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Abstract 
 
Non-linear P-delta behaviour of three-dimensional frames with irregular plant 
geometry is studied, using a parametric variation of geometry and stiffness formerly 
chosen, by comparing results obtained with author’s developed software and with 
established commercial software. Using the exact total stiffness formulation of non-
linear geometric analyses in the developed software, allows surveying its degree of 
precision in selected calibration examples, as compared to the exact analytical 
results as well as to commercial software results. A parametric study of the critical 
load factor of asymmetric three-dimensional frames, un-braced and braced, permits 
to characterize their carrying capacity with respect to overall structural stability. 
 
Keywords:  non-linear geometric structural analysis, stability of asymmetric three 
dimensional frames, bracing of structures. 
 
1  Introduction 
 

Due to the increasing number of commercial software used in design and research 
in structural areas, there is a need to survey their use to guarantee the correct 
usefulness of such software and identify the problem-types for which it is possible to 
use them with more adequateness. Although the programmers verify their 
performance with classic calibration examples, it became imperative to evaluate for 
a large variety of non-conventional problems the way of operation, the consumption 
of resources in solutions determination and still the rigorousness of the gotten 
results. The present work contemplates two objectives: first, a verification or 
calibration frame ascertains the precision of results obtained with commercial 
software as compared with those obtained by a developed computational model (that 
in the sequel will be used for the second and main objective of the article); second, a 
parametric study related with the determination of the critical load factor of three-
dimensional building structures, with asymmetries in plan. 
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Nowadays in the competitive software market dealing with structural design in 
civil engineering, much commercial software is available for different purposes with 
distinct approaches. The use of software Cype and Tricalc has been excluded in this 
study, since does not allow the calculation of critical parameters associated with 
buckling loads and instability modes. The use of the software Robot Millennium was 
discarded since it does not allow this type of analysis with great accuracy (when 
compared with the results here obtained by other equivalent software). Other more 
elaborated software used herein are SAP-2000 and ANSYS, which were the selected 
available software used together with the author’s developed software (INST3D) for 
the comparison of results of 3D frames stability analyses.  

The realistic examples of 2D and 3D frames used in these analyses were pre-
designed according to the regulations, namely RSA and EUROCODES 1 and 3, 
introducing the resistant characteristics as data in the diverse software namely Cype 
for concrete buildings pre-design, and Tricalc or Robot for metal buildings pre-
design. The analysed 3D structures are composed of commercial metallic profiles 
and present reticulated geometry, compelling to a study of second order geometric 
effects. To introduce stabilizing effects in the structures, bracing elements are 
positioned for each parametric study of the non-linear variation of the critical load 
parameter with the geometry and space disposal of the structural elements.  

Understanding the behaviour of each structural configuration of the braced 
structures, allows the choice of the best solution. To proceed with the parametric 
comparisons and characterization of the structures performance, use is made of a 
software of automatic calculation of the 2D or 3D frames carrying capacity 
(INST3D) already developed and presented by Cesar and Barros [1], based on the 
exact formulation of the structural stiffness matrix of bi-dimensional frame members 
in the displacement formulation of the incremental balance. The algorithm included 
in the software INST3D follows the methodology based on the formulation of the 
exact stiffness matrix with the stability functions proposed by Livesley and Chandler 
[2], and it allows getting the critical parameters for the diverse structural 
configurations studied as well as the respective instability modes. 

As a form to illustrate the results comparatively between the diverse studied 
cases, the variation of the critical load factor with different parameters was 
represented in a graph, for a specific asymmetric un-braced 3D frame. The 
comparative study of the same frame with a specific brace disposition was also 
carried out, permitting to verify and ascertain the increase of the corresponding 
carrying capacity. 
 
2 Matrix Formulation for the Determination of Critical 

Loads of 2D and 3D Frames 
 

The practical study of the instability of structures corresponds to the 
determination of the critical load parameter λ and the corresponding instability or 
buckling mode. This methodology contemplates the knowledge of the exact stiffness 
matrix of the structural members that relates the acting forces with the structural 
deformations.  
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As the study is also applied to three-dimensional frames, two formulations can be 
used for the determination of the global structural stiffness matrix: use of exact 2D 
stiffness matrix formulations for each plane frame orientation but associated in the 
space assemblage by the structural members linking such frames, or direct use of 
exact 3D stiffness matrix for each member. Obviously that for each approach there 
is the possibility of the alternative use of approximate formulations based on 
simplifications of the stability functions of the exact stiffness matrix, through the 
linearization of these functions, what makes necessary to address the degree of bar 
or member modelling (member sub-structuring) in order to prevent errors due to the 
simplification used. 

 
In the first approach, for the determination of the critical load a bi-dimensional 

exact stiffness matrix of a plane beam-column model is used for each prismatic bar 
of the plane frames ─ methodology in which is based the developed software 
(INST3D) ─ which is dependent on the stability functions s, c and sc originally 
developed by Livesley and Chandler [2] but that can easily be related also to the 
stability functions )4,3,2,1( =jjφ used by other authors namely Reis and Camotim 
[3], Barros [4,5]. The formulation used in the developed software (INST3D) is based 
on the following exact stiffness matrix of a beam-column (Bazant and Cedolin [6]):  
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where when ρ > 0 (compressed member) the stability functions are:  
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and when ρ < 0 (tensioned member) the stability functions are: 
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The m function introduced by Merchant [7] allows to represent the reduction of 

stiffness due to the relative transversal displacement between the ends of the beam-
column, as result of the inclination that occurs between the bar centroidal axis and 
the direction of the axial forces P.  

Appropriate assemblage of such member stiffness allows obtaining the global 
stiffness matrix in the developed software INST3D, from which the critical load is 
determined through an iterative process in the resolution of the incremental 
equilibrium equation. Such iterative determination of the critical parameter also 
involves the knowledge of the lower (for sidesway or displaceable joints portal 
frames) and upper (for un-sway, sidesway prevented or un-displaceable joints portal 
frames) load parameter bounds, between which the critical value is looked upon. In 
the analysis associated with INST3D, the laminar elements – floor slabs – of the 
portal frames are modelled as rigid diaphragms, a procedure which can also be 
modelled in the commercial software SAP 2000 by the use of diaphragm constraints 
(rigid links). 

The commercial software of computational programs are based on universally 
known algorithms, then more easy to use and to understand and less prone to errors, 
to solve structural civil engineering problems. In one of the possible approaches use 
is made of the total stiffness matrix (elastic and geometric) for which care as to be 
drawn towards the modelling or discretization of the structural members. In the case 
of software SAP 2000 and in accordance with the program manual [8], for the 
solution of structural stability eigenvalues and eigenvectors (determination of 
buckling loads and buckling modes), the software uses the following equation: 

 
[ ] 0=− ϕλ GE KK                                                      (4) 

 
where EK  corresponds to the elastic stiffness matrix, GK  to the geometric stiffness 
matrix (dependent on the load vector associated with some load combination), λ are 
the load parameters or load factors (eigenvalues) and φ are the buckling modes or 
instability modes (eigenvectors). This formulation corresponds to the linearization of 
the stability functions (either s, c, sc and m; or jφ  for j=1,2,3,4). A 3D-formulation 
already presented by Almeida, Caraslindas and Barros [9], is based on the geometric 
stiffness matrix (corresponding to the member axial force P) of equation (5). 

 
But with respect to a more precise second approach, diverse authors have 

developed three-dimensional exact stiffness matrices K  ─ like the one represented 
in equation (6) ─ namely Eock, Yosuk and Hyu [10].  
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In this case the stability functions, for axial compressive loads, are expressed by: 
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where  
zEI

P
=2α   and  

yEI
P

=2β . This matrix can also be linearized giving rise to 

a geometric stiffness matrix in the form of the previous equation (5). 
Due to its apparent difficulty such matrices are ignored in developing versatile 

commercial software capable of handling effectively structural instability, and have 
been used solely in research. In the future it is the authors’ intention to include them 
in the developed software, to improve the evaluation of critical parameters of 
structural instability and of the respective buckling modes. 
 
 
3  Exact Analysis versus Approximate Analysis 
 

Before presenting the determination of the critical load parameter of an 
asymmetric three-dimensional frame through software INST3D and SAP 2000, it 
becomes necessary to survey the accuracy of each one in reaching the final result. 
As a form to calibrate the mentioned software two 2D steel frames with modulus of 
elasticity of 200 GPa (one un-sway frame, the other sidesway frame) built-in at the 
base, as represented in Figure 1, were hand-calculated to obtain analytically their 
critical load parameter λcr . Reis and Camotim [3] present equations for the 
analytical calculation of the critical load parameter in this type of structures, with 
which for the sidesway prevented frame (or un-displaceable joints) λcr=10835,206 
and for the sidesway free frame (or displaceable joints) λcr=3010,538.  
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Figure 1: Calibration frames (left: sidesway prevented; right: sidesway free) 

 
 
 
Thereafter the corresponding structural data was introduced in the authors 

developed software INST3D as well as in SAP 2000 and ANSYS 8.0 [11], to 
compare the accuracy of the results as well as to ascertain the degree of 
discretization required in member sub-structuring in bars. One should notice that 
software INST3D uses an exact formulation of the (bi-dimensional) stiffness matrix 
in the non-linear eigenvalue problem of structural stability, SAP 2000 uses an 
approximate formulation for matrices EK  and GK  in the linear eigenvalue problem, 
and ANSYS uses an exact formulation of the elastic stiffness matrix of three-
dimensional prismatic bars (including flexural-twisting effects) as proposed by 
Przemieniecki [12] and the same geometric stiffness matrix as used in SAP 2000.  

The computational calculation of the critical parameter using INST3D (without 
any member sub-structuring) allowed to determine the critical load parameter for the 
sidesway prevented frame as λcr=10822,652 and for the sidesway free frame as 
λcr=3009,226. It was then verified that with the software INST3D the results 
practically coincide with the analytical results, validating the formulation used, since 
were obtained with relative errors of 0.001%. 

In these frames the 2D buckling in plan XZ was considered and the frames were 
prevented to buckle in the perpendicular direction YZ. The degrees of freedom Ux, 
Uz and Ry have been used, according to the notation of SAP 2000. Relatively to the 
commercial software used it was verified that the results obtained with SAP 2000 
present errors due to the approximate formulation used by the program. As a means 
to diminish the error, one increases the degree of discretization sub-structuring the 
structural members in bars, as presented in the results of Table 1. The errors by 
excess are related with insufficient degree of discretization of the member structural 
elements that compose the structure; for the case of the sidesway prevented frame, 
with an element per member, the committed error is very great which indicates that a 
special care needs to be taken to handle this type of analysis. The errors by defect 
are related to the significant digits used in the software by different PC’s as well as 
to the degree of precision used in the sectional properties of the structural members. 
A reference discretization of 4 elements per member is herein considered as 
‘correct’, since to it correspond acceptable relative errors for all practical purposes.  
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Sway frame Un-sway frame  
# SAP 

2000 ANSYS INST3D Relative Error
 S          A 

SAP 
2000 ANSYS INST3D Relative Error 

S           A 
1 3315 3034 3009 10.1% 0.8% 1043895 18224 10823 9545% 68% 
2 3115 3016 3009 3.5% 0.5% 12613 11090 10823 16.5% 2.4% 
3 3046 3010 3009 1.2% 0.0% 11677 10902 10823 7.9% 0.7% 
4 2996 3009 3009 -0.4% 0.0% 10988 10852 10823 1.5% 0.3% 
8 2946 3009 3009 -2.0% 0.0% 10258 10828 10823 -5.2% 0.0% 

16 2933 3009 3009 -2.5% 0.0% 10072 10826 10823 -6.9% 0.0% 
32 2930 3009 3009 -2.6% 0.0% 10026 10826 10823 -7.3% 0.0% 
64 2929 3009 3009 -2.6% 0.0% 10014 10826 10823 -7.4% 0.0% 
 

Table 1: Critical parameter and relative errors, by distinct software and modeling 

 
The results obtained with ANSYS 8.0 for these calibration frames are practically 

coincident with those obtained with INST3D, emphasizing a bigger precision and 
simplicity of structural modelling in relation to SAP 2000. 

 
4  Non-Symmetric 3D Frames (Un-braced and Braced) 
 

In this section results of a parametric study will be presented, related with non-
linear geometric analysis of 3D non-symmetric irregular frames, five stories in high. 
The irregular frames are space repetitions of a three-dimensional frame – symmetric 
base frame (Figure 2) – that allows comparing the results of the parametric study 
with diverse geometric characteristics of the structure. The geometric parameters 
allow optimizing the configuration of the structure, by determining structural 
solutions for modular designs (in elevation and plan) with better carrying capacity. 
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Figure 2: Un-braced 3D base frame, of four 2D local frames 

 
In the sway frames the lateral displacements can occur by column bending and in 

this case the use of diagonal bracing (or equivalent, like chevron bracing) becomes 
important to prevent the loss of stability due to change in geometry; the brace axial 
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stiffness absorb part of the forces that cause frame lateral displacement. 
Alternatively, at different costs, a compromise between the members inertias could 
also bound the frame horizontal displacements to pre-established requirements.  

The bars used in the diagonal bracing are modelled with null bending stiffness, 
and axial stiffness smaller than the one of the columns and beams; in the matrix 
formulation, this corresponds to the addition of the contribution of axial stiffness of 
the inclined bars solely in the floors with diagonal bracing.  

In the case of frames only partially braced in some floors, since it is not known if 
the frame is a displaceable joints sidesway-free frame or un-displaceable joints 
sidesway-prevented frame, it is necessary to make the two analyses determining the 
respective critical parameters λdis and λundis. This is achieved using the bi-
dimensional matrix of exact stiffness relating the acting forces with the resultant 
deformations and obtaining, through an incremental process, the critical parameter 
and the corresponding buckling mode (deformation just prior to the loss of stability).  

As previously presented by Cesar and Barros [1], the formulation used in 
program INST3D is applied to rectangular frames of constant section prismatic bars 
connected at rigid joints, with constant number of columns in each floor, columns 
along the same column-line built-in at the base, acted upon by vertical loads 
concentrated at the joints. In this work, and without any loss of generality, the 
results of the analysis of a five-storey asymmetric structure are presented: either 
without bracing elements or with a more efficient bracing distribution. 

The 3D frame with plant asymmetries (Figures 3 and 4) refers to a hypothetical 
residential steel building with equal nodal vertical loads λP at the top of the 
columns, pre-designed in accordance to the Portuguese regulations (RSA – 
Regulamento de Segurança e Acções) and Eurocodes 1 and 3 in order to obtain real 
design characteristics. The corresponding live loads are presented in Table 2. Since 
this parametric study of the structural global stability is related to the carrying 
capacity of the 3D frames, no effects of wind or earthquakes have been considered. 

 
 Live Load 
Floors 
Roof 

2.0 kN/m2 
1.0 kN/m2 

 

Table 2: Live load in buildings – RSA (Portugal) 
 
The floor slabs are considered as behaving like rigid diaphragms in their plan, 

and were pre-designed with a slab thickness of 0.15 m. Steel profiles of series HEA 
common in the design of these metallic structures where used for both the beams 
and the columns, to minimize diversities in the interpretation of results. The 
diagonal braces in the structural model possess an area of 11 cm2, lower than the one 
adopted for columns and beams, and correspond to metallic profiles of series UPN 
(UPN-80). The steel used has a modulus of elasticity of 210 GPa.  

Some geometric parameters of the (2D and) 3D frames have been realistically 
varied, namely the span between the columns (L) and the floor height (H). Parameter 
L varies between 3 m and 8 m, with increments of 1.0 m; while parameter H varies 
between 3 m and 4 m, with increments of 0.5 m. For each parametric case, the 
critical load factor was determined as well as the corresponding buckling mode. 
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Figure 3: Un-braced 3D frame (equal nodal vertical loads λP and perspective view) 
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Figure 4: Un-braced 3D frame (plan view) 

 
The study of three-dimensional frames involves the knowledge of the 

performance of the bi-dimensional frames that once associated constitute the 3D 
structure. To verify the performance and to control the error associated with the 3D 
modelling versus the model 2D, the 2D frames were studied for both the mobile and 
the fixed configurations:  displaceable joints sidesway-free frame or un-displaceable 
joints sidesway-prevented frame. The families of results of the critical load factor 
obtained by distinct software for the frames of Figures 3 and 4, for one of the 
parametric cases studied (L1=L2= 4.0 m and H=3.0 m; discretization of 4 bars per 
member), are shown in Table 3 with their relative errors.  
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Sidesway-free Sidesway-prevented  
Frame 

number 
SAP 
2000 INST3D Relative 

error 
SAP 
2000 INST3D Relative 

error 
1 535.67 540.63 -0.91% 1563.43 1496.04 4.50% 
2 568.10 608.75 -6.67% 1581.29 1533.12 3.14% 
3 402.19 409.47 -1.77% 1380.67 1318.77 4.69% 
4 782.68 830.75 -5.78% 2993.84 3206.13 -6.62% 
5 828.85 860.25 -3.65% 3056.78 3267.11 -6.43% 
6 713.02 761.39 -6.35% 3620.87 3859.97 -6.19% 
7 624.62 665.26 -6.10% 2798.57 2978.42 -6.03% 

 
Table 3:  Critical load factors (and relative errors) associated with 2D frames (part 

of the 3D asymmetric frame) 
 

The relative errors shown on the determination of the critical load factors are 
associated with the approximate formulation in SAP2000 (and to a smaller extent on 
the number of significant digits used for describing the properties of the sections).  

In Figure 5 the un-braced 3D frame, analysed by software SAP 2000 and 
INST3D, is presented with the deformation associated with the first buckling mode. 
It is clear that this un-braced asymmetric 3D frame loses stability by global 
deformation in a standard deformation pattern typical of a displaceable joints 
sidesway-free frame, corresponding to a critical load factor in the order of λcr = 409. 

 

 
Figure 5: Structural model and buckling mode of an un-braced asymmetric 3D frame 
 

The parametric representation of the variation of the critical load factor of this 
un-braced asymmetric 3D frame is shown in Figure 6, where it is noticeable the 
transition of behaviours from the stiffer frames to the more flexible frames.  

As a means to reduce the mobility of the structure, several bracing configurations 
were studied. The bracing elements used were metallic profiles of series UPN 
(UPN-80) with area of 11 cm2, modelled as bi-articulated members as mentioned 
before. 
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Figure 6:  Parametric results of the critical load factor obtained by INST3D and 

SAP2000, for the un-braced frame with equal nodal vertical loads λP 
 

In Figure 7 is represented the same asymmetric 3D frame considered before in 
this parametric study (L1=L2= 4.0 m and H=3.0 m; discretization of 4 bars per 
member), but now with a bracing distribution as specified (in bold lines) that 
conditions a loss of stability in frame number 3. The deformation pattern, for both 
the bi-dimensional frame (# 3) and the three-dimensional asymmetric structure, 
corresponds to an un-displaceable joints sidesway-prevented frame. The associated 
critical load factor of such 3D asymmetric frame is λcr = 1398.72 (analysis with SAP 
2000) and is λcr = 1347.62 (analysis with INST3D); therefore the former is 
determined with a relative error of 3.9 %. For this parametric case it was observed 
almost a three times bigger carrying capacity, revealing the great importance of an 
efficient bracing system of three-dimensional metallic structures. 

 

   
 
Figure 7:  Asymmetric braced 3D frame (SAP 2000): deformation of 1st buckling 

mode for equal nodal loads and plan view of the bracing distribution 
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For this bracing configuration the frame number 3 controls design, for both 
software used. Other configurations of selected four bracing planes were also 
analysed, leading to the same critical load factor when calculated with INST3D 
(without torsion-bending effects) and slightly different load factors (but of same 
order of magnitude) when calculated with SAP 2000.  

The parametric representation of the variation of the critical load factor of this 
braced asymmetric 3D frame is now shown in Figure 8, where it is also noticeable 
the transition of behaviours from the stiffer frames to the more flexible frames [13]. 
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Figure 8:  Parametric results of the critical load factor obtained by INST3D and 

SAP2000, for the braced frame with equal nodal vertical loads λP 
 

It was verified that results obtained with the authors INST3D software were 
always conservative since they estimate global carrying capacities (global critical 
load factors) of this asymmetric 3D frame about 3-4% lower than the SAP 2000 
results. Moreover both methodologies are close enough, justifying the use of the 
diaphragm constraint option to model rigid plane diaphragm in SAP 2000. 

 
Finally a parametric study was performed for a similarly braced asymmetric 3D 

frame, but now with a more realistic axial load distribution on top of each column 
taking into account the relative weight of the nodal vertical loads on the basis of 
load influence zone at every node (Figure 9). This is equivalent to use real design 
vertical loads of the residential building, along the corresponding column lines.  

As expected the critical load factor diminished (was practically halved) and the 
performance of the asymmetric 3D frame changed considerably: now it is the 2D 
frame with more nodal vertical loads – frame 2 – that controls overall stability of 
this 3D frame. The parametric representation of the variation of the critical load 
factor of this braced asymmetric 3D frame is now shown in Figure 10. The 
deformation pattern observed for the buckling mode corresponds to an un-
displaceable joints sidesway-prevented frame, indicating that the bracing elements 
distribution shown has a good performance under several load conditions.  
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Figure 9: Braced 3D frame (uneven nodal vertical loads λP and perspective view) 
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Figure 10:  Parametric results of the critical load factor obtained by INST3D and 

SAP2000, for the braced frame with uneven nodal vertical loads λP 
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Figure 11:  Asymmetric braced 3D frame (SAP 2000): deformation of 1st buckling 

mode for uneven nodal loads and plan view of the bracing distribution 
 
5  Conclusions 
 

Some exact and approximated methodologies for the study of the stability of two 
and three-dimensional frames have been detailed and used extensively. For a given 
calibration frame, the accuracy of developed and available software was ascertained. 
A parametric study of the load carrying capacity of a certain asymmetric 3D frame 
was successfully conducted, which also permitted to ascertain the two 
methodologies used. The critical load factors of these 3D frames were calculated, for 
both un-braced and braced configurations. It was concluded that the positioning of 
the braces could change considerably the structural behaviour and the carrying 
capacity of the 3D asymmetric frames with respect to the buckling load. The rational 
use of the bracing elements controls structural performance of distinct structural 
designs.  
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