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Abstract 
 
Non-linear P-delta behaviour of three-dimensional frames with plan and elevation 
asymmetries is studied, using a parametric variation of geometry in plan and a 
stiffness variation along the height. Some behavioural aspects of a calibration frame 
have been addressed to ascertain the importance of the nodal rigidity, modelled with 
laminar elements of the type shell with implicit formulation of thick plate or 
modelled with elastic stiff springs, in the study and modelling of the geometric non-
linearity and stability of such calibration frame. Eurocode 3 criteria for second order 
analyses is briefly addressed in connection with the 2D frame classification with 
respect to sway behaviour; however for 3D structures the calculated carrying 
capacity is independent of this classification. So a parametric study of the critical 
load factor of asymmetric three-dimensional frames, un-braced and braced, permits 
to characterize their carrying capacity with respect to overall structural stability. 
 
keywords: non-linear geometric structural analysis, stability of asymmetric 3D 
frames, bracing of structures, modelling of connections. 
 
1 Introduction 
 
Tall three-dimensional irregular or asymmetric steel frames often have their design 
controlled by structural stability requirements [1].  

This study departs from previous works of the authors (Cesar and Barros [2], 
Barros and Cesar [3]) that used a calibration frame for assessing the validity and 
accuracy of some available commercial software (namely ANSYS [4], LUSAS [5] 
and SAP 2000 [6]) as well as of the authors developed software INST3D (Barros 
and Cesar [7]) in determining the critical load factor of side-sway prevented and 
side-sway free frames; thereafter INST3D, ANSYS and SAP were used concurrently 
in characterizing the non-linear carrying capacity of 3D metallic frames (braced and 
unbraced) with plan asymmetries.  
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The present work starts by addressing two modelling aspects of the nodal 
connections between adjacent members (beams and columns) of the structural steel 
framework. The behaviour of a calibration frame is ascertained for the nodes 
modelled (in a macro-zone) using shell elements in different configurations, as well 
as for the nodes modelled as (point) elastic springs with increasing stiffness. 
Coherence of both formulations was found, as the node stiffness increases. The 
importance of the two modelling cases, bounding non-linear carrying capacity of the 
calibration frame, is assessed. Thereafter, the main emphasis of this work is on 
parametric studies of the non-linear geometric behaviour and carrying capacity of 
3D asymmetric steel frames, with plan and elevation asymmetries. 

 

Before addressing some modelling aspects of the nodal connections between 
adjacent members of the structural steel framework, the numerical results of a 
calibration frame represented in Figure 1 – analytically solved by Reis and Camotim 
[8] and computationally solved by Cesar and Barros [2] Barros and Cesar [3] using 
INST3D (with exact total stiffness formulation) – are presented in graph form 
(Figure 2). Such graphs enhance the path of the convergence process of the critical 
buckling load evaluated with three distinct software (ANSYS, LUSAS, SAP), for 
sidesway prevented frame (or un-displaceable joints) and for sidesway free frame (or 
displaceable joints), under successively refined finite element discretization of the 
structural members.  
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Figure 1: Calibration frames (left: sidesway prevented; right: sidesway free) 

 

  
Figure 2: Critical buckling load of the calibration frame (left: sidesway prevented; 

right: sidesway free) vs discretization number of finite elements per member 
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ANSYS software gave the best results, with a relative error less than 1% for a 3 
element discretization per member. LUSAS gave the same results for 4-8 element 
discretization; for same discretization, SAP 2000 underestimated results within 7%. 

  
2 Some Behavioural Aspects of the Calibration Frame 
 
2.1 Modelling of Nodes with Shell Elements 
 
Structural modelling plays an important role in this type of analysis, particularly in 
cases of local phenomena of strength and stability or to model rigidity of the linking 
zones at the connection nodes. In this last case, it is sometimes necessary to appeal 
to three-dimensional modelling to obtain a more realistic knowledge of the 
functioning of the linking.  

To analyze the importance of the nodal rigidity form in the study of the geometric 
non-linearity and stability of the calibration frames, the members of the frames 
shown in Figure 1 were modelled by Cesar [9] with laminar elements of the type 
SHELL with implicit formulation of thick plate, using the commercial software SAP 
2000. The geometry of the shell elements to be used in the FEM is defined in 
function of the thickness of the web and flanges of the metallic member profile HE 
200B. Figure 3 represents the discretization model of the shell finite elements for the 
sections of the commercial profile, used as members of the calibration frame.  
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Figure 3: Profile HE 200B and equivalent SHELL finite element  

The discretization of the shell elements was chosen after having done several 
subdivisions of these elements, in order to get convergent results. The reference 
calibration frames were subdivided in 478 elements and was used a relative error 
tolerance of 10-7 for determining the critical load parameter. The plane steel frames 
with the geometric characteristics (L=5.0 m; H=7.5 m) shown in Figure 1, and 
elasticity modulus E=200 GPa, have been studied in their plan without possibility of 
loss of stability in the perpendicular direction.  

In the modelling, the shell elements of the column present continuity in the union 
with the shell elements of the beam. In reality it is possible to materialize this type 
of linking in metallic structures through the use of parts joined by welding. To 
guarantee the continuity it is common to introduce reinforcement elements at the 
linking through added metallic plates, also simulated with SHELL elements of SAP. 
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Modifying the characteristics of the linking at the union of beam to column, one 
proves that the rigidity of these zones influences the performance of the structure. 

(i)   Sidesway prevented (or un-displaceable joints) calibration frame  
The modelling of rigid nodes through added metallic reinforcement elements 

leads to lower buckling loads than assuming full continuity at the node section. This 
fact is due to the introduction of the form of the element in the modelling, 
diminishing the resistant capacity of the element due to loss of geometry of the 
section. Figure 4 shows five types of successively stiffer connections modelled with 
laminar shell elements, and for each type the first six buckling load parameters were 
determined with SAP 2000. The results of the analysis with elements of the type 
SHELL lead to lower values of the buckling load parameters λ, namely of the first or 
critical value λcr, what could be expected in view of the possibility of alteration of 
the space geometry of the sections of the beam and of the column.   

 

 
Mode   λ   λ   λ  

1  7946.59  8047.36 8058.21 
2  9282.36  9593.41 9748.85 
3  19047.56  19141.58 19153.96 
4  19653.74  19943.41 19967.20 
5  30795.48  31180.44 31219.75 
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Mode   λ   λ   λ  
1  8041.06  8050.26 10100.39 
2  9730.95  9798.92 11916.93 
3  19138.98  19149.08 24314.71 
4 19946.78  19962.90 25326.71 
5  31187.06  31218.64 43600.08 
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Figure 4: Buckling load parameters (up to 6th mode) for sidesway prevented frame  
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The relative error of 20% for the critical buckling load (in configuration type 5), 
relatively to the continuous model of members with bar elements, indicates that 
some care must be taken in the determination of the critical load parameter when 
nodal continuity is based upon added metallic reinforcement plates.  

 
(ii)   Sidesway free (or displaceable joints) calibration frame  
The same study was elaborated for the sidesway free calibration frame, with the 

five configurations of plate reinforcements as used in the sidesway prevented frame.  
  

 
Mode   λ   λ   λ 

1  2210,68  2319,23 2418,13 
2  7972,09  8054,05 8065,36 
3  9453,24  9696,91 9831,69 
4 19090,35  19158,53 19173,37 
5  20764,73  21082,47 21136,67 
6  

Type 1  

30870,77  
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31192,37 
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31229,38 
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Mode   λ   λ   λ  

1  2413,27  2451,24 2931,62 
2  8062,42  8068,92 10100,40 
3  9823,47  9877,42 12040,63 
4 19170,46  19177,82 24315,10 
5  21130,84  21154,03 26951,02 
6  

Type 4  

31209,60  

Type 5  

31235,63 

Continuous 
model for 

members with 
bar elements 

43600,72 

 Figure 5: Buckling load parameters (up to 6th mode) for sidesway free frame 

In Figure 5 the five nodal rigidity configurations studied are presented, with each 
of the results obtained for the first six buckling load parameters. The relative error of 
16% for the critical buckling load (in the stiffer configuration type 5), relatively to 
the continuous model of members with bar elements, coherently confirms the 
importance of modelling nodal continuity especially in simplified models.  
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When the nodal rigidity is increased in both cases of sidesway prevented and 
sidesway free frames, the results obtained for the calibration frames with elements of 
area of the type SHELL (thick plate) tend for the results of the analysis associated 
with a continuous model in which the structural members are subdivided (using 
ANSYS, LUSAS or SAP 2000) in bar elements; so, ultimately tend for the results of 
the analysis with an exact total stiffness matrix formulation (as used in INST3D) as 
emphasized by Cesar and Barros [10].   
 
2.2 Modelling of Nodes with Stiff Elastic Springs 

 
In the previous case, the nodal rigidity configuration was introduced at the 
connection of beam to column. A simplified model can be used with three types of 
boundary conditions in the link between beam and column bars: full continuity, 
pinned and (point) elastic rotation springs. The link with springs corresponds to an 
intermediate situation where the connection presents a partial rigidity, with rotation 
capacity and moment transmission dependent on the stiffness of the spring.  

The application of this model, that also approaches reality, requires the 
calibration or selection of the spring stiffness that better simulates the connection. 
Figure 6 presents the calibration frames with the addition of rotation springs to 
simulate the elastic flexible behaviour of the beam to column connections.   
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Figure 6: Calibration frames with elastic springs at the beam to column 

connections (left: sidesway prevented; right: sidesway free) 
 

These frames have been modelled in SAP 2000 by Cesar [9], considering as valid 
standard a reference discretization of 4 elements per member. The spring stiffness k 
varied from 0.0, corresponding to a pinned connection, until a stiff value of 1010 to 
which is associated the same results as for a full continuous connection.  

 
(i)   Sidesway prevented (or un-displaceable joints) calibration frame  
The computational importance of the number of elements discretization per 

member, in the evaluation of the buckling loads, is shown in Table 1. Such results 
have already been synthesized in Figure 2.  

In Table 1 are emphasized the results for the subdivision of the members in 4 
elements, to which should correspond a determination of the critical buckling load 
with a relative error inferior to 3% in relation to the exact value (λcr).  
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  Discretization number of elements per member 
Mode 1  2   3  4   8   16   32   

1  18347.35 10408.73  10184.58 10100.39 10032.21 10017.78  10014.35 
2  27455.56 12192.52  12036.15 11916.93 11815.15 11793.13  11787.88 
3  933285.30 35459.41  25022.30 24314.71 23446.21 23250.05  23202.96 
4 ---  39321.50  25805.53 25326.71 24435.60 24224.52  24173.52 
5  ---  104942.05  64077.00 43600.08 40801.41 39836.47  39602.25 
6  ---  120871.95  68928,41 44521.87 42188.33 41172.63  40923.70 

 
Table 1: Buckling loads evaluated for distinct discretization of elements per member 

 
In Table 2 and Figure 7 the values of the first six buckling loads are presented in 

tabular and graphical forms, in function of the model spring stiffness used.  
 

 Stiffness k of the elastic spring (kN.m/rad)  
Mode  k = 0.0 k = 1.0   k = 102  k = 104  k = 106  k = 1010  k = ∞  

1  8631.41 8631.98  8686.61 9800,51 10096.64 10100.39  10100.39 
2  8638.65 8639.21  8693.79 10730,13 11898.71 11916.93  11916.93 
3  23692.98 23693.19  23713.43 24177,16 24312.95 24314.71  24314.71 
4 23713.70 23713.91  23734.34 24628,24 25314.72 25326.71  25326.71 
5  43005.57 43005.77  43025.24 43472,66 43598.46 43600.08  43600.08 
6  43051.88 43052.08  43071.28 43887,84 44510.98 44521.87  44521.87 
 

Table 2:  Dependence of buckling loads of the sidesway prevented frame on spring 
stiffness of the connections (subdivisions of 4 elements per member) 

 
Figure 7: Buckling loads of sidesway prevented frame vs spring stiffness of 

the beam to column connections 
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For lower spring stiffness the graph emphasizes a non-linear initial behaviour of 
the frame carrying capacity for distinct buckling modes as stiffness increases, 
nevertheless approaching an almost constant value of the buckling loads for higher 
spring stiffness. The gain in carrying capacity for the critical mode of this un-
displaceable joints frame as stiffness increases is smaller than 15%; indirectly this 
may be considered as an upper bound on the gain in carrying capacity for this 
sidesway prevented frame, if semi-rigid connections would have been modelled for 
the links between the beam and the columns (Cesar and Barros [10]). 

(ii)   Sidesway free (or displaceable joints) calibration frame 
The computational importance of the number of elements discretization per 

member, in the evaluation of the buckling loads of the sidesway free frame, was 
synthesized in Figure 2. In Table 3 and Figure 8 the first six buckling loads are 
given in tabular and graphical forms, in function of the model spring stiffness used.  

 
 Stiffness k of the elastic spring (kN.m/rad)  
Mode  k = 0.0  k = 1.0   k = 102  k = 104  k = 106  k = 1010  k = ∞  

1  1115,43 1115,83  1154,02 2376,82 2923,86 2931,62  2931,62 
2  8635,04 8635,61  8689,63 9800,52 10096,65 10100,40  10100,40 
3  9516,55 9516,90  9551,41 11024,66 12024,31 12040,63  12040,63 
4 23703,45 23703,66  23723,78 24177,71 24313,33 24315,10  24315,10 
5  24617,62 24617,91  24646,44 25929,22 26933,32 26951,02  26951,02 
6  43029,17 43029,37  43048,49 43473,88 43599,10 43600,72  43600,72 

 
Table 3:  Dependence of buckling loads of the sidesway free frame on spring 

stiffness of the connections (subdivisions of 4 elements per member) 

 
Figure 8: Buckling loads of sidesway free frame vs spring stiffness of the 

beam to column connections 
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The gain in carrying capacity for the critical mode of this displaceable joints 
frame as spring stiffness increases from 104 to 1010 is smaller than 20%; indirectly 
this may be considered as an upper bound on the gain in carrying capacity for this 
sidesway free frame, if semi-rigid connections would have been modelled for the 
links between the beam and the columns (Cesar and Barros [10]). 
 
3 Eurocode 3 criteria for 2nd order analyses 

 
To complete this section a design code remark (from Eurocode 3 - EC3 [11] [12]) 
must be made, to ensure that in this study is guaranteed the structure serviceability. 
In this design code a 2nd order analyses is not necessary when the structure is braced 
in such a way that the lateral displacement is reduced in 80% relatively to the 
unbraced configuration (Figure 9) and also when the structural system can be 
classified as an un-sway frame, which is the same as αcrit ≥ 10 (Figure 10). 

δ δas

 
Figure 9: Eurocode 3 braced frame classification criteria 
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Figure 10: Eurocode 3 un-sway classification criteria 

 
These criteria were used in this work to ensure the efficiency of the bracing 

system selected. When the structure is classified as a sway frame, EC3 allows 
performing a simplified 2nd order analysis like the moment magnification method 
(only for Vsd/Vcr≤0.25).  

,

10Ed cr
crit

H Ed Ed Sd

H Vh
V V

α
δ

   
= ⋅ = ≥       

0.2a sδ δ≤ ⋅



10 

The usage of these methods for the design practice of 2D frames is a huge 
limitation when the designer needs to analyse asymmetric 3D rectangular structures 
or 3D structures with unusual complex geometry. For these, the best technique is to 
do a 2nd order 3D analysis and calculate the carrying capacity in the true deformed 
configuration, neglecting the sway classification.  

According to the EC3, the structural serviceability can be verified limiting the 
inter-story drift by the allowed code drift (usually limited to H/300, in which H is 
the inter-story height). So the validity of the classification criteria used in EC3 can 
be ascertained through this study, however the structure calculated carrying capacity 
(using authors INST3D, ANSYS or SAP 2000) is independent of this classification.  

 
4 Parametric Study on the Carrying Capacity of 3D 

Frames with Plan and Elevation Asymmetries 
 
After software calibration some parametric studies have been elaborated on the 
carrying capacity of geometrically non-linear 3D steel frames. One of the analyzed 
structures is a 5-floor 3D reference frame with plan asymmetry, braced and 
unbraced, whose initial results were previously presented by Barros and Cesar [3].  

In Figure 11 the perspective view of the asymmetric building is shown with the 
indication of the numbering of the 2D frames that compose the represented 3D 
structure. This figure also gives the column profiles of HE series, allocated to each 
floor of the modelled 2D frames.  
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Perspective  Characteristics of the HE column series used  

 Figure 11: Perspective view of the 3D reference frame with plant asymmetry 

 
The parametric analysis on the values of the critical load parameter is based upon 

the variation of the length of the beam members (frame spans L1 and L2) between 
the columns and on the definition of the space geometry of the structure (frame 
inter-story height H and number of floors with slab L3).  
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4.1  Critical loads evolution vs changes of frame spans and inter-
story height 

 
Two load situations on the columns had been considered earlier (Figure 12): Case 1 
– Even equal unit loads; Case 2 – Uneven loads proportional to the area of influence 
of the columns.  

 
Figure 12: Load cases on the columns: Case 1 – even ; Case 2 – uneven  

 
The 3D structure was analysed with unbraced and braced configurations, the 

latter using pinned diagonals with null flexural stiffness and with an area of 11cm2 
corresponding to the metallic profiles of series UPN (UPN-80), smaller than the 
adopted for the beams and columns. The localization of the diagonal braces was 
studied in order to maximize the bracing effect for the 3D asymmetric frame. 

Some results of the critical buckling loads for the 3D frame in Figure 11 (with 
L1= L2=L) published earlier by Barros and César [3] are herein quickly reviewed in 
Figures 13 to 15, just for comparison with the ones that will follow in the next 
paragraph of the article. 

 
(a) Unbraced 3D frame 
 
 

200

250

300

350

400

450

500

550

600

3 4 5 6 7 8 9
L (m) 

λ
 −

 C
rit

ic
al

 L
oa

d 
Fa

ct
or

INST3D - H=3.00
INST3D - H=3.50
INST3D - H=4.00
SAP2K - H=3.00
SAP2K - H=3.50
SAP2K - H=4.00

 
 
Figure 13: Parametric results of critical load factors obtained by INST3D and SAP 

2000, for the un-braced frame with equal nodal vertical loads λP 
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(b) Braced 3D frame (Case 1: Even equal unit loads) 
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Figure 14: Parametric results of critical load factors obtained by INST3D and SAP 

2000, for the braced frame with even equal nodal vertical loads λP 
 
 

(c) Braced 3D frame (Case 2: Uneven loads proportional to the influence area) 
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Figure 15:  Parametric results of critical load factors obtained by INST3D and SAP 

2000, for the braced frame with uneven nodal vertical loads λP, 2λP, 3λP 
 
It was verified that results obtained with the authors INST3D software were 

always conservative since they estimate non-linear global carrying capacities (global 
critical load factors) of this braced asymmetric 3D reference frame with values 
lower than the SAP 2000 results (3-4% lower for H=3 m; much less in the other 
cases). Moreover both methodologies are close enough, justifying the use of the 
diaphragm constraint option to model rigid plane diaphragm in SAP 2000. 
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4.2 Critical loads evolution associated to elevation asymmetries 
 

In this paragraph are determined the critical buckling loads of the 3D frame initially 
represented in Figure 11, but now associated with an additional variation – the 
elevation asymmetry – due to the inclusion of the rigid diaphragm slab L3 solely in 
a certain number of floors. For load case 2, the parametric study also includes 
varying the span between columns (L) and the inter-story height (H). The six 
parametric cases of elevation asymmetry represented in Figure 16 were considered 
by Cesar [9] Cesar and Barros [10], in unbraced and braced configurations.  

 

Figure 16: Six parametric cases using slab L3, to ascertain Elevation Asymmetry  

Some significant results have been graphically synthesized in Figures 17 to 19, 
comparing the evolution of critical buckling loads of the six elevation asymmetry 
cases, unbraced and braced, for three inter-story heights and six frame spans.  

The elevation asymmetry plays a very important role in the parametric study, 
since the number of floors with the rigid diaphragm slab L3 significantly changes 
the non-linear geometric carrying capacity of the 3D reference frame.  

For unbraced configurations, it is verified that the value of the critical buckling 
load increases with the number of floors of slab L3 until reaching a maximum value 
for 2 slab floors; for 3 slab floors the carrying capacity is practically of the same 
value, but when more than 3 slab floors are used a loss of the carrying capacity is 
observed.  
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For braced configurations, a continuous increase of the critical buckling load with 
the number of floors of slab L3 is distinctively observed: the carrying capacity 
practically doubles, for the range of parametric studies analysed.  

 

 
Figure 17: Slab L3 - parametric variation with # floors and span (H=3.0 m)  

 

 
Figure 18: Slab L3 - parametric variation with # floors and span (H=3.5 m)  
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Figure 19: Slab L3 - parametric variation with # floors and span (H=4.0 m)  

 
 
 

For the unbraced 3D reference frame, the loss of stability occurs for a 
deformation pattern in the direction of smaller inertia, with translation and rotation 
of the rigid slab diaphragms as a displaceable joints frame. The use of the rigid slabs 
L3 induces a stabilizing stiffening effect up to 2 floors by increasing the rigidity in 
the direction of the smaller inertia of the columns, therefore insuring an initial slight 
increase of carrying capacity; however as the rigid slabs L3 are further used in 
elevation, the 3D tall building character of a displaceable joints frame comes upon 
and the carrying capacity is controlled by the sidesway free configuration of the 
unbraced 3D reference frame.  
 The placing of bracings controls significantly the overall global structural 
behaviour. For the efficiently braced 3D reference frame, the stabilizing stiffening 
effect of the rigid slabs L3 insures a continuous increase of carrying capacity; this 
stiffening effect is more effective in lower stories. 
 
 Coherence of results was also found for other equivalent representations of the 
evolution of the critical buckling load factors of the parametric study done for the 
given reference frame; a parametric study for the same frame, on the carrying 
capacity and non-linear geometric behaviour, associated with the elevation 
asymmetry in the two slabs L2 and L3 was also successfully achieved by Cesar [9]. 
Moreover for a distinct asymmetric 10-story 3D frame (with a T-plan layout) similar 
results, evolution of buckling loads and conclusions where also coherently observed.   
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5 Conclusions  
 

The accuracy of the developed software INST3D was further surveyed, validating its 
use to predict critical buckling loads of 3D rectangular frames, unbraced and braced. 
Relatively to some available commercial software used in the evaluation of the 
critical load parameter, it was verified that ANSYS, LUSAS and SAP 2000 give 
results in this order of lesser accuracy; the numerical errors (due to the intrinsic 
formulations used in each of these programs) can be decreased by increasing the 
degree of discretization of the frame members in bar elements.   

The modelling of the nodes in a macro-zone, using laminar shell finite elements, 
revealed to be very effective in understanding the stiffening effect of added metallic 
plates in the connection zone between structural members, and provided accurate 
coherent buckling loads of a calibration frame. Also the use of elastic spring models 
at the connections of beam to columns, with spring constant values ranging from 
intermediate to very stiff springs, provided coherent solutions for the buckling loads 
of a calibration frame. Also if semi-rigid connections would have been modelled for 
the links between the beam and the columns of the calibration frame, an upper 
bound for the gain in carrying capacity for sidesway prevented and sidesway free 
frames is around 15%-20%.  

The rational use of the bracing elements controls structural performance of 
distinct structural designs. For the braced asymmetric 3D reference frame, the results 
obtained with the authors INST3D software with exact total stiffness formulation 
were always conservative as compared with SAP 2000 results. But both 
methodologies are close enough, justifying the use of the diaphragm constraint 
option to model rigid plane diaphragm slabs in SAP 2000. The behaviour of the 
reference 3D frame must be commanded by the 2D frame that presents greater 
carrying capacity. In this in case, the frame presents a behaviour of the type of un-
displaceable joints sidesway prevented structure.   

For the elevation asymmetry case, increasing the number of rigid slabs may not 
necessarily imply an increase of the carrying capacity of the structure, if the 3D 
asymmetric structure is of the type of displaceable joints sidesway free. Such 
increase in carrying capacity can only be verified for un-displaceable joints sidesway 
prevented structures. 

If the 3D asymmetric tall structure has elevated zones, the configuration of these 
substructures may condition the global carrying capacity. The carrying capacity of 
these elevated zones is crucial for the overall performance of the structure, 
especially if it is of the unbraced displaceable joints sidesway free type. The 
configuration that insures a better geometric non-linear behaviour and carrying 
capacity usually emphasizes a pyramidal elevation layout.  
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