1 mbar	Ν
Friese <i>et al.</i> (1998)	Etanol+água	NaCl	0.0553 (fracção molar)	298.15		Ν
Sergeeva (1962)	Etanol+água	CaCl ₂	0.5 M	313.15	51.1-128.8	Ν
					mmHg	
Sergeeva (1962)	Etanol+água	CaCl ₂	0.5 M	298.15	20.5-54.7 mmHg	Ν
Sergeeva (1962)	Etanol+água	CH ₃ OC ₁₀ H ₇	0.5 M	343.15	468.4-530.0	Ν
					mmHg	
Sergeeva (1962)	Etanol+água	KCI	0.5 M	313.15	52.1-119.5	Ν

					mmHg	
Sergeeva e Mishchenco	Etanol+água	CaCl ₂	0-3.0 M (28% etanol)	313.15	111.8-118.4 Kpa	Ν
(1963)						
Sergeeva e Mishchenco	Etanol+água	CaCl ₂	0-3.0 M (50% etanol)	328.15	193.7-263.0 Kpa	Ν
(1963)						
Sergeeva e Mishchenco	Etanol+água	CaCl ₂	0-3.0 M (50% etanol)	313.15	87.9-124.7 Kpa	Ν
(1963)						
Sergeeva (1962)	Etanol+água	KCI	0.5 M	298.15	21.1-49.6 mmHg	Ν
Rieder e Thompson (1950)	Etanol+água	KNO ₃	saturado	351.35-391.35	1 atm	Ν
Tursi e Thompson (1951)	Etanol+água	Na ₂ SO ₄	saturado	351.85-373.95	1 atm	Ν
Tursi e Thompson (1951)	Etanol+água	K ₂ SO ₄	saturado	355.85-357.75	1 atm	Ν
Tursi e Thompson (1951)	Etanol+água	Na ₂ SO ₄	saturado	353.75-353.85	1 atm	Ν
Kumagae <i>et al.</i> (1992)	Etanol+água	CaCl ₂	0-15 (percentagem mássica)	298.15		Ν
Shiah I-Min <i>et al.</i> (2000)	Etanol+água	HgCl₂	saturado			Ν
Holló <i>et al.</i> (1962)	Etanol+água	CaCl ₂	1.5 (percentagem mássica)			N
Vercher <i>et al.</i> (1991)	Etanol+água	KCH ₃ COO	0.080 (fracção molar)	353.05-362.65	762 mmHg	Ν
Meranda e Furter (1972)	Etanol+água	NaI	saturado	298.15-313.15	1 atm	Ν
Meranda e Furter (1972)	Etanol+água	KI	saturado	298.15-313.15	1 atm	Ν
Holló <i>et al.</i> (1962)	Etanol+água	CaCl ₂	3 (percentagem mássica)			N
Holló <i>et al.</i> (1962)	Etanol+água	CaCl ₂	2 (percentagem mássica)			N
Vercher <i>et al.</i> (1991)	Etanol+água	KCH ₃ COO	0.060 (fracção molar)	352.75-362.55	766 mmHg	N
Meranda e Furter (1972)	Etanol+água	NaBr	saturado	298.15-313.15	1 atm	Ν
Shiah I-Min <i>et al.</i> (2000)	Etanol+água	NH ₄ Cl	saturado			Ν
Banat <i>et al.</i> (1999)	Etanol+água	NH ₄ Cl	2.268 M	343.15		N
Banat <i>et al.</i> (1999)	Etanol+água	NaCl	saturado	343.15		Ν
Banat <i>et al.</i> (1999)	Etanol+água	NaCl	2.268 M	343.15		Ν
Banat <i>et al.</i> (1999)	Etanol+água	NaCl	1.134 M	343.15		Ν
Holló <i>et al.</i> (1962)	Etanol+água	CaCl ₂	1 (percentagem mássica)			Ν

Vercher <i>et al.</i> (1991)	Etanol+água	KCH₃COO	0.100 (fracção molar)	353.65-363.55	764 mmHg	Ν
Banat <i>et al.</i> (1999)	Etanol+água	CaCl ₂	2.268 M	343.15		Ν
Lei <i>et al.</i> (2002)	Etanol+água+etilenoglicol	CaCl ₂	0.1 M	414.25-425.65	1 atm	Ν
Chen e Tsai (1995)	Etanol+benzeno	MgCl ₂	8 (fracção mássica)	342.2-347.1	100 Kpa	Ν
Chen e Tsai (1995)	Etanol+benzeno	MgCl ₂	4 (fracção mássica)	341.7-348.0	100 Kpa	Ν
Chen e Tsai (1995)	Etanol+benzeno	MgCl ₂	2 (fracção mássica)	341.3-348.8	100 Kpa	Ν
Chen e Tsai (1995)	Etanol+benzeno	MgCl ₂	1 (fracção mássica)	340.9-348.0	100 Kpa	Ν
Mato e Cocero (1988a)	Etanol+n-propanol	LiCl	saturado	298.15		Ν
Iyoki <i>et al.</i> (1998)	Etilamina+água	LiNO ₃	2:1 (rácio mássico água/LiNO3)	296.35-316.25	5.07-82.73 Kpa	Ν
Iyoki <i>et al.</i> (1998)	Etilamina+água	LiBr	2:1 (rácio mássico água/LiBr)	296.25-318.25	3.70-83.59 Kpa	Ν
Chen e Thompson (1970)	Glicerol+água	NaCl	saturado	396.65-495.15	1 atm	Ν
Wozny (1981)	HCI+água	Electrólitos		200-473.15	0.1-20 bar	Ν
Miller (1990)	HCI+água	CaCl ₂	0.160-5.035 molal	233.15-273.15	0.024-52.789 torr	Ν
Miller (1985)	HCI+H2O	NaCl	0-Saturação molal	273.15-233.15	3.49-1.33 torr	Ν
Miller (1985)	HCI+H2O	HCI	0.0361-0.2229 (fracção molar)	273.15-233.15	3.49-1.33 torr	Ν
Batista e Francesconi	Hexano+2-propanol	CaCl ₂	0-0.27 (fracção molar)	334.55-351.24	101.33 Kpa	Ν
(1998)						
Lindberg e Tassios (1971)	Hexeno+1-etanol	KCH ₃ COO	1.5 (percentagem molar)	333.15	841.0-887.5	Ν
					mmHg	
Lindberg e Tassios (1971)	Hexeno+1-etanol	KCH ₃ COO	2.9 (percentagem molar)	333.15	751.9 mmHg	Ν
Lindberg e Tassios (1971)	Hexeno+1-etanol	KCH₃COO	5.4 (percentagem molar)	333.15	756.2 mmHg	Ν
Lindberg e Tassios (1971)	Hexeno+1-etanol	LiBr	4.5 (percentagem molar)	333.15	807.3 mmHg	Ν
Lindberg e Tassios (1971)	Hexeno+1-etanol	LiBr	9.0 (percentagem molar)	333.15	849.6 mmHg	Ν
Lemire <i>et al.</i> (1985)	HNO₃+água	ThNO ₃	0-2.5 molal	323.15	9.18-12.22 Kpa	Ν
Sada <i>et al.</i> (1975a)	Isopropanol+água	CaCl ₂	0-0.115 (fracção molar)	348.15	529.1-607.4	Ν
					mmHg	
Sada <i>et al.</i> (1975a)	Isopropanol+água	LiBr	0-0.200 (fracção molar)	348.15	269.7-603.1	Ν
					mmHg	

Sada <i>et al.</i> (1975a)	Isopropanol+água	LiCl	0-0.186 (fracção molar)	348.15	333.4-609.4	N
					mmHg	
Sada <i>et al.</i> (1975a)	Isopropanol+água	CaCl ₂	0-0.127 (fracção molar)	348.15	530.1-605.0	N
					mmHg	
Sada <i>et al.</i> (1975a)	Isopropanol+água	LiCl	0-0.202 (fracção molar)	348.15	332.5-597.4	N
					mmHg	
Sada <i>et al.</i> (1975a)	Isopropanol+água	CaCl ₂	0-0.109 (fracção molar)	348.15	529.7-607.5	N
					mmHg	
Sada <i>et al.</i> (1975a)	Isopropanol+água	LiBr	0-0.200 (fracção molar)	348.15	298.6-575.0	N
					mmHg	
Tan (1985)	Isopropanol+água	KNO ₃	saturado	353.55-364.45	760 mmHg	N
Sada <i>et al.</i> (1975a)	Isopropanol+água	LiCl	0-0.167 (fracção molar)	348.15	340.4-614.0	N
					mmHg	
Tan (1985)	Isopropanol+água	Ca(NO ₃) ₂	saturado	356.35-375.15	760 mmHg	N
Sada <i>et al.</i> (1975a)	Isopropanol+água	LiCl	0-0.212 (fracção molar)	348.15	332.4-591.8	N
					mmHg	
Sada <i>et al.</i> (1975a)	Isopropanol+água	LiBr	0-0.200 (fracção molar)	348.15	245.5-611.3	N
					mmHg	
Kumagae <i>et al.</i> (1992)	Metanol+1-propanol	CaCl ₂	0-15 (percentagem mássica)	298.15		N
Yamamoto <i>et al.</i> (1996)	Metanol+1-propanol	NaI	0.091-0.143 (fracção molar)	298.15	3.23-13.75 Kpa	N
Yamamoto <i>et al.</i> (1996)	Metanol+2-propanol	NaI	0.086-0.134 (fracção molar)	298.15	5.75-13.86 Kpa	N
Kumar e Rajendran (2000)	Metanol+acetato de etilo	HgCl₂	5 (percentagem mássica)	303.15		N
Kumar e Rajendran (2000)	Metanol+acetato de etilo	Mg(NO ₃) ₂	10 (percentagem mássica)	303.15		N
Kumar e Rajendran (2000)	Metanol+acetato de etilo	Mg(NO ₃) ₂	5 (percentagem mássica)	303.15		N
Kumar e Rajendran (2000)	Metanol+acetato de etilo	NaI	10 (percentagem mássica)	303.15		N
Kumar e Rajendran (2000)	Metanol+acetato de etilo	NaI	5 (percentagem mássica)	303.15		N
Kumar e Rajendran (2000)	Metanol+acetato de etilo	HgCl ₂	10 (percentagem mássica)	303.15		N
Jaques e Furter (1974)	Metanol+água	CaCl ₂	saturado	348.25-371.55	752 mmHg	Ν

Schuberth (1977)	Metanol+água	Na ₂ HPO ₄	0-1 (fracção molar)	333.15	120.8-632.7 torr	Ν
Marinichev (2003)	Metanol+água	CaCl ₂	0.1166-0.1372 (fracção molar)	298.15	6.85-12.82	Ν
					mmHg	
Natarajan e Srinivasan	Metanol+água	NaNO ₃	0.07 (fracção molar)	298.15	760 mmHg	Ν
(1980b)						
Natarajan e Srinivasan	Metanol+água	NaNO ₃	0.08 (fracção molar)	298.15	760 mmHg	Ν
(1980b)						
Natarajan e Srinivasan	Metanol+água	NaNO ₃	0.05 (fracção molar)	298.15	760 mmHg	Ν
(1980b)						
Yang e Lee (1998)	Metanol+água	NaBr	0.236 (fracção mássica)	298.15	6.369-6.888 Kpa	Ν
Meranda e Furter (1972)	Metanol+água	NaBr	saturado	298.15-313.15	1 atm	Ν
Meranda e Furter (1972)	Metanol+água	KI	saturado	298.15-313.15	1 atm	Ν
Yang e Lee (1998)	Metanol+água	NaCl	0.30 (fracção mássica)	298.15	7.044-7.799 Kpa	Ν
Jödecke <i>et al.</i> (2005)	Metanol+água	NaCl	0-5.38 molal	313-397	10-500 Kpa	Ν
Dobroservov e Bagrov	Metanol+água	KCH₃COO	10 (percentagem mássica)	340.27-360.25	760 mmHg	Ν
(1967)						
Dobroservov e Bagrov	Metanol+água	KCH ₃ COO	4 (percentagem mássica)	340.75-360.45	760 mmHg	Ν
(1967)						
Dobroservov e Bagrov	Metanol+água	KCH ₃ COO	4 e 10 (percentagem mássica)	340.75-360.45	760 mmHg	Ν
(1967)				e 340.27-		
				360.25		
Meranda e Furter (1974)	Metanol+água	Na_2SO_4	saturado		1 atm	Ν
Yang e Lee (1998)	Metanol+água	KCI	0.30 (fracção massica)	298.15	7.044-7.472 Kpa	Ν
Meranda e Furter (1974)	Metanol+água	CuCl₂	saturado		1 atm	Ν
Yang e Lee (1998)	Metanol+água	NaBr	0.423 (fracção mássica)	298.15	8.812-9.069 Kpa	N
Kumagae <i>et al.</i> (1992)	Metanol+água	CaCl ₂	0-15 (percentagem mássica)	298.15		Ν
Meranda e Furter (1972)	Metanol+água	NaI	saturado	298.15-313.15	1 atm	Ν
Friese <i>et al.</i> (1998)	Metanol+água	NaCl	0.05 (fracção molar)	298.15		Ν

Friese <i>et al.</i> (1998)	Metanol+água	NaCl	0.10 (fracção molar)	298.15		Ν
Friese <i>et al.</i> (1998)	Metanol+água	NaCl	0.05 (fracção molar)	323.15		Ν
Friese <i>et al.</i> (1998)	Metanol+água	NaCl	0.10 (fracção molar)	323.15		Ν
Yang e Lee (1998)	Metanol+água	KCI	0.10 (fracção mássica)	298.15	4.507-4.766 Kpa	Ν
Yang e Lee (1998)	Metanol+água	NaCl	0.10 (fracção mássica)	298.15	4.507-4.825 Kpa	N
Morrison <i>et al.</i> (1990)	Metanol+água	KCI	0-0.086 (fracção molar)	341.65-369.15	1 atm	Ν
Shiah I-Min <i>et al.</i> (2000)	Metanol+água	Pb(NO ₃) ₂	saturado			Ν
Shiah I-Min <i>et al.</i> (2000)	Metanol+água	NaCl	saturado			Ν
Morrison <i>et al.</i> (1990)	Metanol+água	NaCl	0-0.071 (fracção molar)	341.65-363.15	1 atm	Ν
Morrison <i>et al.</i> (1990)	Metanol+água	KBr	0-0.127 (fracção molar)	341.65-363.15	1 atm	N
Morrison <i>et al.</i> (1990)	Metanol+água	NaBr	0-0.166 (fracção molar)	343.15-373.15	1 atm	N
Shiah I-Min <i>et al.</i> (2000)	Metanol+água	NaF	1 molal			Ν
Meranda e Furter (1972)	Metanol+água	KBr	saturado	298.15-313.15	1 atm	Ν
Shiah I-Min <i>et al.</i> (2000)	Metanol+água	KCI	2 molal			N
Meranda e Furter (1974)	Metanol+água	K ₂ SO ₄	saturado		1 atm	N
Shiah I-Min <i>et al.</i> (2000)	Metanol+água	NaBr	4 molal			Ν
Shiah I-Min <i>et al.</i> (2000)	Metanol+água	HgCl₂	2 molal			Ν
Morrison <i>et al.</i> (1990)	Metanol+água	NaCl	0-0.071 (fracção molar)	341.65-363.15	1 atm	Ν
Morrison <i>et al.</i> (1990)	Metanol+água	NaBr	0-0.166 (fracção molar)	343.15-373.15	1 atm	Ν
Morrison <i>et al.</i> (1990)	Metanol+água	KCI	0-0.086 (fracção molar)	341.65-369.15	1 atm	Ν
Morrison <i>et al.</i> (1990)	Metanol+água	KBr	0-0.127 (fracção molar)	343.15-367.15	1 atm	Ν
Meranda e Furter (1974)	Metanol+água	KNO3	saturado		1 atm	Ν
Shiah I-Min <i>et al.</i> (2000)	Metanol+água	LiCl	4 molal			Ν
Kumar e Rajendran (1998)	Metanol+benzeno	NaCl	saturado	333.1-344.5	101.3 Kpa	Ν
Kumar e Rajendran (1998)	Metanol+benzeno	CaCl ₂	5 (percentagem mássica)	335.0-348.2	101.3 Kpa	Ν
Kumar e Rajendran (1998)	Metanol+benzeno	CaCl ₂	10 (percentagem mássica)	339.0-350.1	101.3 Kpa	Ν
Kumar e Rajendran (1998)	Metanol+benzeno	ZnCl ₂	saturado	340.7-352.6	101.3 Kpa	Ν
Kumar e Rajendran (1998)	Metanol+benzeno	ZnCl ₂	5 (percentagem mássica)	335.5-350.2	101.3 Kpa	Ν

Kumar e Rajendran (1998)	Metanol+benzeno	ZnCl ₂	10 (percentagem mássica)	337.6-350.8	101.3 Kpa	N
Natarajan e Srinivasan	Metanol+benzeno	Mg(CH ₃ CO	saturado	332.75-335.25	760 mmHg	N
(1980a)		O) ₂				
Kumar e Rajendran (1998)	Metanol+benzeno	CaCl ₂	saturado	342.5-351.6	101.3 Kpa	N
Kumagae <i>et al.</i> (1992)	Metanol+etanol	CaCl ₂	0-15 (percentagem mássica)	298.15		N
Devasahayam e Srinivasan	Metil etil cetona+água	NaCl	saturado	347.3-379.0	760 torr	N
(1981)						
Lindberg e Tassios (1971)	n-hexano+etanol	KCH ₃ COO	2.9 (percentagem molar)	333.15	749.5 mmHg	N
Lindberg e Tassios (1971)	n-hexano+etanol	KCH ₃ COO	5.4 (percentagem molar)	333.15	744.9 mmHg	N
Lindberg e Tassios (1971)	n-hexano+etanol	LiBr	4.5 (percentagem molar)	333.15	780.7 mmHg	N
Lindberg e Tassios (1971)	n-hexano+etanol	LiBr	9.0 (percentagem molar)	333.15	785.2 mmHg	N
Lindberg e Tassios (1971)	n-hexano+etanol	KCH ₃ COO	1.5 (percentagem molar)	333.15	813.3-818.8	N
					mmHg	
Sada <i>et al.</i> (1975b)	Tetrahidrofurano+água	CaCl ₂	0-saturação	336.8-339.1	760 mmHg	N
Sada <i>et al.</i> (1975b)	Tetrahidrofurano+água	NaCl	0-saturação	336.7-338.9	760 mmHg	N
Sada <i>et al.</i> (1975b)	Tetrahidrofurano+água	LiCl	0-saturação	336.7-339.15	760 mmHg	N
Yan <i>et al.</i> (2002)	Tetrahidrofurano+metanol	LiBr	1.00 molal	338.15		N
Yan <i>et al.</i> (2002)	Tetrahidrofurano+metanol	LiBr	0.50 molal	338.15		N
Yan <i>et al.</i> (2002)	Tetrahidrofurano+metanol	LiBr	0.25 molal	338.15		N
Yan <i>et al.</i> (2002)	Tetrahidrofurano+metanol	LiBr	2.00 molal	323.35		N
Yan <i>et al.</i> (2002)	Tetrahidrofurano+metanol	LiBr	1.00 molal	323.35		N
Yan <i>et al.</i> (2002)	Tetrahidrofurano+metanol	LiBr	0.50 molal	323.35		N
Yan <i>et al.</i> (2002)	Tetrahidrofurano+metanol	LiBr	0.25 molal	323.35		N
Yan <i>et al.</i> (2002)	Tetrahidrofurano+metanol	LiBr	2.00 molal	303.35		N
Yan <i>et al.</i> (2002)	Tetrahidrofurano+metanol	LiBr	1.00 molal	303.35		N
Yan <i>et al.</i> (2002)	Tetrahidrofurano+metanol	LiBr	0.50 molal	303.35		N
Yan <i>et al.</i> (2002)	Tetrahidrofurano+metanol	LiBr	0.25 molal	303.35		N
Yan <i>et al.</i> (2002)	Tetrahidrofurano+metanol	LiBr	2.00 molal	338.15		N

Anexo B. Parâmetros dos modelos e constantes da equação de Antoine

		Parâmetros	Eq. Antoine		Parâmetros Parâmetros			
Sistema	Comp (1)	Pof	Comp(2)	Pof	modelo Wilson	Ref.	modelo NRTL	Ref.
	comp. (1)	Ker.	comp. (2)	Kel.	modificado		modificado	
1_{-} propagol (1) $\pm \dot{A}_{0}$	A1=7.9973		A2=7.9668		A ₁₂ =0.02306		$\Delta g_{12} = 1648.8 \text{ J/mol}$	Vorchor et al
(2) + CuCl	B1=1569.7	Tan (1987)	B2=1668.2	Tan (1987)	A ₂₁ =0.73876	Tan (1987)	∆g ₂₁ = 7896.7 J/mol	(2005)
	C1=209.5		C2=228.0				a ₁₂ = 0.477	(2003)
Acetona (1) + Metanol	A1=7.0245		A2=7.8786		λ λ=-64 814 Κ	Iliuta e	Δg ₁₂ = 78.317 K	Iliuta e
(2) + NaI	B1=1161.0	Tan (1990)	B2=1473.1	Tan (1990)	$\lambda_{12} = \lambda_{22} = 04.014$ K	Thyrion	∆g ₂₁ = 140.046 K	Thyrion
(2) + Nui	C1=224.0		C2=230.0		N21 N11-200.500 K	(1995)	$a_{12} = 0.47$	(1995)
Acetona (1) + Metanol	A1=7.0245		A2=7.8786		λ λ=-64 814 Κ	Iliuta e	$\Delta g_{12} = 924.2 \text{ J/mol}$	Vercher <i>et al</i>
$(2) \pm 1$ iNO-	B1=224.0	Tan (1990)	B2=1473.1	Tan (1990)	$\lambda_{12} = \lambda_{22} = 34.514$ K	Thyrion	Δg ₂₁ = 863.1 J/mol	(2006)
(2) + LINO ₃	C1=224.0		C2=230.0		N21 N11-200.500 K	(1995)	$a_{12} = 0.3$	(2000)
Acetona (1) + Metanol	A1=7.0245		A2=7.8786		λ λ=-64.814 K	Iliuta e	Δg ₁₂ = 78.317 K	Iliuta e
$(2) \pm 1$	B1=1161.0	Tan (1990)	B2=1473.1	Tan (1990)	$\lambda_{12} = \lambda_{22} = 34.514$ K	Thyrion	∆g ₂₁ = 140.046 K	Thyrion
	C1=224.0		C2=230.0		N21 N11-200.500 K	(1995)	a ₁₂ = 0.47	(1995)
Acetato de metilo (1) +	A1=7.0652	Felder e	A2=7.8786		λ λ=-55.03 Κ	Iliuta <i>et al</i>	Δg ₁₂ = 178.06 K	Iliuta <i>et al</i>
Metanol (2) + NaSCN	B1=1157.6	Rousseau	B2=1473.1	Tan (1990)	$\lambda_{12} = \lambda_{22} = 33.05$ K	(1996c)	∆g ₂₁ = 190.27 K	(1996c)
	C1=219.73	(2000)	C2=230.0		N21 N11-425.55 K	(19900)	$a_{12} = 0.47$	(19900)
Etanol (1) + Água (2) +	A1=8.0449		A2=7.9668		A ₁₂ =0.1813		Δg ₁₂ =-693.71 J/mol	
$Ca(NO_2)_2$	A2=1554.3	Tan (1987)	B2=1668.2	Tan (1987)	A ₂₁ =0.7899	Tan (1987)	$\Delta g_{21} = 6162.27 \text{ J/mol}$	Tan (1990)
	C1=222.65		C2=228.0				$a_{12} = 0.3$	
2-propagol (1) + Água	A1=6.6604		A2=7.9668		A ₁₂ =0.11699		Δg ₁₂ =-249.43 J/mol	
$(2) + Ca(NO_a)_a$	B1=813.05	Tan (1987)	B2=1668.2	Tan (1987)	A ₂₁ =0.78877	Tan (1987)	Δg ₂₁ = 7370.43 J/mol	Tan (1990)
$(2) + Ca(NO_3)_2$	C1=132.93		C2=228.0				$a_{12} = 0.3$	
Etapol (1) + Água (2) +	A1=8.0449		A2=7.9668		A ₁₂ =0.1813		Δg ₁₂ =-693.71 J/mol	
	B1=1554.3	Tan (1987)	B2=1668.2	Tan (1987)	A ₂₁ =0.7899	Tan (1987)	$\Delta g_{21} = 6162.27 \text{ J/mol}$	Tan (1990)
	C1=222.65		C2=228.0				a ₁₂ = 0.3	

 Tabela B.1. Parâmetros dos modelos e constantes de Antoine.

Acetona (1) + Metanol (2) + NaSCN	A1=7.0245 B1=1161.0	Tan (1990)	A2=7.8786 B2=1473.1	Tan (1990)	λ ₁₂ - λ ₂₂ =-64.814 K	Iliuta e Thyrion	$\Delta g_{12} = 78.317 \text{ K}$ $\Delta g_{21} = 140.046 \text{ K}$	Iliuta e Thyrion
(2) + NaSCN	C1=224.0	()	C2=230.0		λ ₂₁ - λ ₁₁ =280.508 K	(1995)	$a_{12} = 0.47$	(1995)
Clorofórmio (1) + Etanol (2) + CaCl ₂	A1=6.90328 B1=1163.03	Felder e Rousseau	A2=8.0449 B2=1554.3	Tan (1987)	$\lambda_{12} - \lambda_{22} = 834.1$ J/mol $\lambda_{21} - \lambda_{11} = 4550$ J/mol	Chen e Tsai (1995)	$\Delta g_{12} = 8398.9 \text{ J/mol}$ $\Delta g_{21} = -3494.4 \text{ J/mol}$	Orchillés <i>et al.</i> (2008b)
,	C1=227.4 A1=8.0449	(2000)	C2=222.65 A2=7.9668		A ₁₂ =0.1813		a ₁₂ = 0.146 Δq ₁₂ =-693.71 J/mol	
Etanol (1) + Agua (2) + [BMIM][Cl]	B1=1554.3	Tan (1987)	B2=1668.2	Tan (1987)	A ₂₁ =0.7899	Tan (1987)	$\Delta g_{21} = 6162.27 \text{ J/mol}$	Tan (1990)
	C1=222.65 A1=7.9973		A2=7.9668		A ₁₂ =0.02306		$a_{12} = 0.3$ $\Delta g_{12} = 1864.8 \text{ J/mol}$	
1-propanol (1) + Água (2) + [EMIM][triflate]	B1=1569.7 C1=209.5	Tan (1987)	B2=1668.2 C2=228.0	Tan (1987)	A ₂₁ =0.73876	Tan (1987)	Δg ₂₁ =7981.5 J/mol a ₁₂ = 0.510	(2008a)

Anexo C. Tabelas dos erros calculados (sistema+sal e sistema+LI)

Sistema	Sal	X -	Modelo	de Wils	on mod	ificado	Model	o NRT	L modi	ficado
	Sui	A 3	∆y	σ	Δ T	σ	∆y	σ	Δ Τ	σ
		0.022	0.025	0.013	0.460	0.537	0.021	0.010	0.298	0.345
1-propanol +	CuCl ₂	0.032	0.036	0.016	0.614	0.449	0.035	0.014	0.538	0.434
		0.045	0.040	0.016	0.745	0.563	0.037	0.017	0.572	0.438
Áqua	Cuciz	0.069	0.049	0.021	1.020	0.985	0.044	0.020	0.810	0.593
. gee		0.091	0.048	0.023	0.966	0.863	0.048	0.023	0.716	0.607
		0.113	0.048	0.0270	1.177	1.046	0.046	0.025	0.713	0.587
Erro	médio		0.041	0.018	0.830	0.740	0.038	0.018	0.608	0.501

 $\label{eq:constraint} \textbf{Tabela C.1.} \ \text{Erros correspondentes ao sistema 1-propanol+água+CuCl}_2 \ a \ 750 \ \text{mmHg}.$

Tabela C.2. Erros correspondentes ao sistema acetona+metanol+NaI a 760 mmHg.

Sistema	Sal	X ₂	Modelo	de Wils	son moc	lificado	Mode	o NRT	L modi	ficado
	Sui	A 3	∆y	σ	 Δ T	σ	∆y	σ	Δ T	σ
		0.010	0.009	0.006	0.033	0.023	0.009	0.006	0.024	0.022
		0.015	0.015	0.009	0.091	0.056	0.015	0.008	0.042	0.058
		0.020	0.019	0.012	0.104	0.066	0.018	0.011	0.028	0.034
		0.030	0.027	0.016	0.319	0.151	0.024	0.015	0.125	0.079
Acetona		0.040	0.033	0.021	0.475	0.229	0.029	0.019	0.154	0.099
+	NaI	0.050	0.040	0.031	0.641	0.392	0.034	0.029	0.142	0.121
Metanol		0.060	0.041	0.027	0.897	0.556	0.032	0.025	0.232	0.193
		0.070	0.046	0.031	1.118	0.643	0.035	0.027	0.256	0.178
		0.080	0.051	0.033	1.431	0.829	0.037	0.028	0.394	0.296
		0.090	0.054	0.036	1.649	1.090	0.038	0.027	0.434	0.417
		Sat.	0.061	0.043	3.680	3.096	0.030	0.022	1.650	1.755
Erro	méd	io	0.036	0.024	0.949	0.648	0.027	0.020	0.316	0.296

Tabela C.3. Erros correspondentes ao sistema acetona+metanol+KI a 760 mmHg.

Sistema	Sal	X.	Modelo	de Wils	son moo	lificado	Model	o NRT	L modi	ficado
		243	∆y	σ	∆ T	σ	∆y	σ	∆ T	σ
Acetona	ĸī	0.003	0.006	0.006	0.092	0.085	0.006	0.006	0.085	0.075
Metanol		Sat.	0.016	0.020	0.290	0.245	0.013	0.010	0.947	0.564
Erro	méc	lio	0.011	0.013	0.191	0.165	0.010	0.008	0.516	0.320

Sistema	Sal	X,	Modelo	de Wils	son moo	lificado	Model	o NRT	L modi	ficado
		215	∆y	σ	∆ T	σ	∆y	σ	∆ T	σ
		0.022	0.017	0.012	0.137	0.122	0.018	0.010	0.224	0.176
Acetona		0.045	0.031	0.019	0.182	0.143	0.032	0.016	0.350	0.175
+	LiNOa	0.069	0.042	0.026	0.245	0.202	0.046	0.021	0.574	0.386
Metanol	En los	0.088	0.044	0.030	0.316	0.239	0.049	0.024	0.706	0.490
riccarior		0.123	0.049	0.033	0.776	0.339	0.052	0.029	0.801	0.446
		0.152	0.053	0.035	1.443	0.823	0.053	0.032	0.858	0.606
Erre	o médi	C	0.039	0.026	0.517	0.311	0.041	0.022	0.585	0.380

Tabela C.4. Erros correspondentes ao sistema acetona+metanol+LiNO $_3$ a 750 mmHg.

Tabela C	Tabela C.5. Erros correspondentes ao sistema acetona+metanol+LiCl a 760 mmHg.											
Sistema	Sal	X₃	Modelo	de Wils	son moo	lificado	Mode	o NRT	L modi	ficado		

Sistema	Sal	X3	Fioueio			inicauo					
		X 3	∆y	σ	 Δ T	σ	∆y	σ	 Δ T	σ	
		0.005	0.012	0.007	0.342	0.244	0.012	0.073	0.350	0.236	
		0.0075	0.016	0.010	0.342	0.251	0.016	0.010	0.380	0.254	
Acetona		0.01	0.020	0.014	0.301	0.238	0.019	0.014	0.368	0.264	
+	LiCI	0.03	0.048	0.022	0.267	0.239	0.042	0.021	0.409	0.240	
Metanol	LICI	0.05	0.074	0.034	0.262	0.259	0.068	0.032	0.476	0.319	
rictario		0.10	0.128	0.061	0.202	0.139	0.135	0.063	0.561	0.261	
		0.15	0.168	0.056	0.391	0.280	0.180	0.059	0.655	0.324	
		Sat.	0.039	0.029	2.115	2.501	0.040	0.040	2.495	1.773	
Erro	o méo	dio	0.063	0.029	0.528	0.519	0.064	0.039	0.712	0.459	

Tabela C.6. Erros calculados para o sistema Acetato de metilo+Metanol+NaSCN a 760 mmHg.

Sistema	Sal	Χ.	Modelo	de Wils	son moo	lificado	Modelo NRTL modificado				
	541	A 3	∆y	σ	Δ T	σ	∆y	σ	Δ T	σ	
		0.01	0.008	0.006	0.141	0.110	0.009	0.006	0.117	0.093	
Acetato		0.02	0.014	0.011	0.210	0.151	0.015	0.011	0.191	0.147	
de metilo	NaSCN	0.03	0.021	0.016	0.224	0.192	0.022	0.015	0.219	0.177	
+	Nusen	0.04	0.027	0.019	0.264	0.234	0.027	0.019	0.243	0.212	
Metanol		0.05	0.032	0.023	0.343	0.310	0.031	0.021	0.276	0.234	
		Sat.	0.064	0.052	4.170	2.711	0.041	0.034	2.237	1.780	
Erro médio		0.028	0.021	0.892	0.618	0.024	0.018	0.547	0.440		

Sistema	Sal	X ₃	Modelo	Modelo NRTL modificado						
	541		∆y	σ	Δ Τ	σ	∆y	σ	Δ Τ	σ
Etanol	$Ca(NO_2)_2$	1.038	0.035	0.025	0.594	0.424	0.041	0.025	0.913	0.577
+ Água	66(1103)2	2.049	0.057	0.030	1.095	0.709	0.071	0.028	1.786	1.138
E	rro médio		0.046	0.027	0.844	0.566	0.056	0.026	1.350	0.858

Tabela C.7. Erros correspondentes ao sistema etanol+água+Ca(NO₃)₂ a 380 mmHg.

 Tabela C.8.
 Erros correspondentes ao sistema 2-propanol+água+Ca(NO₃)₂ a 380 mmHg.

Sistema	Sal	X ₂	Modelo	de Wils	son moo	lificado	Model	o NRT	L modi	ficado
		5	∆y	σ	Δ T	σ	∆y	σ	Δ T	σ
2-propanol	$Ca(NO_2)_2$	1.038	0.068	0.024	1.669	1.170	0.056	0.033	0.708	0.470
+ Água	64(1103)2	2.073	0.116	0.042	2.168	1.527	0.111	0.051	1.498	0.998
Erro médio		0.092	0.033	1.919	1.348	0.084	0.042	1.103	0.734	

 $\textbf{Tabela C.9.} Erros \ correspondentes \ ao \ sistema \ etanol+água+KCH_{3}COO \ a \ 750 \ mmHg.$

Sistema	Sal	X ₃	Modelo	de Wils	lificado	Modelo NRTL modificado				
	041		∆y	σ	∆ T	σ	∆y	σ	∆ T	σ
Etanol		0.025	0.024	0.020	0.650	0.524	0.026	0.013	0.630	0.790
+	ксн₂соо	0.050	0.066	0.032	0.516	0.404	0.072	0.032	0.473	0.619
Água	Renjecc	0.085	0.109	0.041	1.057	1.106	0.118	0.042	0.729	0.725
<i>.</i>		0.150	0.111	0.049	1.649	1.975	0.141	0.062	1.742	1.172
E	rro médio		0.077	0.035	0.968	1.002	0.089	0.037	0.893	0.826

Tabela C.10. Erros correspondentes ao sistema acetona+metanol+NaSCN a 760 mmHg.

Sistema	Sal	X -	Modelo	de Wils	lificado	Modelo NRTL modificado				
	541	7.5	∆y	σ	 Δ T	σ	∆y	σ	Δ Τ	σ
		0.01	0.007	0.005	0.090	0.105	0.007	0.005	0.089	0.109
		0.03	0.016	0.012	0.300	0.239	0.014	0.011	0.114	0.155
		0.04	0.020	0.014	0.447	0.337	0.017	0.013	0.145	0.185
Acetona		0.05	0.025	0.017	0.627	0.474	0.019	0.014	0.201	0.233
+	NaSCN	0.07	0.033	0.020	1.030	0.769	0.023	0.015	0.325	0.367
Metanol		0.09	0.039	0.026	1.488	1.129	0.024	0.017	0.460	0.518
		0.11	0.047	0.034	2.026	1.522	0.026	0.018	0.631	0.662
		0.13	0.054	0.042	2.682	2.028	0.028	0.020	0.906	0.907
		Sat.	0.068	0.058	5.601	3.836	0.031	0.028	3.136	2.155
Err	o médio		0.034	0.025	1.588	1.160	0.021	0.016	0.667	0.588

Tabela C.11. Erros correspondentes ao sistema clorofórmio+etanol+CaCl₂ a 705 mmHg.

Sistema	Sal	Sal	Sal	X 2	Modelo	de Wils	son moo	lificado	Mode	o NRT	L modi	ficado
	041		∆y	σ	Δ T	σ	∆y	σ	∆ T	σ		
Clorofórmio +	CaCl₂	Sat.	0.017	0.015	1.213	1.050	0.019	0.018	1.211	1.046		
Etanol												

 Tabela C.12. Erros correspondentes ao sistema etanol+água+[BMIM][CI] a 760 mmHg.

Sistema	LI	X 3	Modelo	Modelo NRTL modificado						
			∆y	σ	Δ T	σ	∆y	σ	Δ Τ	σ
Etanol		20%	0.064	0.030	0.869	0.695	0.069	0.036	0.269	0.515
+ Água		30%	0.067	0.039	1.666	0.861	0.074	0.041	0.614	0.529
E	rro médio		0.066	0.035	1.268	0.778	0.072	0.039	0.442	0.522

 Tabela C.13. Erros correspondentes ao sistema 1-propanol+água+[EMIM][triflate] a 750 mmHg.

Sistema	IT	X ₂	Modelo	de Wils	son moo	dificado	Modelo NRTL modificado				
		7.5	∆y	σ	∆ T	σ	∆y	σ	∆ T	σ	
1-propanol		0.057	0.051	0.049	1.330	1.719	0.043	0.032	0.876	1.139	
+	[EMIM]	0.099	0.071	0.058	2.388	2.157	0.066	0.048	1.892	1.860	
Água	[triflate]	0.191	0.103	0.078	4.035	2.770	0.088	0.063	2.896	2.268	
, ig a a		0.306	0.138	0.104	6.429	3.864	0.107	0.073	4.235	2.812	
Err	o médio		0.091	0.072	3.545	2.627	0.076	0.054	2.474	2.020	

Anexo D. Base de dados experimental (sistema+LI)

Referências	Sistema	LI	Composição do LI	Temperatura (K)	Pressão (KPa)
Kato e Gmehling (2005)	2-Propanol	[EMIM][(CF ₃ SO ₂) ₂ N]	0.000-0.988 (fracção molar)	353.15	1.73-92.26
Kato e Gmehling (2005)	2-Propanol	$[EMIM][(CF_3SO_2)_2N]$	0.000-0.963 (fracção molar)	353.15	3.85-91.99
Kato e Gmehling (2005)	Acetona	$[EMIM][(CF_3SO_2)_2N]$	0.000-0.987 (fracção molar)	353.15	1.14-215.16
Kato e Gmehling (2005)	Acetona	$[BMIM][(CF_3SO_2)_2N]$	0.000-0.944 (fracção molar)	353.15	4.92-215.04
Kato e Gmehling (2005)	Acetona	[MMIM][(CH ₃) ₂ PO ₄]	0.000-0.954 (fracção molar)	353.15	10.11-216.93
Kato e Gmehling (2005)	Água	$[EMIM][(CF_3SO_2)_2N]$	0.000-0.971 (fracção molar)	353.15	3.19-47.38
Kato e Gmehling (2005)	Água	$[BMIM][(CF_3SO_2)_2N]$	0.023-0.951 (fracção molar)	353.15	5.32-47.16
Kato e Gmehling (2005)	Água	[MMIM][(CH ₃) ₂ PO ₄]	0.000-0.963 (fracção molar)	353.15	0.09-47.82
Kato e Gmehling (2005)	Etanol	[MMIM][(CH ₃) ₂ PO ₄]	0.000-0.966 (fracção molar)	353.15	0.53-109.08
Kato e Gmehling (2005)	Metanol	[MMIM][(CH ₃) ₂ PO ₄]	0.000-0.893 (fracção molar)	353.15	0.66-182.61
Kato e Gmehling (2005)	THF	$[EMIM][(CF_3SO_2)_2N]$	0.000-0.987 (fracção molar)	353.15	1.94-155.92
Kato e Gmehling (2005)	THF	[MMIM][(CH ₃) ₂ PO ₄]	0.000-0.979 (fracção molar)	353.15	9.67-157.88

 Tabela D.1.
 Base de dados experimentais (solvente+LI).

Referências	Sistema	LI	Composição do LI	Temperatura	Pressão	Solvente
				(K)	(KPa)	puro +LI
Kato e Gmehling (2005)	2-Propanol	$[EMIM][(CF_3SO_2)_2N]$	0.000-0.988 (fracção molar)	353.15	1.73-92.26	Sim
Kato e Gmehling (2005)	2-Propanol	$[EMIM][(CF_3SO_2)_2N]$	0.000-0.963 (fracção molar)	353.15	3.85-91.99	Sim
Kato e Gmehling (2005)	Acetona	$[EMIM][(CF_3SO_2)_2N]$	0.000-0.987 (fracção molar)	353.15	1.14-215.16	Sim
Kato e Gmehling (2005)	Acetona	$[BMIM][(CF_3SO_2)_2N]$	0.000-0.944 (fracção molar)	353.15	4.92-215.04	Sim
Kato e Gmehling (2005)	Acetona	$[MMIM][(CH_3)_2PO_4]$	0.000-0.954 (fracção molar)	353.15	10.11-216.93	Sim
Kato e Gmehling (2005)	Água	$[EMIM][(CF_3SO_2)_2N]$	0.000-0.971 (fracção molar)	353.15	3.19-47.38	Sim
Kato e Gmehling (2005)	Água	$[BMIM][(CF_3SO_2)_2N]$	0.023-0.951 (fracção molar)	353.15	5.32-47.16	Sim
Kato e Gmehling (2005)	Água	$[MMIM][(CH_3)_2PO_4]$	0.000-0.963 (fracção molar)	353.15	0.09-47.82	Sim
Kato e Gmehling (2005)	Etanol	$[MMIM][(CH_3)_2PO_4]$	0.000-0.966 (fracção molar)	353.15	0.53-109.08	Sim
Kato e Gmehling (2005)	Metanol	$[MMIM][(CH_3)_2PO_4]$	0.000-0.893 (fracção molar)	353.15	0.66-182.61	Sim
Kato e Gmehling (2005)	THF	$[EMIM][(CF_3SO_2)_2N]$	0.000-0.987 (fracção molar)	353.15	1.94-155.92	Sim
Kato e Gmehling (2005)	THF	$[MMIM][(CH_3)_2PO_4]$	0.000-0.979 (fracção molar)	353.15	9.67-157.88	Sim
Orchillés <i>et al</i> . (2007)	Acetato de Etilo+	[EMIM][triflate]	0.054-0.058 (fracção molar)	345.49-352.29	100	Sim
	Etanol					
Orchillés <i>et al</i> . (2007)	Acetato de Etilo+	[EMIM][triflate]	0.096-0.113 (fracção molar)	346.07-353.07	100	Sim
	Etanol					
Orchillés <i>et al</i> . (2007)	Acetato de Etilo+	[EMIM][triflate]	0.188-0.217 (fracção molar)	347.84-355.14	100	Sim
	Etanol					
Orchillés <i>et al</i> . (2007)	Acetato de Etilo+	[EMIM][triflate]	0.296-0.308 (fracção molar)	349.83-358.25	100	Sim
	Etanol					
Orchillés <i>et al</i> . (2008a)	Água+1-Propanol	[EMIM][triflate]	0.0533-0.0627 (fracção molar)	362.08-374.28	100	Sim
Orchillés <i>et al</i> . (2008a)	Água+1-Propanol	[EMIM][triflate]	0.0974-0.1041 (fracção molar)	363.45-375.27	100	Sim
Orchillés <i>et al</i> . (2008a)	Água+1-Propanol	[EMIM][triflate]	0.1782-0.2069 (fracção molar)	366.77-378.88	100	Sim
Orchillés <i>et al</i> . (2008a)	Água+1-Propanol	[EMIM][triflate]	0.2940-0.3165 (fracção molar)	372.10-383.81	100	Sim
Ge <i>et al</i> . (2008)	Água+Etanol	[BMIM][BF ₄]	0.1000-0.9084 (fracção molar)	351.45-372.15	100	Não

Tabela D.2. Base de dados experimentais de ELV (sistema binário+LI).

Ge <i>et al</i> . (2008)	Água+Etanol	[EMIM][BF ₄]	0.0999-0.9001 (fracção molar)	351.47-365.61	100	Não
Ge <i>et al</i> . (2008)	Água+Etanol	[BMIM][N(CN) ₂]	0.1000-0.7996 (fracção molar)	351.70-373.95	100	Não
Ge <i>et al</i> . (2008)	Água+Etanol	[EMIM][N(CN) ₂]	0.1000-0.7998 (fracção molar)	351.64-374.41	100	Não
Ge <i>et al</i> . (2008)	Água+Etanol	[BMIM][OAc]	0.0999-0.5998 (fracção molar)	351.87-377.15	100	Não
Ge <i>et al</i> . (2008)	Água+Etanol	[EMIM][OAc]	0.0999-0.6003 (fracção molar)	351.99-380.12	100	Não
Ge <i>et al</i> . (2008)	Água+Etanol	[BMIM][CI]	0.1000-0.5881 (fracção molar)	351.89-371.16	100	Não
Ge <i>et al</i> . (2008)	Água+Etanol	[EMIM][CI]	0.1000-0.5906 (fracção molar)	352.06-373.52	100	Não
Wang <i>et al</i> . (2009)	Água+Etanol	[HMEA][Ac]	0.0222-0.1013 (fracção molar)	354.21-358.98	101.3	Sim
Wang et al. (2009)	Água+Etanol	[HTEA][Ac]	0.0125-0.0741 (fracção molar)	354.08-358.92	101.3	Sim
Wang <i>et al</i> . (2009)	Água+Etanol	[HDEA][CI]	0.0231-0.1120 (fracção molar)	353.53-357.49	101.3	Sim
Zhao <i>et al</i> . (2006)	Água +Etanol	[MMIM][DMP]	10 (percentagem mássica)	362.53-371.91	101.32	Não
Zhao <i>et al</i> . (2006)	Água +Etanol	[MMIM][DMP]	20 (percentagem mássica)	363.58-373.54	101.32	Não
Zhao <i>et al</i> . (2006)	Água +Etanol	[EMIM][DEP]	10 (percentagem mássica)	362.23-371.60	101.32	Não
Zhao <i>et al</i> . (2006)	Água +Etanol	[EMIM][DEP]	20 (percentagem mássica)	363.21-371.79	101.32	Não
Zhao <i>et al</i> . (2006)	Água +Etanol	[BMIM][Br]	10 (percentagem mássica)	351.81-363.14	101.32	Não
Zhao <i>et al</i> . (2006)	Água +Etanol	[BMIM][Br]	20 (percentagem mássica)	352.85-360.99	101.32	Não
Zhao <i>et al</i> . (2006)	Água +Etanol	[BMIM][CI]	20 (percentagem mássica)	353.71-364.49	101.32	Não
Zhao <i>et al</i> . (2006)	Água +Etanol	[BMIM][CI]	30 (percentagem mássica)	356.42-364.46	101.32	Não
Zhao <i>et al</i> . (2006)	Água +Etanol	[BMIM][PF ₆]	10 (percentagem mássica)	351.41-357.70	101.32	Não
Zhao <i>et al</i> . (2006)	Água +Etanol	[BMIM][PF ₆]	20 (percentagem mássica)	352.01-354.53	101.32	Não
Calvar <i>et al</i> . (2006)	Água+Etanol	[C ₄ MIM][CI]	0.0097-0.3686 (fracção molar)	352.92-393.63	101.3	Sim
Calvar <i>et al</i> . (2007)	Água+Etanol	[C ₆ MIM][CI]	0.0020-0.3250 (fracção molar)	351.47-387.31	101.3	Sim
Calvar <i>et al</i> . (2008)	Água+Etanol	EMISE	0.0110-0.2470 (fracção molar)	353.65-375.60	101.3	Sim
Calvar <i>et al</i> . (2009)	Água+Etanol	[BMIM][MSO ₄]	0.0080-0.2720 (fracção molar)	352.38-365.97	101.3	Sim
Jork <i>et al.</i> (2004)	Água+Etanol	[EMIM][BF ₄]	0.1, 0.3 e 0.5 (fracção molar)	337.15	101.3	Não
Jork <i>et al.</i> (2004)	Água+Etanol	[BMIM][BF ₄]	0.1, 0.3 e 0.5 (fracção molar)	337.15	101.3	Não
Jork <i>et al.</i> (2004)	Água+Etanol	[BMIM][CI]	0.1, 0.3 e 0.5 (fracção molar)	337.15	101.3	Não
Wang <i>et al</i> . (2009)	Etanol+Metanol	[HDEA][Ac]	0.0267-0.0743 (fracção molar)	341.02-347.65	101.3	Sim

Wang <i>et al</i> . (2009)	Etanol+Metanol	[HTEA][Ac]	0.0274-0.0638 (fracção molar)	341.53-347.04	101.3	Sim
Wang <i>et al</i> . (2009)	Etanol+Metanol	[HMEA][Ac]	0.0381-0.1085 (fracção molar)	342.48-348.27	101.3	Sim
Wang <i>et al</i> . (2009)	Etanol+Metanol	[HDEA][CI]	0.0390-0.1079 (fracção molar)	345.39-349.25	101.3	Sim
Zhang <i>et al</i> . (2009)	Água+TBA	[EMIM][OAc]	0.0499-0.6026 (fracção molar)	355.09-385.15	100	Não
Zhang <i>et al</i> . (2009)	Água+TBA	[BMIM][OAc]	0.0450-0.6008 (fracção molar)	354.83-381.22	100	Não
Zhang <i>et al</i> . (2009)	Água+TBA	[HMIM][OAc]	0.0500-0.6166 (percentagem mássica)	354.95-378.35	100	Não
Zhang <i>et al</i> . (2009)	Água+TBA	[EMIM][CI]	0.0503-0.5846 (percentagem mássica)	355.35-375.65	100	Não
Zhang <i>et al</i> . (2009)	Água+TBA	[BMIM][CI]	0.0503-0.5907 (percentagem mássica)	354.85-375.59	100	Não
Zhang <i>et al</i> . (2009)	Água+TBA	[HMIM][CI]	0.0494-0.5915 (percentagem mássica)	354.61-374.26	100	Não
Jork <i>et al.</i> (2004)	Água+THF	[EMIM][BF ₄]	0.1, 0.3 e 0.5 (fracção molar)	337.15	101.3	Não
Jork <i>et al.</i> (2004)	Água+THF	[BMIM][BF ₄]	0.1, 0.3 e 0.5 (fracção molar)	337.15	101.3	Não
Jork <i>et al.</i> (2004)	Água+THF	[OMIM][BF ₄]	0.1, 0.3 e 0.5 (fracção molar)	337.15	101.3	Não
Jork <i>et al.</i> (2004)	Água+THF	[BMIM][CI]	0.1, 0.3 e 0.5 (fracção molar)	337.15	101.3	Não