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Resumo
Este trabalho estuda métodos baseados em regiões para a segmentação de imagens e desequên
ias de vídeo. Apresentam-se metodologias pre
isas para a segmentação de im-agem e demonstra-se 
omo é que podem ser integradas em algoritmos para a resoluçãode alguns dos problemas asso
iados à segmentação do movimento. A representaçãobaseada em regiões ofere
e uma forma de realizar um primeiro nível de abstra
ção e dereduzir o número de elementos a pro
essar relativamente à representação 
lássi
a pixela pixel.A segmentação do movimento é uma té
ni
a fundamental para a análise e 
om-preensão de sequên
ias de imagens reais. A segmentação do movimento "des
reve" asequên
ia através de um 
onjunto de regiões 
ompostas por pontos que apresentamum movimento 
oerente entre si. Esta des
rição é essen
ial para a identi�
ação dosobje
tos presentes na 
ena de modo a permitir uma manipulação e�
az de sequên
iasde vídeo.Nesta tese é apresentada uma té
ni
a híbrida baseada na 
ombinação de informaçãoespa
ial e de informação do movimento para a segmentação dos obje
tos presentes numasequên
ia de imagens de a
ordo 
om o seu movimento. O problema é formulado 
omoum 
aso de partição de um grafo onde 
ada nó 
orresponde a uma pequena região
omposta por pontos que apresentam o mesmo movimento. Esta é uma representação�exível de alto-nível que individualiza os obje
tos 
om movimento próprio. Partindode uma sobre-segmentação da imagem, os obje
tos são formados pelo agrupamento deregiões vizinhas 
om base na sua similaridade espa
ial e temporal, tendo em atençãoa informação espa
ial e de movimento, 
om ênfase na segunda. A segmentação �nal éobtida re
orrendo a um método espe
tral para partição de grafos.A fase ini
ial para a segmentação de obje
tos de a
ordo 
om o seu movimento visa aredução do ruído da imagem sem destruir a estrutura topológi
a dos obje
tos, atravési



de um �ltro anisotrópi
o bilateral. Uma partição ini
ial em pequenas regiões uniformesé obtida através da transformada de watershed. O ve
tor de movimento asso
iado a
ada região é determinado por um algoritmo varia
ional de 
ál
ulo de �uxo ópti
o.De seguida, é 
onstruído um grafo de regiões dinâmi
as pela 
ombinação normalizadade medidas de similaridade entre regiões onde são 
onsiderados, a intensidade médiade 
ada região, a amplitude do gradiente entre regiões e a informação do movimentoasso
iado à região. A medida de similaridade de movimento entre regiões é baseadono sistema de visão humano. Finalmente, é apli
ado um método espe
tral para obtera partição do grafo e 
onsequente identi�
ação de 
ada região de a
ordo 
om o seumovimento.O método de segmentação do movimento é baseado num de segmentação de ima-gens estáti
as também 
on
ebido e desenvolvido pelo autor da dissertação. Trata-setambém de uma metodologia baseada na utilização de pequenas regiões que assentana 
onstrução de um grafo de similaridades entre regiões tendo por base a informaçãoda intensidade e da amplitude do gradiente entre regiões. Esta té
ni
a produz segmen-tações mais simples e mais 
ompa
tas e 
omparativamente vantajosa relativamente aoutras té
ni
as. De modo a avaliar os resultados da segmentação é proposta uma novamétri
a que tem em atenção o modo 
omo os humanos visualizam os resultados.A 
ombinação de informação estáti
a e do movimento numa té
ni
a baseada emregiões permite obter resultados de segmentação visualmente signi�
ativos. São apre-sentados resultados experimentais do desempenho da té
ni
a proposta tanto para asegmentação do movimento em sequên
ias de imagens, 
om e sem movimento da 
â-mara, bem 
omo para a segmentação de imagens estáti
as, sendo, neste 
aso, efe
tuadauma 
omparação 
om os resultados obtidos por outras té
ni
as.
Palavras 
have: Segmentação de imagem, estimativa do movimento, segmentaçãodo movimento, avaliação da segmentação, transformada de watershed.
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Abstra
t
This work dis
usses region-based representations for image and video sequen
e seg-mentation. It presents e�e
tive image segmentation te
hniques and demonstrates howthese te
hniques may be integrated into algorithms that solve some of the motion seg-mentation problems. The region-based representation o�ers a way to perform a �rstlevel of abstra
tion and to redu
e the number of elements to pro
ess with respe
t tothe 
lassi
al pixel-based representation.Motion segmentation is a fundamental te
hnique for the analysis and the under-standing of image sequen
es of real s
enes. Motion segmentation 'des
ribes' the se-quen
e as sets of pixels moving 
oherently a
ross one sequen
e with asso
iated motions.This des
ription is essential to the identi�
ation of the obje
ts in the s
ene and to amore e�
ient manipulation of video sequen
es.This thesis presents a hybrid framework based on the 
ombination of spatial andmotion information for the segmentation of moving obje
ts in image sequen
es a

ord-ingly with their motion. We formulate the problem as graph labelling over a regionmoving graph where nodes 
orrespond 
oherently to moving atomi
 regions. This isa �exible high-level representation whi
h individualizes moving independent obje
ts.Starting from an over-segmentation of the image, the obje
ts are formed by mergingneighbouring regions together based on their mutual spatial and temporal similarity,taking spatial and motion information into a

ount with the emphasis being on these
ond. Final segmentation is obtained by a spe
tral-based graph 
uts approa
h.The initial phase for the moving obje
t segmentation aims to redu
e image noisewithout destroying the topologi
al stru
ture of the obje
ts by anisotropi
 bilateral�ltering. An initial spatial partition into a set of homogeneous regions is obtained bythe watershed transform. Motion ve
tor of ea
h region is estimated by a variationalapproa
h. Next a region moving graph is 
onstru
ted by a 
ombination of normalizediii



similarity between regions where mean intensity of the regions, gradient magnitudebetween regions, and motion information of the regions are 
onsidered. The motionsimilaritymeasure among regions is based on human per
eptual 
hara
teristi
s. Finally,a spe
tral-based graph 
ut approa
h 
lusters and labels ea
h moving region.The motion segmentation approa
h is based on a stati
 image segmentation methodproposed by the author of this dissertation. The main idea is to use atomi
 regionsto guide a segmentation using the intensity and the gradient information through asimilarity graph-based approa
h. This method produ
es simpler segmentations, lessover-segmented and 
ompares favourably with the state-of-the-art methods. To eval-uate the segmentation results a new evaluation metri
 is proposed, whi
h takes intoattention the way humans per
eive visual information.By in
orporating spatial and motion information simultaneously in a region-basedframework, we 
an visually obtain meaningful segmentation results. Experimentalresults of the proposed te
hnique performan
e are given for di�erent image sequen
eswith or without 
amera motion and for still images. In the last 
ase a 
omparison withthe state-of-the-art approa
hes is made.
Keywords: image segmentation, motion estimation, motion segmentation, seg-mentation evaluation, watershed transform.
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Résumé
Ce travail étudie des méthodes basées sur des régions pour la segmentation d'images etde séquen
es de vidéo. On présente des méthodologies pré
ises pour la segmentationd'image et on démontre 
omment elles peuvent être intégrées dans des algorithmespour la résolution de 
ertains problèmes asso
iés à la segmentation du mouvement.La représentation basée sur des régions o�re une forme de réaliser un premier niveaud'abstra
tion et de réduire le nombre d'éléments à traiter en 
omparaison ave
 lareprésentation 
lassique pixel par pixel.La segmentation du mouvement est une te
hnique fondamentale pour l'analyse et la
ompréhension de séquen
es d'images réelles. La segmentation du mouvement "dé
rit"la séquen
e à travers d'un ensemble de régions 
omposées de points qui présentent unmouvement 
ohérent entre eux. Cette des
ription est essentielle pour l'identi�
ation desobjets présents dans la s
ène a�n de permettre une manipulation e�
a
e de séquen
esde vidéo.Dans 
ette thèse on présente une te
hnique hybride basée sur la 
ombinaison d'infor-mations spatiales et du mouvement pour la segmentation des objets présents dansune séquen
e d'images 
onformément à son mouvement. Le problème est formulé
omme un 
as de partition d'un graphe où 
haque n÷ud 
orrespond à une petiterégion 
omposée par des points qui présentent le même mouvement. Celle-
i est unereprésentation �exible de haut niveau qui individualise les objets ave
 mouvementpropre. En partant d'une sur-segmentation de l'image, les objets sont formés par leregroupement de régions voisines basé sur leurs similitude spatiale et temporel, tenanten 
ompte les informations spatiales et surtout du mouvement. La segmentation �naleest obtenue en faisant appel à une méthode spe
trale pour partition de graphes.La phase initiale pour la segmentation d'objets 
onformément à son mouvementvise la rédu
tion du bruit de l'image sans détruire la stru
ture topologique des objets,v



à travers un �ltre anisotrope bilatéral. Une séparation initiale de petites régions uni-formes est obtenue à travers la transformée de watershed. Le ve
teur de mouvementasso
ié à 
haque région est déterminé par un algorithme de 
al
ul de �ux optique basésur le système de vision humain. Après, on 
onstruit un graphe de régions dynamiquesutilisant la 
ombinaison normalisée de mesures de similitude entre des régions où sont
onsidérés l'intensité moyenne de 
haque région, l'amplitude du gradient entre régionset les informations du mouvement asso
ié à la région. Finalement, on applique uneméthode spe
trale pour obtenir la séparation du graphe et la 
onséquente identi�
ationde 
haque région 
onformément à son mouvement.La méthode de segmentation du mouvement est basée sur une méthode de seg-mentation d'images statiques aussi 
onçu et développé par l'auteur de 
ette thèse. Ils'agit aussi d'une méthodologie basée sur l'utilisation de petites régions, préalablementobtenues, basées sur la 
onstru
tion d'un graphe de similitudes entre régions tenant en
ompte les informations de l'intensité et de l'amplitude du gradient entre des régions.Cette te
hnique produit des segmentations plus simples et plus 
ompa
tes et 
ompa-rativement avantageuses à l'égard d'autres te
hniques. A�n d'évaluer les résultats dela segmentation on propose une nouvelle métrique qui tient en 
ompte la façon devisualiser les résultats par les être humains.La 
ombinaison d'informations statiques et du mouvement dans une te
hnique baséesur des régions permet d'obtenir des résultats de segmentation visuellement signi�
atifs.On présente des résultats expérimentaux sur la performan
e de la te
hnique proposéedans le 
as de la segmentation du mouvement dans des séquen
es d'images, ave
 et sansmouvement de la 
hambre, ainsi que pour le 
as de la segmentation d'images statiques,étant, dans 
e 
as aussi, e�e
tué une 
omparaison ave
 les résultats obtenus par autreste
hniques.
Mots-
lés: segmentation de l'image, estimation du mouvement, segmentation dumouvement, évaluation de la segmentation, transformée watershed.
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CHAPTER 1
Introdu
tion

Among all the human per
eptual me
hanisms, vision is undoubtedly the most impor-tant. The e�ortlessly way that we often look, interpret and ultimately a
t upon whatwe see belies the 
omplexity of visual per
eption. The 
omparatively young s
ien
eof vision resear
h is aimed at the understanding of the general issue of seeing. Theautomation of the task by the use of image 
apture equipment in pla
e of our eyes,
omputers and algorithms in pla
e of the not yet understood visual system, 
onstituteswhat is termed 
omputer vision. The Human Visual System (HVS) is an importantmodel for any work in vision be
ause it is, 
learly, both e�
ient and general purpose,whi
h are also the goals of any 
omputer vision system.Human often take for granted the solution of apparently simple 
omputer visionproblems like the segmentation and the re
ognition of obje
ts, or the dete
tion andthe interpretation of motion. We solve these tasks so automati
ally that it 
an besurprising how di�
ult it is to instru
t a 
omputer to solve the same tasks, given justa series of two-dimensional arrays of pixel values.When humans look at a s
ene, the visual system is able to de
ompose and identifyobje
ts in a 
omplex s
ene in one instant. It is, essentially, the pro
ess of subdividingan image into basi
 parts and extra
ting these parts of interest whi
h are the obje
ts.In a 
onventional sense, image segmentation is the partitioning of an image into 
o-herent regions, in a manner 
onsistent with human per
eption of the 
ontent, whereparts within a region are similar a

ording to some uniformity property and dissimilarbetween neighbouring regions. The development of MPEG-4 and MPEG-7 standardswhi
h allow the obje
t-based image 
oding and 
ontent-based image des
ription andretrieval, reinfor
ed the interest in image segmentation algorithms.1



2 Introdu
tionImage segmentation and per
eptual grouping have traditionally relied on di�er-ent image 
ues. Segmentation is often based mostly on pixel appearan
e, being it bybrightness, 
olour or some measure of texture similarity (though the issue of 
ue inte-gration for segmentation has re
eived a reasonable amount of attention, see [Malik 01℄);whereas per
eptual grouping usually relies on the information provided by image edgesand on grouping prin
iples that exploit the regularities among edges that belong toobje
t 
ontours.The information provided by image segmentation and per
eptual grouping is also
omplementary. Segmentation results indi
ate what regions in the image look homo-geneous under a 
hosen similarity measure, without 
onsidering boundary regularity;while grouping results indi
ate whi
h edges in the image form regular groups that arelikely to 
orrespond to salient boundaries. It is reasonable to expe
t that 
ombiningthe results produ
ed by segmentation and grouping should lead to a better segmenta-tion. Motion information may be used to link adja
ent but visually dissimilar regionsor to divide surfa
es not easily separable by stati
 
riteria alone. Often, ambiguousobje
t boundaries in a single image frame are easily resolved when dynami
 e�e
ts areevaluated based on a sequen
e of frames.For image segmentation, evaluation and, where possible, validation against othermethods are 
ru
ial. In some 
ases we have been able to 
ompare our results againststate-of-the-art te
hniques from other resear
hers. Still, in most 
ases the groundtruth will remain 
on
ealed su
h that evaluation must be 
ondu
ted with due 
are andattention, even if the so-
alled 'gold standards' are available.Motion segmentation is another important resear
h �eld with many 
ommer
ialappli
ations in
luding surveillan
e, navigation, roboti
s, and image 
oding and 
om-pression. As a result, the �eld has re
eived a great deal of attention and there are awide variety of motion segmentation te
hniques whi
h are often spe
ialised for parti
u-lar problems. The relative performan
e of these te
hniques, in terms of both a

ura
yand of 
omputational requirements, is often found to be data dependent and no singlete
hnique is known to outperform all others for all appli
ations under all 
onditions.Motion segmentation is usually de�ned as grouping of pixels of similar intensitythat are asso
iated with smooth and uniform motion information. However, this is aproblem that is loosely de�ned and ambiguous in 
ertain ways. Though the de�nitionof motion segmentation says that regions with 
oherent motion are to be grouped, the



Introdu
tion 3resulting segments may not 
orrespond to meaningful obje
t regions in the image. Toalleviate this issue the motion segmentation problem is pla
ed at two levels namelylow level and high level. Low level motion segmentation tries to group pixels withhomogeneous motion ve
tors without taking no other information apart from intensityor image gradient. High level motion segmentation divides the image into regions thatexhibit 
oherent motion and it also uses other image 
ues to produ
e image segmentsthat 
orrespond to proje
tions of real obje
ts.This thesis intends to present e�
ient and e�e
tive image segmentation te
hniquesand to demonstrate how these te
hniques may be integrated into algorithms that solvemotion segmentation problems. Region based representations o�er a way to performa �rst level of abstra
tion and redu
e the number of elements to pro
ess with respe
tto the 
lassi
al pixel based segmentation. Morphologi
al watershed transform andspe
tral-based graph 
ut methods will play a 
entral role.We 
an think of a video as a sequen
e of images so the basi
 unit on whi
h thevideo segmentation algorithms operate is a
tually an image or a frame. The di�er-en
e is that video segmentation must 
onsider a larger feature spa
e be
ause they havemoving obje
ts. Informally we 
an say that video segmentation is essentially a segmen-tation problem, similar to the image segmentation problem with pixel motion being animportant dimension of the feature spa
e.In image segmentation, the pixels of an image need to be partitioned into regions
orresponding to the di�erent intensity patterns existent in the image. In motionsegmentation, the pixels of a pair (or a set of images) need to be partitioned intoregions based on a 
oherent motion 
riterion. A moving s
ene is thereby re
orded bya single 
amera and the initial task is to �nd a dense �eld of displa
ement ve
torsthat transform one frame into a subsequent one. The most popular motion estimationmethod is the opti
al �ow approa
h. Horn and S
hun
k [Horn 81℄ de�ned opti
al �owas follows: The opti
al �ow is a velo
ity �eld in the image that transforms one imageinto the next image in a sequen
e. As su
h it is not uniquely determined.Motion estimation and segmentation are important sour
es of information for manyappli
ations in multimedia and video analysis. Motion estimation is 
on
erned withthe estimate of the motion parameters of a moving obje
t while motion segmentationattempts to identify the boundary of these obje
ts. Both of these problems are dire
tlyrelated and a number of methods have been presented. The tasks of motion estimation



4 Introdu
tionand segmentation are highly ill-posed1.It has been a
knowledge by many authors that it is very di�
ult to determinethe motion of pixels in areas of smooth intensity and that the motion in these areasmust invariably be found by extrapolating from nearby features. These smooth areasof the image 
an be determined prior to any motion analysis by performing an initialsegmentation based purely on intensity (or other spatial 
ues) to 
ombine these smoothareas into individual atomi
 regions. The motion of these regions, rather than pixels,is then determined and these regions 
lustered together a

ording to their motions.In this work we propose a hybrid spatial and temporal te
hnique that tries toover
ome those problems by the 
ombination of the spatial information with the mo-tion information. Based on the assumption that motion dis
ontinuities go along withdis
ontinuities in the intensity image, we take bene�t from the spatial segmentationinformation in three ways. First, the motion values inside ea
h segment are 
onstrainedto follow the same motion model, whi
h allows the assignment of smooth �ow valuesin regions of poor texture. Se
ondly, we believe that motion boundaries 
an be a

u-rately identi�ed by the use of stati
 
ues, su
h as the partition of the referen
e frameinto regions of homogeneous intensity. Thirdly, o

luded regions 
an be assigned tomeaningful �ow values that are propagated using the segmentation information.By its very nature, the problem of de�ning the obje
ts 
omposing a moving s
eneis an ill-posed problem. There is a strong interdependen
e between the estimationof the spatial support of an obje
t and of its motion 
hara
teristi
s. On one hand,estimation of the motion information of the obje
t depends on the region of supportof the obje
t. Therefore, an a

urate segmentation of the obje
t is needed in order toestimate the motion a

urately. On the other hand, a moving obje
t is 
hara
terizedby 
oherent motion 
hara
teristi
s over its entire region of support (assuming that onlyrigid motion is permitted). Thus, an a

urate estimation of the motion is required inorder to obtain an a

urate segmentation of the obje
t. Furthermore, a

urate obje
tde�nition involves not only motion information, but also spatial 
hara
teristi
s. Inparti
ular, the spatial information provides important 
ues about obje
t boundaries.However, the best strategy for 
ombining these two types of information remains anopen issue.1A problem is 
alled well-posed (in the sense of Hadamard), if it has a unique solution that depends
ontinuously on the data. If one of these 
onditions is violated, it is 
alled ill-posed.



1.1 Motivation 51.1 MotivationMotion segmentation is useful sin
e in many real world examples the moving obje
ts arepre
isely the interesting obje
ts. For example when 
rossing the road it is the moving
ars that are of primary importan
e; stationary 
ars are uninteresting ba
kgrounddespite the fa
t that both moving and stationary 
ars are the same physi
al obje
ts.Indeed, in many appli
ations knowing that "something" is moving in a parti
ular wayis mu
h more important than knowing semanti
ally what it is.The segmentation of images based on spatial or temporal (motion) information arekey problems in 
omputer vision. Motion information allows to distinguish stationaryfrom moving obje
ts and thus to dete
t and avoid obsta
les. This makes it parti
ularlyuseful for tasks where vehi
les have to be guided safely through an unknown environ-ment. Another �eld of appli
ation that is more related to image pro
essing than to
omputer vision is the 
ompression of video sequen
es where the basi
 idea is to de-
ompose a sequen
e of images into a small set of key frames and en
ode the di�eren
esto the remaining frames as �ow �elds. Extending this idea to an even more 
ompa
trepresentation based on obje
t shapes and single displa
ement ve
tors des
ribing theirmotion, one obtains the spe
i�
ation of the 
urrent MPEG-7 
ompression standard[Chang 01℄.The goal of this thesis is to provide segmentation methods that are robust, fast and�exible enough to meet the requirements of the majority of the natural image analysissettings. Further, the methods are intended to serve as a basis for motion segmentations
hemes.The best known to assign segment labels to ea
h pixel in an image is the normalized
uts algorithm developed by Shi and Malik [Shi 00℄. This algorithm 
reates a weightedgraph in whi
h ea
h pixel is 
onne
ted to every other and the weights represent thesimilarity between them. A 
ut of the graph is a set of links whose removal divides thepixels into two groups. A minimum 
ut is the 
ut whose total links weights are thesmallest, whi
h is biased towards separating small regions from the remainder of theimage. Normalized 
uts 
orre
ts this bias by dividing the 
ut value by asso
iativityfa
tors that penalize small partitions.Many methods have been proposed to perform the task of image segmentation withthe 
ooperative methods among the most promising ones (see Chapter 2). This 
lass of



6 Introdu
tionapproa
hes is based on the 
ombination, integration or iteration between methods. Itis known that the resulting segmented image from a watershed approa
h while a

uratetends to over-segmenting the original image. In this resear
h a region merging methodusing a graph based te
hnique will be applied as a post image pro
essing to over
omesu
h problem. By applying these two methods in a 
ombined manner, it is expe
tedthat a better image segmentation will be obtained.Our idea is motivated by the observation that graph-
ut algorithms have somedrawba
ks due to the use of pixel-based graphs. We think that 
ombining watershedpre-segmentation with normalized 
ut approa
hes 
an lead to a faster and better seg-mentation. Moreover, using a

urate uniform regions as the basis to any segmentationalgorithm has to in
rease 
omputational speed and allows to obtain smoother resultson segmentation.Re
ently, region-based algorithms have be
ome popular in the motion and imagesegmentation 
ommunity. Although quite di�erent from ea
h other, all methods of this
ategory take bene�t of the segmentation information to in
rease their robustness intraditionally 
hallenging areas of motion segmentation. This is well re�e
ted by thegood experimental results of those te
hniques.We identify the advantages of region-based motion segmentation as follows:
• Probably the most obvious advantage is that region-based motion segmentationte
hniques 
onstrain the �ow �eld inside a region to follow a single model. In otherwords, smoothness within a segment is expli
itly enfor
ed. This is advantageous,sin
e it allows the assignment of smooth �ow �eld values in regions of poortexture.
• Often, �ow �eld boundaries 
an often be more a

urately identi�ed by the use ofstati
 
ues. Ea
h obje
t (or region) has also a 
ompa
t boundary.
• The robustness in areas a�e
ted by o

lusion is improved. In theory, mat
hingmight even su

eed for a segment that is partially o

luded, sin
e it is still possibleto mat
h the segment's non-o

luded pixels. However, this does not mean thato

lusions 
an be ignored. Note that sin
e a single �ow �eld model is assignedto the 
omplete segment, those parts that are also a�e
ted by o

lusion areautomati
ally �lled.
• The number of segments is usually signi�
antly smaller than the number of pixels.This gives rise to potentially mu
h faster motion segmentation algorithms.



1.3 Thesis overview 7Nevertheless, using the region-based assumption also involves some disadvantages:
• The most severe problem asso
iated with region-based approa
hes is that thesegmentation assumption is, in general, not guaranteed to hold true. More pre-
isely, the su

ess of su
h methods depends on the ability of the segmentationalgorithm to a

urately delineate the obje
ts outlines. It is therefore safer toapply over-segmentation.
• The �ow �eld model 
an be inappropriate to represent the �real� displa
ementof a segment. This is, of 
ourse, rather a problem of using a model and notspe
i�
ally bound to the segmentation aspe
t. However, 
hoosing an appropriatemodel is a di�
ult task by itself. While simple models may oversimplify the realdispla
ement, 
omplex models may over �t the data and show undesired e�e
tsdue to image noise.1.2 ContributionsThe main emphasis in this thesis is in the presentation of a hybrid framework thatprodu
es a

urate segmentation results in still images and in motion segmentation. Toa
hieve those purposes some 
ontributions are made during this thesis:
• The development of a new evaluation metri
 for image segmentation where ad-ditions from di�erent errors are weighted a

ordingly to their visual relevan
e.
• The presentation of an improved watershed approa
h, the de�nition of a newstru
ture for a region-based similarity graph and the appli
ation of multi
lassnormalized 
uts approa
h to group atomi
 regions whi
h produ
es a

urate imagesegmentation.
• The de�nition of a similarity measure whi
h over
omes some of the 
ommonproblems asso
iated with normalized 
uts approa
h su
h as the partition of ho-mogeneous regions.
• The in
orporation of spatial and motion information simultaneously in a region-based framework to segment an image sequen
e. This method e�e
tively allowsthe partition of the frames into multiple areas a

ording to their di�erent motions.
• The integration of the re
ently proposed motion estimation s
heme developed byBrox et al. [Brox 04℄ in the region-based motion segmentation framework.



8 Introdu
tion1.3 Thesis overviewThis thesis is impli
itly divided in two parts: the �rst part deals with theoreti
al andpra
ti
al approa
hes towards image segmentation and that provides a suitable basisfor the 
hapter of motion segmentation. The se
ond part of this thesis fo
uses on thesegmentation of moving obje
ts. Thus, the remainder of this thesis is organized asfollows.In Chapter 2 a review of the 
ommonly used image segmentation methods is given,with emphasis on the existing 
ooperative methods. The advantages and the disad-vantages that exist within ea
h method are des
ribed.Chapter 3 introdu
es a segmentation evaluation measure whi
h takes into a

ountthe way humans per
eive visual information.Chapter 4 presents the major 
ontribution of this thesis - the use of atomi
 regionsas nu
lear features for image segmentation. An investigation on image segmentationapproa
hes whi
h produ
e an over-segmentation result will be given with the suggestionof a 
ombined framework between watershed transform and spe
tral-based graph 
utmethod for image segmentation. The resulting atomi
 regions are then en
oded ina region-based graph where nodes 
orrespond to regions. Afterwards, a multi
lassspe
tral-based graph-
ut method is used to 
luster these regions in segments.Chapter 5 takes the spatial atomi
 regions and a variational motion estimationmethod and 
ombines them into a 
omplete algorithm produ
ing a reliable motionsegmentation framework. The 
hapter begins with a review for motion estimation andsegmentation. Afterwards, opti
al �ow and its asso
iated problems are dis
ussed, withthe des
ription on the variational opti
al �ow method. Finally, the 
omplete frameworkfor motion segmentation is presented.Chapter 6 presents the experimental results of the proposed approa
hes to imagesegmentation and to motion segmentation. It in
ludes a 
omparison of the proposedimage segmentation method with the state-of-the-art image segmentation methods.Finally, Chapter 7 presents a summary of the te
hniques developed in this workand draws 
on
lusions from them. We then highlight some of the weaknesses of thealgorithms and indi
ate some of the possible dire
tions for further resear
h.Appendix A 
ontains an extension of the experimental results.



CHAPTER 2
Survey on re
ent image segmentationmethods

This 
hapter1 reviews some of the re
ent 
ontributions in the area of imagesegmentation with emphasis on the 
ooperative segmentation methods. Italso presents a new 
ategorization of image segmentation algorithms.2.1 Introdu
tionThere are many methodologies to approa
h the image segmentation problem that aretraditionally organized into two main 
ategories: 1) the region-based, and 2) boundary-based approa
hes. Other 
ategorizations are possible as the ones we will survey in this
hapter. In these approa
hes similarity or dissimilarity 
on
epts are involved for mea-suring the homogeneity within a region or for evaluating the lo
ation of the boundaries.Ea
h of the approa
hes presents its own advantages and drawba
ks, they 
an be usedisolated or 
ombined in any 
onvenient manner to explore the 
omplementary prop-erties of ea
h method, or they 
an be unsupervised without any user intervention orintera
tive as often required by medi
al imaging appli
ations [Olabarriaga 01℄.Many issues still remain opened in the image segmentation problem, as the manydi�erent approa
hes, the di�erent appli
ations areas where image segmentation ismandatory and the evaluation of the performan
e of an image segmentation algorithm.We will also look at this problem from a di�erent level, trying to identify those 
ontri-butions where the integration, fusion, 
ombination, 
ooperation or intera
tion are the1The following survey on image segmentation is based largely on [Campilho 07℄.9



10 Survey on re
ent image segmentation methodsmajor keywords for approa
hing the segmentation issue. This means that we will alsoreview the methods based on the use of di�erent and 
omplementary methodologiesthat anyhow explore the advantages and disadvantages of a parti
ular method in orderto improve the overall segmentation performan
e.We just give a brief overview of two earlier surveys, the [Harali
k 85℄ paper and[Pal 93℄. In [Harali
k 85℄ the authors des
ribe the main ideas of the image segmenta-tion methods that are grouped into �ve major 
lasses: (1) measurement spa
e guidedspatial 
lustering (further divided into thresholding and measurement spa
e 
lustering);(2) region growing (divided into: single linkage, hybrid linkage, and 
entroid linkages
hemes); (3) hybrid linkage 
ombination te
hniques; (4) spatial 
lustering, and (5)split-and-merge. This typology re�e
ts the approa
h to image segmentation as a 
lus-tering pro
ess, and the intera
tion between the grouping within the spatial domain(the segmentation itself) and the grouping in the measurement spa
e (the 
lusteringpro
ess). In Pal and Pal [Pal 93℄ the authors reviewed some image segmentation meth-ods (distributed by 178 papers) by 
overing fuzzy and non-fuzzy te
hniques in
luding
olour image segmentation and neural network based approa
hes. The authors 
om-pare some of the methods and also provide some 
omments on quantitative evaluationof segmentation results.Spe
ialized surveys in a spe
i�
 image segmentation topi
 
an be found in [Davis 75℄for edge dete
tion, [Zu
ker 76℄ for region-based segmentation methods, [Sahoo 88,Sezgin 04℄ for thresholding te
hniques, [Reed 93℄ for texture and feature extra
tionmethods, [Ho�man 87, Hoover 96℄ for range images, [Cheng 01, Lu

hese 01℄ for 
olourimages, and [Ar
hip 02℄ reviews the use of neural networks for image pro
essing in gen-eral and image segmentation in parti
ular.There has been a remarkable growth in the number of algorithms that segment
olour images in the last de
ade [Cheng 01, Lu

hese 01℄ and referen
es on them. Mostof the times, these are extensions of te
hniques originally devised for grey-level images.Thus, 
olour image segmentation algorithms exploit the well established ba
kgroundlaid down in grey-level segmentation �eld. In other 
ases, they are ad ho
 te
hniquesspe
ialized on the parti
ular nature of 
olour information and on the physi
s drivingthe intera
tion between light and 
oloured materials.Related surveys of interest in 
lose �elds of image segmentation 
an be found inthe following papers: [Dun
an 00℄ for medi
al image analysis and [Zitova 03℄ for image



2.1 Introdu
tion 11registration methods. Other important surveys or reviews 
an be found in [Jain 99℄for data 
lustering, [Jain 00℄ for statisti
al pattern re
ognition, [Antani 02℄ for the useof pattern re
ognition methods for abstra
tion, indexing and retrieval of images andvideo, [Shum 03℄ for image data 
ompression and [Petersen 02℄ for image pro
essingwith neural networks.The 
ooperation is useful when some sort of 
omplementary properties are exploredamong the individual methods. For instan
e, it is 
ommon to 
ombine edges withregion-based approa
hes, as the �rst method presents good lo
alization 
hara
teristi
sbut it is sensitive to noise usually resulting in several edge gaps, while the region-based methods have poor a

ura
y on boundaries, although produ
ing natural 
losed
ontours, and they are more insensitive to noise. Or, to over
ome the over-segmentationresult from a watershed approa
h we need the use of other post-pro
essing methods.The human-
omputer 
ooperation is important when we need to a

urately de�ne theregions in a demanding image segmentation task or mandatory when we deal with
ru
ial identi�
ation of regions in a medi
al image analysis segmentation problem.In this formal 
ontext, the easiest form of 
ooperation appears at feature level as it ispossible to 
on
eive several levels of 
ooperation among the de
ision making pro
essesusing di�erent sets of features. Other forms o

ur on the di�erent ways of partitioningan image. There are di�erent methods of partitioning that 
an 
ooperate. All of theseforms of 
ooperation will be surveyed in a later se
tion.In our study, a

ording to the work domain of ea
h algorithm, we broadly 
las-sify the segmentation methods into three 
ategories, namely image domain, featuredomain, and methods that use a 
ombination of these (
ooperative methods). Featuredomain is further divided into two main 
lasses: thresholding and 
lustering methods.Image domain is split into boundary-based and region-based methods. A

ording tothe used framework, 
ooperative methods are 
lassi�ed as sequential, parallel, hybridand intera
tive. Based on the above dis
ussions, we adopt the 
lassi�
ation of imagesegmentation as shown in Figure 2.1.The desirable 
hara
teristi
s that a good image segmentation should exhibit were
learly stated in [Harali
k 85℄: �Regions of an image segmentation should be uniformand homogeneous with respe
t to some 
hara
teristi
s su
h as grey tone or texture.Region interiors should be simple and without many small holes. Adja
ent regions of asegmentation should have signi�
antly di�erent values with respe
t to the 
hara
teristi
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Figure 2.1: An overview of image segmentation approa
hes.on whi
h they are uniform. Boundaries of ea
h segment should be simple, not ragged,and must be spatially a

urate�.A more pre
ise de�nition of segmentation a

ounting for the prin
ipal requirementslisted above is given in [Pal 93℄ in the following way: �Segmentation is a pro
ess ofpartitioning the image into some non-interse
ting regions su
h that ea
h region is ho-mogeneous and the union of two adja
ent regions is not homogeneous�.Formally the segmentation pro
ess is the partition of an image I into k disjointhomogeneous regions (the segments) R1, R2, ..., Rk, obeying the following 
onditions:1. I =
⋃

iRi for i = 1, 2, ..., k2. Ri ∩ Rj = ∅ for i 6= j3. P (Ri) = TRUE for all i4. P (Ri ∪ Rj) = FALSE, for i 6= j and Ri, Rj are adja
entwhere the logi
al predi
ate P (R) is the homogeneity property fun
tion of region R.This homogeneity fun
tion 
hara
terizes the uniformity of the region in terms of 
olour,



2.2 Image domain 13texture, shape or other features that enable the dis
rimination of a segment from theother segments. The 
onsequen
e of the �rst 
ondition is the 
omplete spatial 
overageof the image by all the dete
ted non-overlapping regions. The non-overlapping isguaranteed by 
ondition 2 whi
h ensures that a pixel 
an be assigned to only one group.The pixel homogeneity within a region is impli
it in 
ondition 3, whilst 
ondition 4 isan indi
ation that two neighbouring regions must be di�erent (in terms of the measuredproperty).Adja
en
y relationships between regions are not really taken into a

ount in thisde�nition, at the ex
eption of the fourth 
ondition whi
h spe
i�es that two adja
entregions 
annot be similar. In order to 
ompensate this la
k, some authors suggest touse region adja
en
y graphs [Sanfeliu 02, Makrogiannis 05℄ or region similarity graphs[Monteiro 07℄.As a result of the segmentation pro
ess we have a labelled image, 
orresponding atea
h region Ri (i = 1, 2, ..., k) a label Lm (m = 1, 2, ...,M). In general the number ofregions, k, is equal to the number of labels, M, but they 
an also be di�erent in some
ases, with the restri
tion of neighbouring regions that must have di�erent labels.2.2 Image domainIn the literature of segmentation of grey-level images, many te
hniques have beensuggested that try to satisfy both feature-spa
e homogeneity and spatial 
ompa
tnessat the same time [Pal 93℄. These approa
hes 
onsider the 
onne
tivity of individualimage pixels and then assign them to regions. A

ording to the strategy preferredfor spatial grouping, these algorithms are usually divided into boundary-based andregion-based te
hniques.The main advantages of the boundary-based methods for image segmentation relyon the a

ura
y of the lo
ation of the boundaries. Though as they are usually based onintensity gradient operators they are highly sensitive to noise and to small variationsof the edges and they may produ
e in
omplete and open edges with many gaps whi
hwill demand more powerful and time-
onsuming edge-linking tools. In many situations,as the analysis of outdoor s
enes, the regions borders 
annot be based on intensity or
olour features only. Other texture features may be needed and eventually 
onsiderthe 
ombination of di�erent 
ues, to 
ompletely des
ribe s
enes with a reasonable
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omplexity. Other advan
ed methods involving optimization methodologies, try tointegrate several dimensions of the segmentation problem in order to obtain 
losedboundaries. However, they usually depend on the initialization and may be lo
ked ina lo
al minimum.Region growing works well only if the initial seeds are representative of the regionsof interest. The 
hoi
e of the homogeneity and stopping 
riteria is 
ru
ial to the su

essof these methods and depends on the nature of the input image. These problems areover
ome in the watershed algorithm whi
h uses only an edge map as input and hen
e
an be used to segment a variety of images. The algorithm produ
es the segmentationresult without any user intervention. It is suitable for distributed implementation andit 
an produ
e signi�
ant system optimization.2.2.1 Boundary-based methodsBoundary-based methods aim to segment an image from the edges of ea
h region bylo
ating the pixels where the intensity 
hanges when 
ompared to the pixels of itssurroundings.The basi
 approa
h for determining region boundaries is to dete
t the edges, byusing an edge enhan
ement method, followed by thresholding the gradient magnitude.Here we 
onsider a boundary as a 
ontour in the image plane that 
orresponds to theseparation between obje
ts or surfa
es in the world plane. An edge is an abrupt 
hangein some feature in the image plane, as brightness, texture or 
olour. Edge dete
tors 
anbe simple su
h as the Sobel or Roberts operators, or more 
omplex su
h as the Cannyapproa
h. The output of most existing edge dete
tors 
an only provide 
andidates forthe region boundaries, be
ause the obtained edges are normally dis
ontinuous or over-dete
ted. Edge dete
tion is usually followed by edge linking and boundary dete
tionmethods to obtain meaningful boundaries.Edge-basedEdge dete
tion aims to segment an image by �nding the edges of ea
h region by lo-
ating the pixels in the image where the intensity values 
hange dramati
ally. Thesedis
ontinuities are usually found by running a mask through the image. By using dif-ferent values for the 
oe�
ients in the mask, di�erent forms of edges 
ould be sought



2.2 Image domain 15[Gonzalez 92℄. It may also be ne
essary to perform some edge linking as the edgesobtained by applying various masks to the image may not give 
omplete boundaries.The edge lo
ation is 
ommonly 
omputed from the lo
al dis
ontinuities in a lo
alproperty as brightness [Canny 86℄, 
olour [Ruzon 01℄, texture [Will 00℄, or a 
ombina-tion of these lo
al image 
ues [Martin 04℄. In prin
iple the edge dete
tion operator 
anbe applied simultaneously all over the image. One te
hnique is high-emphasis spatialfrequen
y �ltering. Sin
e high spatial frequen
ies are asso
iated with sharp 
hanges inintensity, one 
an enhan
e or extra
t edges by performing high-pass �ltering using theFourier operator.The edge-based segmentation methods will respond to edge brightness or 
oloureven if it does not 
orrespond to a boundary as it happens in textured regions. Fur-thermore they are not able to dete
t boundaries between texture regions. On the otherhand, texture based approa
hes may not dete
t brightness edges. These fa
ts leadMartin et al. [Martin 04℄ to develop a method where all these features were 
ombined.The approa
h of this paper is to look at ea
h pixel for lo
al dis
ontinuities of thesefeatures at several orientations and s
ales, being the free parameters in ea
h one of thefeatures 
alibrated on the training data set. Malik et al. [Malik 01℄ also explored simul-taneously brightness and texture as 
ues of 
ontour, whi
h are used as the primitivesin a graph theoreti
al framework of normalized 
uts for image segmentation.Heath et al. [Heath 97℄ presented a study of �ve edge dete
tion operators (Canny,Nalwa, Iverson, Bergholm, and Rothwell). The results show that signi�
antly betterperforman
es are obtained when the algorithm parameters are adapted to ea
h imagethan when one set of �xed parameters are used. The analysis of the relative perfor-man
e of the algorithms resulted in a ranking of the algorithms as (Canny, Nalwa) <Bergholm for �xed parameters and as (Iverson, Nalwa) < (Rothwell, Bergholm, Canny)for adapted parameters. The performan
e in
reases from left to right and the parenthe-ses group algorithms whose di�eren
e in performan
e was not statisti
ally signi�
ant.The Canny algorithm had the highest performan
e when the parameters were adaptedfor ea
h image, but the lowest performan
e when the parameters were �xed. They
on
luded that the 
hoi
e of the edge dete
tion algorithm depends on its appli
ation.In the ideal 
ase, the edge operator should �nd points lying only on the boundariesbetween regions. The main weaknesses of these methods are its sensitivity to imagenoise (as it is ampli�ed by the gradient 
omputation) and the generation of many
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ent image segmentation methodsgaps between edge elements. To redu
e the noise in�uen
e some authors proposed to�rstly smooth the image by a low-pass �lter. However, this will penalize the lo
ationproperties of the edge dete
tor. Resulting regions may not be 
onne
ted hen
e edgesneed to be joined. To obtain a 
losed 
ontour around the region other approa
hes foredge following and edge linking are needed to �ll in the gaps. The Hough transform[Illingworth 88℄ 
an be used for boundary dete
tion if the shape 
an be parameterized(e.g. as a line, a 
ir
le or an ellipsis).A boundary dete
tion s
heme based on �edge �ow� is proposed in [Ma 00℄. Thisapproa
h utilizes a predi
tive 
oding model to identify the dire
tion of 
hange in 
olourand texture at ea
h image lo
ation at a given s
ale, and 
onstru
ts an edge �ow ve
tor.By propagating the edge �ow ve
tors the boundaries 
an be dete
ted at image lo
ationswhi
h en
ounter two opposite dire
tions of �ow in the stable state.Deformable modelsA
tive 
ontours 
onstitute a general te
hnique of mat
hing a deformable model ontoan image by means of energy minimization. Sin
e their introdu
tion by Kass et al.in [Kass 88℄, deformable models have been used in many appli
ations of image seg-mentation [Caselles 97, Davison 00, M
Inerney 00, Paragios 02, Han 03, Brox 06b℄.Parti
ularly, numerous algorithms based on the theory of deformable models havebeen proposed for the purpose of medi
al image segmentation [M
Inerney 96, Duta 98,Niessen 98, Paragios 03, Xu 04℄. See [Xu 00℄ for a review on deformable models.Various names su
h as snakes, a
tive 
ontours or surfa
es, balloons and deformable
ontours or surfa
es have been used in the literature to refer to deformable models[Xu 00℄.Depending on the implementation there are essentially two types of deformablemodels: parametri
 deformable models [Kass 88, M
Inerney 95, Davison 00℄ and geo-metri
 deformable models [Caselles 97, Han 03℄. Parametri
 deformable models repre-sent 
urves and surfa
es expli
itly in their parametri
 forms during deformation. Thisrepresentation allows dire
t intera
tion with the model and 
an lead to a 
ompa
t rep-resentation for fast real-time implementation. Adaptation of the model topology su
has splitting or merging parts during the deformation, 
an be di�
ult using paramet-ri
 models. On the other hand geometri
 deformable models 
an handle topologi
al
hanges naturally. These models, based on the theory of 
urve evolution [Sapiro 93℄



2.2 Image domain 17and the level set method [Caselles 97℄, represent 
urves and surfa
es impli
itly as alevel set of a higher-dimensional s
alar fun
tion. They o�er many advantages overparametri
 approa
hes. In addition to their straightforward implementation level setsdo not require any parametrization of the evolving 
ontour. Their parameterisationsare 
omputed only after 
omplete deformation, thereby allowing topologi
al adaptivityto be easily a

ommodated. Self-interse
tions, whi
h are 
ostly to prevent in paramet-ri
 deformable models, are naturally avoided and topologi
al 
hanges are automated.Many fundamental properties of the a
tive 
ontours, su
h as the normal or the 
urva-ture, are also easily 
omputed from the level set fun
tion. The ability to automati
ally
hange topology is often presented as an advantage of the level set method over expli
itdeformable models. Despite, in biomedi
al image segmentation, where the topology ofthe target shape is pres
ribed by anatomi
al knowledge, this behaviour is not desirable.Despite this fundamental di�eren
e, the underlying prin
iples of both methods are verysimilar [Xu 00℄.Kass et al. [Kass 88℄ introdu
ed a global minimum energy 
ontour 
alled snakes ora
tive 
ontours. Given an initial approximation to a desired 
ontour, a snake lo
ates the
losest minimum energy 
ontour by iteratively minimizing an energy fun
tional whi
h
ombines internal for
es to keep the a
tive 
ontour smooth, external for
es to attra
tthe snake to image features, and 
onstraint for
es whi
h help to de�ne the overallshape of the 
ontour. A snake may be thought of as an elasti
 
urve that, throughminimization of an energy fun
tional, deforms and adjusts its initial shape on the basisof additional image information to provide a 
ontinuous boundary [Davison 00℄.The 
lassi
 implementation of snakes by Kass et al. [Kass 88℄ allowed the problemto be redu
ed to a matrix form. However, this puts 
onstraints on the energy fun
tions.Davison et al. [Davison 00℄ proposed a less 
ompli
ated form of the energy fun
tions,and energy minimization is 
arried out by adjusting individual verti
es on the snakes.This allows a larger range of energy fun
tions, and the addition of internal energyfun
tions like area and symmetry terms without 
ompli
ating the minimization pro
essas would be the 
ase with the 
lassi
 implementation.The snakes approa
h had a large impa
t in the segmentation 
ommunity. Yet,Cremers et al. [Cremers 07℄ identi�ed several drawba
ks on these approa
hes:
• The implementation of 
ontour evolutions based on an expli
it parameterisa-tion requires a deli
ate re-parameterisation pro
ess to avoid self-interse
tion and
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ontrol or marker points.
• The expli
it representation by default does not allow the evolving 
ontour to un-dergo topologi
al 
hanges so that the segmentation of several obje
ts or multiply-
onne
ted obje
ts is not straight-forward.
• The segmentation obtained by a lo
al optimization method is bound to dependon the initialization. The snake algorithm is known to be quite sensitive to theinitialization. For many realisti
 images, the segmentation algorithm tends to getstu
k in undesired lo
al minimum, in parti
ular, in the presen
e of noise.
• The snakes approa
h la
ks a meaningful probabilisti
 interpretation. Extensionsto other segmentation 
riteria su
h as 
olour, texture or motion are not straight-forward.The snake method is known to solve boundary re�nement problems by lo
ating theobje
t boundary from an initial plan. Though it should be stressed that the obje
tiveof these algorithms is generally to segment not a whole image but individual obje
tsfrom an image.Xu and Prin
e [Xu 98℄ presented a new 
lass of external for
es for a
tive 
ontourmodels that addresses some of the problems listed above. These �elds, whi
h they
all gradient ve
tor �ow (GVF) �elds, are dense ve
tor �elds derived from images byminimizing a 
ertain energy fun
tional in a variational framework. The minimizationis a
hieved by solving a pair of de
oupled linear partial di�erential equations thatdi�uses the gradient ve
tors of a grey-level or binary edge map 
omputed from theimage. They 
all the a
tive 
ontour that uses the GVF �eld as its external for
e aGVF snake. Parti
ular advantages of the GVF snake over a traditional snake are itsinsensitivity to initialization and its ability to move into boundary 
on
avities.2.2.2 Region-based methodsRegion-based te
hniques in
luding region growing, region splitting, region merging andtheir 
ombination attempt to group pixels into homogeneous regions. These te
hniquesaim at partitioning the image domain by progressively �tting statisti
al models to theintensity, 
olour, texture or motion in ea
h set of regions. These te
hniques rely onthe assumption that adja
ent pixels in the same region have similar visual features.In 
ontrast to edge-based s
hemes, region-based methods tend to be less sensitive to



2.2 Image domain 19noise. Obviously, the performan
e of these approa
hes largely depends on the sele
tedhomogeneity 
riterion.In the region growing approa
h, a seed region is �rst sele
ted then expanded toin
lude all homogeneous neighbours, and this pro
ess is repeated until all pixels in theimage are labelled. In the region splitting approa
h the initial seed region is simply thewhole image. If the seed region is not homogeneous it 
an be divided into four squaresub-regions, whi
h be
ome new seed-regions. This pro
ess is repeated until all sub-regions are homogeneous. The region merging approa
h is often 
ombined with regiongrowing or region splitting to merge the similar regions for making a homogeneousregion as large as possible.Given the seeds, the seed region growing algorithm tries to �nd an a

urate seg-mentation of images into regions with the property that ea
h 
onne
ted 
omponent ofa region meets exa
tly one of the seeds. Moreover, high-level knowledge of the image
omponents 
an be exploited through the 
hoi
e of seeds.Region growingRegion growing algorithms [Zu
ker 76, Adams 94, Sanfeliu 02, Fan 05, Grady 06℄ typi-
ally start from a pre-sele
ted seed pixel, then progressively agglomerate points aroundit satisfying one or several homogeneity 
riteria su
h as intensity, 
olour or texture.These 
riteria 
an be de�ned a

ording to lo
al, regional and global relationships. Thegrowth pro
ess stops when no more points 
an be added to the region. A 
ommonpost-pro
essing approa
h 
onsists of a merging phase that eliminates small regions orneighbouring regions with similar attributes, generating broader regions a

ordingly.Fan et al. [Fan 05℄ presented a re
ent 
omparative study on seed region growing algo-rithms.This strategy needs an initial set of seeds to work, as well as a general homogeneity
riterion to join neighbouring regions. Though it is di�
ult to spe
ify homogeneitybe
ause the 
on
ept of homogeneity is often vague and fuzzy and it is not translatedeasily into a 
omputable 
riterion. Region-growing 
an be 
onsidered as a sequen-tial 
lustering or 
lassi�
ation pro
ess. Thus, the results may depend on the ordera

ording to whi
h image points are pro
essed. The main advantage o�ered by thiskind of te
hniques is that regions obtained are 
ertainly spatially 
onne
ted and rather
ompa
t.
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ent image segmentation methodsThese methods are known to be sensitive to the seed 
hoi
e pro
ess together withthe way segment statisti
s are 
omputed, whi
h is done to guess whether two adja
entregions might join or not [Sanfeliu 02℄. The appli
ation of a region growing pro
ess
an lead to di�erent types of errors [Pavlidis 90℄: a) region boundaries are not 
lose toedges; b) the boundaries are 
lose but they are not 
oin
ident with the edges; 
) thereare edges not 
orresponding to boundaries.Adams et al. [Adams 94℄ proposed the seeded region growing (SRG) where theinitially de�ned seed pixels (by user intera
tion or by some pre-pro
essing stage) 
ontrolthe growing pro
ess by measuring the dissimilarity between adja
ent pixels. Given theset of seeds, ea
h step of SRG tries to �nd an a

urate segmentation into regions withthe property that ea
h 
onne
ted 
omponent of a region meets exa
tly one of the seeds.These initial seeds are further repla
ed by the 
entroids of the generated homogeneousregions, and by in
orporating the additional pixels step by step. An advantage of SRGis that the high-level knowledge of the image 
omponents 
an be exploited through the
hoi
e of seeds [Fan 05℄. However, a poor starting estimate of region seeds or bad pixelsorting may result in an in
orre
t segmentation.Hojjatoleslami and Kittler [Hojjatoleslami 98℄ presented a region growing approa
hby pixel aggregation whi
h uses similarity and dis
ontinuity measures. A unique featureof the proposed approa
h is that in ea
h step at most one 
andidate pixel exhibits therequired properties to join the region. They argue that this makes the dire
tion ofthe growing pro
ess more predi
table. The pro
edure o�ers a framework in whi
hany suitable measurement 
an be applied to de�ne a required 
hara
teristi
 of thesegmented region.Deng and Manjunath [Deng 01℄ proposed the JSEG algorithm, a 
olour quanti-zation te
hnique to smooth the image 
olours into several representative 
lasses (J-images). The J-values measure the distan
es between di�erent 
lasses over the dis-tan
es between the members within ea
h 
lass. For the 
ase of an image 
onsistingof several homogeneous regions, the 
olour 
lasses are more separated from ea
h otherand the value of J is large. The s
heme has the ability to segment 
olour texturedimages without attempting to estimate a spe
i�
 model for a texture region. Instead,it tests for the homogeneity of a given 
olour-texture pattern. The basi
 idea of thealgorithm is to separate the segmentation pro
ess into two independent stages, 
olourquantization and spatial segmentation. In the �rst stage 
olours in the image are quan-



2.2 Image domain 21tized to several representative 
lasses that 
an be used to di�erentiate regions in theimage. This quantization is performed in the 
olour spa
e without 
onsidering thespatial distribution of the 
olours. Then, the image pixel values are repla
ed by their
orresponding 
olour 
lass labels, thus forming a 
lass-map of the image. In the se
ondstage, a region growing method is then performed dire
tly on this 
lass-map without
onsidering the 
orresponding pixel 
olour similarity.Grady [Grady 06℄ proposed a method for performing multi-label, intera
tive imagesegmentation. Given a small number of pixels with user-de�ned labels (seeds), thealgorithm operates by assigning ea
h unseeded pixel to the label of the seed point thata random walker starting from that pixel would be most likely to rea
h �rst, given thatit is biased to avoid 
rossing obje
t boundaries (i.e., intensity gradients).Most of region growing methods have an inherent dependen
e on the order in whi
hthe pixels and regions are examined. This weakness implies that a desired segmented re-sult is sensitive to the sele
tion of the initial growing pixels. Wan and Higgins [Wan 03℄de�ned a set of theoreti
al 
riteria for a sub
lass of region growing algorithms that areinsensitive to the sele
tion of the initial seeds. This 
lass of algorithms referred to assymmetri
 region growing algorithms, leads to a single-pass region growing algorithmappli
able to any image dimension.Mehnert and Ja
kway [Mehnert 97℄ have 
on�rmed that a di�erent order of pro-
essing pixels leads to di�erent �nal segmentation results. They also noti
ed two typesof order dependen
ies. The �rst type is 
alled inherent order dependen
ies, while these
ond is 
alled implementation order dependen
ies. They also presented an algorithmthat improves the seeded region-growing algorithm by making it independent of thepixel order of pro
essing and making it more parallel. Parallel pro
essing ensured thatthe pixels with the same priority were pro
essed in the same manner simultaneously.Region splitting and mergingThese methods start with an initial inhomogeneous partition of the image and thenkeep splitting until rea
hing homogeneous partitions as proposed in a starting paper[Horowitz 76℄, des
ribing the split-and-merge te
hniques. In this approa
h an imageis initially subdivided into a set of disjoint regions and then merged and/or split untilea
h region satis�es some 
onditions indi
ating that it is one segment. A data stru
tureused to implement this pro
edure is the quadtree representation. In the �rst step, the
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ent image segmentation methodswhole image is 
onsidered as one region. If this region does not satisfy a homogeneity
riterion the region is split into four quadrants (subregions) and ea
h quadrant is testedin the same way; this pro
ess is re
ursively repeated until every square region 
reatedin this way 
ontains homogeneous pixels. After the splitting phase, there are usuallymany small and fragmented regions whi
h have to be somehow 
onne
ted in a mergingphase. Therefore, in a next step all adja
ent regions with similar attributes may bemerged following other (or the same) 
riteria. The region adja
en
y graph (RAG) isthe data stru
ture 
ommonly adopted in this phase. The pro
ess ends when no moresplitting or merging is possible.Gevers [Gevers 02℄ des
ribed a split-and-merge method based on Delaunay trian-gulation. This tessellation grid is adaptive in the sense that it is data dependentby measuring region and edge properties. A re
ent paper inspired in the same split-and-merge basi
 prin
iple is presented in [Chung 05℄. Here the authors proposed aquadrilateral-based segmentation framework, where the splitting phase is 
omputed ona gradient image, whi
h is followed by a merging pro
ess.Watershed transformWatershed transform is an important paradigm for image segmentation, and it is amain step in several hybrid image segmentation frameworks (see Se
tion 2.4). Al-though watershed is usually 
onsidered as a region-based approa
h, De Smet et al.[De Smet 99℄ pointed out that the watershed transform has proven to be a powerfulbasi
 segmentation tool that 
an hold the attributed properties of both edge dete
tionand region growing te
hniques whi
h makes it a 
ooperative approa
h.The main drawba
k of watershed transform for image segmentation is the over seg-mentation introdu
ed by 
reating a large number of small regions. To over
ome thisproblem pre-pro
essing or post-pro
essing phases are 
onsidered by several authors.The pre-pro
essing phase has a main goal to regularize image intensities variations byimage denoising, using anisotropi
 �lters (as used in Wei
kert [Wei
kert 01℄ or spe
ialappli
ation oriented image heuristi
 enhan
ement steps [Adiga 01℄ or edge preservingnoise �lters [Haris 98℄. It is also 
ommon the introdu
tion of a post-pro
essing phaseafter applying the watershed transform for merging the less signi�
ant regions in or-der to obtain larger regions with a better 
orresponden
e to obje
ts. Other authors,as Haris et al. [Haris 98℄ and Adiga et al. [Adiga 01℄ used both a pre-pro
essing



2.2 Image domain 23and post-pro
essing steps. Nevertheless the performan
e of a watershed-based imagesegmentation method depends largely on the algorithm used to 
ompute the gradient.The main advantages of the watershed transform are:
• it produ
es 
oherent regions where boundaries are always guaranteed to be 
on-ne
ted and 
losed. Unlike traditional edge dete
tors whi
h most often form dis-
onne
ted boundaries that need post-pro
essing to produ
e 
losed regions, water-shed transforms produ
e 
losed 
ontours and give good performan
e at jun
tionsand pla
es where the obje
t boundaries are di�use. This means that all of theboundary pixels for a single obje
t 
an be trivially extra
ted without 
omplextra
king or edge-linking, thereby avoiding one of the pitfalls of many edge dete
-tion methods;
• the boundaries of the resulting regions always 
orrespond to 
ontours whi
h ap-pear in the image as obvious 
ontours of obje
ts. This is in 
ontrast to split-and-merge methods where the �rst splitting is often a simple regular se
tioning of theimage leading sometimes to unstable results;
• gradient watershed regions 
an be used to intera
tively 
onstru
t the image regionasso
iated with an obje
t of interest;
• the union of all the regions form the entire image region.One of two di�erent algorithms are generally used to implement watershed seg-mentation, namely immersion and rainfalling simulation. Ea
h of these 
an be usedto dete
t the segments in the image either dire
tly or using morphologi
al operators.As watershed is a method largely used in this thesis, we brie�y review some of theseapproa
hes as follows.Sin
e the early 1990s, there has been a 
onsiderable amount of s
ienti�
 workon the watershed transform that was originally proposed by Beu
her and Lantuéjoul[Beu
her 79℄ as an image pro
essing tool. An ex
ellent and re
ommended overview onde�nitions, algorithms, and parallelisation strategies was published by Roerdink andMeijster [Roerdink 01℄.A major breakthrough in the implementation of the watershed was made by Vin
entand Soille [Vin
ent 91℄ with the introdu
tion of the �rst queue based implementationof the watershed transform. Basi
ally, the algorithm 
onsists of two steps: a sortingstep and a �ooding step. The sorting step �rst 
omputes the frequen
y distribution of
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ent image segmentation methodsea
h image grey level. The 
umulative frequen
y is then 
omputed so that ea
h pixel
an be assigned to a unique 
ell in a sorted array. In the �ooding step the 
at
hmentbasins are re
ursively grown by using a FIFO (First In First Out) ordered queue forthe 
omputation of the geodesi
 in�uen
e zones. The queue based �ooding is indeedquite fast but remains 
omputationally intensive. This is due to the fa
t, that ea
hupdate step of the 
at
hment basins requires a full s
an of the image. Sin
e updatingis performed re
ursively for ea
h of the grey-levels in the image, the total number ofs
ans 
an be quite large.Two problems arise when applying the above watershed method to an image. The�rst problem is the o

urren
e of �at regions, i. e. regions of 
onstant grey value,as dis
ussed in numerous publi
ations [Gau
h 99, Stoev 00, Roerdink 01℄. The se
ondproblem, whi
h is partly linked to the �at region problem, is the dependen
y of thewatershed lo
ation on both the used algorithm and the grid 
onne
tivity [Roerdink 01℄.Moga and Gabbouj [Moga 97℄ des
ribed a parallel approa
h for 
omputing thewatershed transformation, based on rainfalling simulation within a grey-s
ale image.The �rst step transforms the original image into a lower 
omplete image. In this lower
omplete image the pixels belonging to a non-minimum �at region are labelled with thegeodesi
 distan
e to the �at region's nearest lower pixel. In doing so, a se
ond orderingrelation for the pixels in a non-minimum �at region is introdu
ed in the resultingimage. Afterwards a raindrop starts at ea
h pixel and its path towards the line withthe steepest des
ent is followed until a regional minimum is rea
hed. The set of allpixels attra
ted on the way to a parti
ular regional minimum de�nes the 
at
hmentbasin for this minimum.Stoev and Strasser [Stoev 00℄ presented a sequential approa
h where every pixel pis 
ompared with the adja
ent pixels and if possible the path of the steepest des
entis followed and p is pushed on a sta
k Sc 
ontaining the pixels on the 
urrent path.Otherwise, if a �at region is rea
hed, the whole �at region is pro
essed in order todetermine the nearest outdoor. If there are outdoors, the inner pixels are assigned tothe appropriate outdoors. Every time a regional minimum is rea
hed, whi
h is eithera �at region without outdoors or an isolated minimum, the pixels pushed on the sta
k
Sc are traversed and marked with the label of the rea
hed minimum.Weik
ert [Wei
kert 01℄ introdu
ed a pre-pro
essing step before applying the water-sheds. It in
ludes a regularization step using two partial di�erential equations based
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 di�usion �lter and a 
onvex quadrati
 variational imagerestoration method) followed by watershed and a simple region merging pro
ess.Gau
h [Gau
h 99℄ avoided �at region problems by working with Gaussian smoothed�oating point images. This removes all regions with uniform intensity. However, thisapproa
h has several problems: if the neighbours of an edge de
rease in intensity rapidlyon the left and gradually on the right the dete
ted lo
ation of the edge will be to theright of the 
orre
t position; in a lot of smoothed images whi
h have few intensityminima, the tops of some ridge like stru
tures may be missed.Grau et al. [Grau 04℄ identi�ed the two 
ommon drawba
ks for watershed basedimage segmentation, over segmentation and sensitivity to noise, together with two par-ti
ular in
onvenient in medi
al image segmentation: poor dete
tion of signi�
ant areasof low 
ontrast, and poor dete
tion of thin stru
tures. To over
ome these drawba
ksthe authors de�ned an improved version of the 
lassi
al watershed transform, enablingthe use of prior knowledge of the obje
ts that 
an be adapted depending on the ap-pli
ation, namely using the information available from a statisti
al anatomi
al atlasregistration, through the use of markers.2.3 Feature domainA number of approa
hes to segmentation are based on �nding 
ompa
t 
lusters in somefeature spa
e [Comani
iu 02, Felzenszwalb 04℄. In this te
hnique, a ve
tor of lo
al prop-erties ('features') is 
omputed at ea
h pixel and then mapped into the feature spa
e.Features su
h as intensity, texture or motion are the 
ommonly studied parameters.Signi�
ant features will be shared by numerous pixels, and thus form a dense region infeature spa
e. The feature spa
e is then 
lustered, and ea
h pixel is labelled with the
luster that 
ontains its feature ve
tor. Clusters in feature spa
e 
an then be used forimage segmentation, typi
ally by �tting a parametri
 model to ea
h 
luster and thenlabelling the pixels whose feature ve
tors lie in the 
luster with the parameters. The
ommon te
hniques in
lude histogram thresholding, 
lustering and graphs.These approa
hes generally assume that the image is pie
ewise 
onstant be
ausesear
hing for pixels that are all 
lose together in some feature spa
e impli
itly requiresthat the pixels are alike (e.g., similar 
olour). Comani
iu and Meer [Comani
iu 02℄used a te
hnique where feature spa
e 
lustering �rst transforms the data by smoothing
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ent image segmentation methodsit in a way that preserves boundaries between regions. This smoothing operation hasthe overall e�e
t of bringing points in 
loser 
lusters together. The method then �nds
lusters by dilating ea
h point with a hypersphere of some �xed radius, and �nding
onne
ted 
omponents of the dilated points.Segmentation algorithms whi
h ex
lusively operate in some feature spa
es returnsegments that are expe
ted to be homogeneous with respe
t to the 
hara
teristi
srepresented in those spa
e. However, there is no guarantee that these segments alsoshow spatial 
ompa
tness, whi
h is a desirable property in segmentation appli
ationsbeside homogeneity. For instan
e, histogram thresholding a

ounts in no way for thespatial lo
ations of pixels; the des
ription they provide is global and it does not exploitthe important fa
t that points of the same obje
t are usually spatially 
lose due tosurfa
e 
oheren
e. On the other hand, if pixels are 
lustered ex
lusively on the basisof their spatial relationships, the �nal result is likely to be with regions spatially well
onne
ted but with no guarantee that these regions will also be homogeneous in a
ertain feature spa
e.2.3.1 Thresholding methodsThresholding te
hniques are based on the assumption that adja
ent pixels whose value(grey level, 
olour value, texture) lies within a 
ertain range belong to the same 
lass[Fan 01℄. These methods a
hieved reasonable performan
e when the input is 
hara
ter-ized without noise and with small number of regions. This explains why these methodsare mainly used in text segmentation [Solihin 99, Kim 02℄. For a review of thresholdingte
hniques readers are referred to the survey papers [Sahoo 88, Pal 93, Sezgin 04℄.Histograms have been extensively used in image analysis mainly for two reasons:they provide a 
ompa
t representation of large amounts of data, and it is often possibleto infer global properties of the data from the behaviour of their histogram [Delon 07℄.The histogram of intensities of an image made of di�erent regions shall exhibit severalpeaks, ea
h one ideally 
orresponding to a di�erent region. Finding suitable thresholdvalues that 
ould �nd valleys between peaks in the histogram and produ
e a segmenta-tion of the grey level image into obje
ts and ba
kground is the 
ore of the thresholdingoperation.The traditional thresholding approa
h is basi
ally a one-stage thresholding ap-
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h where an image is separated into two 
lasses of pixels: the obje
t pixels and theba
kground pixels. Global thresholding te
hniques attempt to �nd a single thresholdvalue that best separates the two 
lasses of pixels in an image. In lo
al or adaptivethresholding the threshold values are determined lo
ally, e.g. pixel by pixel or regionby region. Then, a spe
i�ed region 
an have 'single threshold' that is 
hanged fromregion to region a

ording to the threshold 
andidate sele
tion for the given area.Among the algorithms proposed for histogram segmentation we 
an distinguish be-tween parametri
 and non-parametri
 approa
hes. In the �rst ones [Papamarkos 94,Wang 04a℄ the histogram is 
onsidered to be a probability density fun
tion of a Gaus-sian and the segmentation problem is reformulated as a parameter estimation followedby pixel 
lassi�
ation. If the number of obje
ts is known optimization algorithms 
anestimate e�
iently the parameters of these distributions. The main drawba
k of theseapproa
hes is that histograms obtained from real images 
annot always be modelled asmixtures of Gaussians, for example luminan
e histograms of natural images.Non-parametri
 approa
hes do not use any assumption on the underlying datadensity and they divide the histogram into several segments by minimizing some energy
riterion. Among them we have methods that analyse the histogram of the whole image[Cheriet 98, Solihin 99, Kim 02℄, and methods based on the histogram of edge pixels[Wang 03a℄.An early review of thresholding methods was reported in the highly 
ited paper of[Sahoo 88℄. Sahoo et al. surveyed segmentation algorithms based on thresholding andattempted to evaluate the performan
e of some thresholding te
hniques using unifor-mity and shape measures. They 
ategorized global thresholding te
hniques into two
lasses: point-dependent te
hniques (grey-level histogram based) and region-dependentte
hniques (modi�ed histogram or 
o-o

urren
e based). Dis
ussion on probabilisti
relaxation and several methods of multi-thresholding te
hniques was also given.More re
ently, Sezgin and Sakur paper [Sezgin 04℄ presented an exhaustive sur-vey of forty (40) image thresholding methods both global and lo
al. They 
ondu
t aquantitative performan
e evaluation and 
on
lude that lo
al methods perform better.Nevertheless this evaluation took into 
onsideration only text do
ument images thatwere degraded with noise and blur.Cheriet et al. [Cheriet 98℄ presented a general re
ursive approa
h for image segmen-tation by extending Otsu's method [Otsu 79℄. This approa
h has been implemented
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ent image segmentation methodsin the area of do
ument images. This approa
h segments the brightest homogeneousobje
t from a given image at ea
h re
ursion, leaving the darkest homogeneous obje
t.Li et al. [Li 97℄ suggested that the use of two dimensional histograms of an image ismore useful to �nd thresholds for segmentation rather than just using grey level infor-mation in one dimension. In 2D histograms, the information on pixels as well as thelo
al grey level average of their neighbourhood is used.Kim et al. [Kim 02℄ proposed a lo
ally adaptive thresholding algorithm where atext do
ument image is regarded as a 3D terrain and its lo
al property is 
hara
terizedby a water �ow model [Beu
her 79℄. The water �ow model lo
ally dete
ts the valleys
orresponding to regions that are lower than neighbouring regions. The deep valleys are�lled with dropped water whereas the smooth plain regions keep up dry. The �nal stepin this method 
on
erns the appli
ation of a global thresholding on a di�eren
e imagebetween the original terrain and the water-�lled terrain. A short
oming of this methodis the sele
tion of two 
riti
al parameters, namely, the amount of rainfall and the masksize whi
h is done on an experimental basis. Besides, the �nal binarization resultsare obtained by applying a global thresholding method to the amount of �lled water.Thus, obje
ts in a poor 
ontrast ba
kground are often removed as the 
orrespondingvalleys are only �lled with a little water.Other authors proposed thresholding te
hniques whi
h sele
t threshold from his-togram of edge pixels. In [Wang 84℄ edge pixels are �rst 
lassi�ed on the basis of theirneighbourhood as being relatively dark or relatively light. Then two grey level his-tograms are obtained respe
tively for these two sets of edge pixels. The threshold issele
ted as one of the highest peaks of the two histograms. By re
ursively using thepro
edure, multiple thresholds 
an be obtained. In [Wang 03a℄ for ea
h given obje
t,its threshold is dedu
ed from the histogram of the dis
rete sampling points of boundary.The poor performan
e of histogram thresholding based methods in real images
an be attributed to the fa
t that, generally, the pro�les of the histograms are ratherjagged giving rise to spurious peaks that 
ompli
ate the sele
tion of suitable thresholdvalues. This is due to obje
ts with non-uniform 
olour, intensity gradients 
ausedby illumination or variations in surfa
e re�e
tan
e, texture, noise, and ba
kgroundsthat are not uniformly 
oloured; to over
ome this problem, some smoothing �ltersare usually adopted. Moreover, it is often the 
ase that even if suitable thresholds
an be found, the resulting segmentation is ina

urate be
ause of overlap in grey-level
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h leads to dis
onne
ted regionswith the same label. In 
omplex images it also be
omes di�
ult to separate di�erentpeaks in the histogram and to determine how many thresholds are required. Anotherweakness of thresholding segmentation methods is that they negle
t all of the spatialinformation of the image and do not 
ope well with noise or blurring at boundaries[Adams 94℄.2.3.2 Clustering methodsClustering te
hniques appeared earlier in the literature and were used in numerousappli
ations [Jain 99℄. Following the sele
tion of image features usually based on in-tensity, 
olour or texture, 
lustering operates on the feature spa
e in order to 
apturethe global 
hara
teristi
s of the image. Ignoring spatial information and using a spe-
i�
 distan
e measure, the feature samples are handled as ve
tors and the obje
tive isto group them into 
ompa
t but well-separated 
lusters. After the 
lustering pro
essis 
ompleted the data samples are mapped onto the image plane typi
ally by �ttinga parametri
 model to ea
h 
luster and then labelling the pixels a

ording to ea
hparametri
 model to produ
e the �nal regions [Makrogiannis 05℄.Turi [Turi 01℄ 
lassi�ed 
lustering algorithms as hierar
hi
al or partitional. Hier-ar
hi
al te
hniques involve the 
lusters themselves being 
lassi�ed into groups, wherethe pro
ess is repeated at di�erent levels [Shi 00, Boykov 01b, Barbu 05℄. Partitionalte
hniques form 
lusters by optimizing a 
lustering 
riterion, where the 
lasses aremutually ex
lusive, thus forming a partition of the data [Pham 02, Chen 04, Cai 07℄.A 
hara
teristi
 of the hierar
hi
al 
lustering te
hniques is that on
e a sample isassigned to a parti
ular 
luster it 
annot be 
hanged. Therefore if the sample is in-
orre
tly assigned to a parti
ular 
luster at an early stage there is no way to 
orre
tthe error. This is where the partitional 
lustering te
hniques su
h as hard or fuzzy
lustering have an advantage over the hierar
hi
al 
lustering te
hniques, as partitionalte
hniques allow a data point to be reassigned to a di�erent 
luster if it improves the
lustering.Partitional 
lustering te
hniques present, however, some disadvantages: if the samedata is input in a di�erent order it may produ
e di�erent 
lusters. Pixels from non-adja
ent regions of the image 
an be grouped together, if there is an overlap in their
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ent image segmentation methodsfeature spa
e values whi
h produ
es several noisy areas and in
omplete region bordersin the segmentation results.The partitional form of 
lustering where a 
lass label is assigned to ea
h data valueidentifying its 
lass is referred to by some authors as hard 
lustering [Jain 99℄. Inre
ent years fuzzy 
lustering approa
hes have been developed where a fra
tional degreeof membership for ea
h 
luster is assigned to ea
h data value [Udupa 96℄.For the 
ase of natural images, the data-
lustering problem is quite 
omplex and theliterature of 
lustering algorithms is very ri
h. [Jain 99, Turi 01℄ presented ex
ellentreviews on 
lustering methods. The method known as K-means and its fuzzy 
oun-terpart fuzzy C-means are some of the most 
ommon te
hniques in the segmentation�eld. Based on the assumptions that the number of 
lusters is known a priori and the
luster shape is approximately spheri
al, these algorithms 
onverge to the �nal 
luster
entres. The main di�eren
e between hard K-means and fuzzy C-means is that fuzzypartition allows the pixels to partially belong to di�erent 
lusters.Hard 
lusteringCurrently K-means is among the most popular 
lustering algorithms due to its sim-pli
ity and e�
ien
y in unsupervised 
lassi�
ation. It starts with a random initialpartition and keeps reassigning the features to 
lusters based on the similarity betweenthe feature and the 
luster 
entres until a 
onvergen
e 
riterion is met. A major prob-lem with this algorithm is that it is sensitive to the sele
tion of the initial partition andmay 
onverge to a lo
al minimum of the 
riterion fun
tion value if the initial partitionis not properly 
hosen.In [Pappas 92℄, Pappas indi
ated two problems with K-means algorithm whi
h are:use of no spatial 
onstraints and it assumes that ea
h 
luster is 
hara
terized by a
onstant intensity. In order to over
ome these problems Pappas introdu
ed a general-ization of the K-means 
lustering algorithm and applied this pro
edure on grey-levelimages. This approa
h aims to separate the pixels in the image into 
lusters basednot only on their intensity but also on their relative spatial lo
ation. This algorithm
onsiders the segmentation of grey-level images as a maximum a posteriori probability(MAP) estimation problem.The advantages of K-means are that it is a very simple method and it is based onintuition about the nature of a 
luster, so the intra-
luster error should be as small as
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lustering has although some weaknesses: the number of
lusters must be known a priori; if the same data is inputted in a di�erent order it mayprodu
e di�erent 
lusters; it is sensitive to initial 
onditions. We never know whi
hfeature 
ontributes more to the grouping pro
ess sin
e it assumes that ea
h attributehas the same weight; weakness of arithmeti
 mean is not robust to outliers. Very fardata from the 
entroid may pull the 
entroid away from the real one. The �nal 
lustershave 
ir
ular shape be
ause K-means is based on 
entroid distan
es.Work by Turi [Turi 01℄ des
ribed a method of automati
 determination of the op-timal number of 
lusters in K-means 
lustering. It proposes a validity measure usingthe ratio of intra-
luster and inter-
luster measures in
orporated with a Gaussian mul-tiplier. The optimal number of 
lusters is found by minimizing the validity measure.The mean-shift algorithm is a non-parametri
 statisti
al method that �nds peaks(lo
al maxima) of the histogram without estimating the underlying density fun
tion.It has been used for the �rst time by Fukunaga and Hostetler in [Fukunaga 75℄ withthe goal of proposing an intuitive estimation of the gradient probability density of a setof points; later it has been used extensively for image segmentation [Comani
iu 02℄.This method is designed to lo
ate the 
entroids of 
lusters with high lo
al densityin the feature spa
e. To satisfy this obje
tive, mean-shift uses a simple me
hanism byshifting iteratively every pixel to the mean of its neighbouring pixels. A segmentationof an image I into a set of k disjoint regions where ea
h region Ri is des
ribed by its
ontour Γi and its model parameters Θi, Ri = (Γi,Θi) : i = 1, ..., k, with the latterinvolving the estimation of a mean ve
tor and a 
ovarian
e matrix Θi = {µi,Σi}.The algorithm starts with a set of initial guesses for 
luster 
entres, and then repeatsthe following two steps iteratively: a) Compute a weighted mean of the points withina small window 
entred at the 
urrent 
entroid lo
ation, using weights based on thedistan
e between ea
h point and the 
urrent 
entroid; b) Update the 
entroid lo
ationto be the newly estimated weighted mean (by this operation the 
entroid lo
ation isshifted to the mean of the lo
al distribution). Ea
h data point be
omes asso
iatedwith a point of 
onvergen
e whi
h represents the lo
al mode of the density in the d-dimensional spa
e. Convergen
e points su�
iently 
lose in the joint domain are fusedto obtain the homogeneous regions in the image. This pro
edure is repeated until a
onvergen
e 
ondition is satis�ed.The mean-shift algorithm produ
es segmentations that 
orrespond well to human
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ent image segmentation methodsper
eption. However, this algorithm is quite sensitive to its parameters and it tendsto dete
t too many peaks in histograms 
oming from real noisy data whi
h results inevident over-segmentation. Some 
riterion is, therefore, needed to de
ide whi
h peaksfrom the dete
ted ones 
orrespond to true modes.Fuzzy 
lusteringIn the last years there has been 
onsiderable interest in the use of fuzzy segmentationmethods, whi
h are able to retain more information from the original image thanhard segmentation methods. Fuzzy 
lustering theory was �rst introdu
ed by Zadeh[Zadeh 65℄ to generalise the 
onventional 
luster theory. Based on the de�nition of afuzzy event [Zadeh 65℄ grey level image 
an be seen as a fuzzy event modelled by aprobability spa
e.Fuzzy C-means (FCM) is one of the most well-known methodologies in 
lusteringanalysis [Bezdek 93, Udupa 96℄. The reason for its su

ess is due to the introdu
tion offuzziness for the belongingness of ea
h image pixels. Unlike hard 
lustering methods likeK-means whi
h for
e pixels to belong ex
lusively to one 
lass during their operation andin their output, FCM methods allow pixels to belong to multiple 
lasses with varyingdegrees of membership. The degree is de
ided by a membership fun
tion whi
h dependson how 
ompatible the member is to the properties of the 
luster. The FCM algorithm
lassi�es the image by grouping similar data points in the feature spa
e into 
lusters.This 
lustering is a
hieved by iteratively minimizing a 
ost fun
tion that is dependenton the distan
e of the pixels to the 
luster 
entres in the feature domain.In most situations FCM uses the 
ommon Eu
lidean distan
e whi
h supposes thatea
h feature has equal importan
e in FCM. This assumption seriously a�e
ts the per-forman
e of FCM sin
e in most real world problems features are not 
onsidered to beequally important. In [Wang 04b℄, Wang et al. proposed a new robust metri
, whi
his distinguished from the Eu
lidean distan
e, to improve the robustness of FCM. Thefeature-weight learning FCM te
hnique [Yeung 02, Wang 04b℄ assigns various weightsto di�erent features to improve the performan
e of 
lustering. The spatial fun
tion
an be estimated at ea
h iteration and in
orporated into the membership fun
tionwhi
h makes the new FCM te
hnique less sensitive to noise. Another drawba
ks ofFCM in
lude its 
omputational 
omplexity and the fa
t that it not 
onsider spatialinformation in image 
ontext, whi
h makes it very sensitive to noise and other imag-
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ts. Re
ently, many resear
hers have in
orporated lo
al spatial informationinto the original FCM algorithm to improve the performan
e of image segmentation[Pham 02, Chen 04, Cai 07℄.Pham [Pham 02℄ modi�ed the FCM fun
tion by in
luding a spatial penalty on themembership fun
tions. The penalty term leads to an iterative algorithm, whi
h is verysimilar to the original FCM and allows the estimation of spatially smooth membershipfun
tions. Ahmed et al. [Ahmed 02℄ proposed the FCM_S algorithm to 
ompensatefor the intensity inhomogeneity and to allow the labelling of a pixel to be in�uen
edby the labels in its immediate neighbourhood.In order to redu
e the 
omputational load of FCM_S Chen and Zhang [Chen 04℄proposed two variants, FCM_S1 and FCM_S2, whi
h simpli�ed the neighbourhoodterm of the obje
tive fun
tion. The essen
e of FCM_S1 is to make both the originalimage and the 
orresponding mean-�ltered image have the same prototypes or segmen-tation result with aiming to guarantee the grey homogeneity. However, this variant isunsuitable for the images 
orrupted by impulse noise su
h as salt and pepper noise. Inorder to over
ome that problem Chen and Zhang proposed the FCM_S2 in whi
h themedian �ltered image repla
es the mean �ltered one.As pointed out by Cai et al. [Cai 07℄ these approa
hes still have the followingdisadvantages: 1) although the introdu
tion of lo
al spatial information to the 
orre-sponding obje
tive fun
tions enhan
es their robustness to noise to some extent, theystill la
k enough robustness to noise and outliers, espe
ially in absen
e of prior knowl-edge of the noise; 2) in their obje
tive fun
tions, there is a 
ru
ial parameter α used to
ontrol the e�e
t of the neighbours term and to balan
e between robustness to noiseand e�e
tiveness of preserving the details of the image, and generally its sele
tion hasto be made by experien
e; and 3) the time of segmenting an image is heavily dependenton the image size.Szilagyi et al. [Szilagyi 03℄ proposed the enhan
ed FCM (EnFCM) method toa

elerate the image segmentation pro
ess. In this approa
h a linearly-weighted sumimage is in advan
e formed from both original image and its lo
al neighbour averagegrey image, and then 
lustering of the summed image is performed on the basis of thegrey level histogram instead of pixels in the image. Consequently, the time 
omplexityof EnFCM is drasti
ally redu
ed.To speed up even more the segmentation pro
ess, Cai et al. in their re
ent paper



34 Survey on re
ent image segmentation methods[Cai 07℄ proposed the Fast Generalized Fuzzy C-means (FGFCM) algorithm for fastand robust image segmentation. They repla
e the parameter α, that is shared byEnFCM, FCM_S and its two variants, by a lo
ality fa
tor Sij where the i-th pixelis the 
entre of the lo
al window (for example, 3 × 3) and j-th pixels are the set ofthe neighbours falling into a window around the i-th pixel. This fa
tor in
orporatessimultaneously both the lo
al spatial relationship and the lo
al grey-level relationshipand its value varies from pixel to pixel for the image within the lo
al window, i.e.,spatially and grey dependent. Thus, Sij 
an be adaptively determined by lo
al spatialand grey-level information rather than arti�
ially or empiri
ally sele
ted like α. In these
ond step the fast segmentation method [Szilagyi 03℄ is performed on the grey-levelhistogram of the generated image.Krishnapuram and Keller [Krishnapuram 93℄ proposed a possibilisti
 
lustering al-gorithm in whi
h the membership values for a given feature pixel a
ross all 
lusterswas not 
onstrained to add to one. Barni et al. [Barni 96℄ have shown on several seriesof examples that the 
lassi
al possibilisti
 C-means algorithm gives rise to identi
al
lusters. Su
h a problem is essentially due to the missing of an inter-
lass distan
e.Khrisnapuram and Keller [Krishnapuram 96℄ have proposed to 
onsider an iterativeversion of the algorithm. If a 
lass is found, pixels of 
luster data having values greaterthan an appropriate 
ut are removed from the image partition. Pro
essing is iteratedagain until the a
hievement of in
onsistent 
lusters. However, it 
aused 
lusteringbeing stu
k in one or two 
lusters.Zhang and Chen [D. Zhang 04℄ proposed a spatially 
onstrained kernelized FCM(SKFCM) whi
h uses a di�erent penalty term 
ontaining spatial neighbourhood infor-mation in the obje
tive fun
tion and simultaneously the similarity measurement in theFCM was repla
ed by a kernel-indu
ed distan
e.Model 
lusteringA feature ve
tor is labelled with a probability distribution over 
lusters instead of asingle 
luster. A number of te
hniques for doing spatially 
oherent 
lustering have beendeveloped in a Bayesian framework. Marroquin et al. [Marroquin 03℄ referred to su
hmethods as segmentation/model estimation methods.Statisti
al approa
hes, espe
ially parametri
 ones, labels pixels a

ording to prob-ability values, whi
h are determined based on the intensity distribution of the image.



2.3 Feature domain 35With a suitable assumption about the distribution, statisti
al approa
hes attempt tosolve the problem of estimating the asso
iated 
lass label, given only the intensity forea
h pixel [Zhang 01b℄. This formulation of the segmentation problem leads naturallyto a hierar
hi
al model [Barker 98℄.Markov Random Fields (MRF) have been and are in
reasingly being used to modela prior belief about the 
ontinuity of image features su
h as region labels, textures,edges, or motion. An MRF 
an be used to model the dis
rete label �eld 
ontainingthe individual pixel 
lassi�
ation. The methodology of using MRF models to theproblem of segmentation has emerged later and has 
reated a lot of interest [Won 92,Panjwani 95, Barker 98, Sarkar 00℄. The MRF forms a probabilisti
 model for a setof variables that intera
t on a latti
e stru
ture. The distribution for a single variableat a parti
ular site is 
onditioned on the 
on�guration of a prede�ned neighbourhoodsurrounding that site. This e�e
tively de�nes the Markov property of the pro
ess: thepro
ess is Markov not in the 
ausal or even the bilateral sense, but with respe
t to thisparti
ular neighbourhood stru
ture [Barker 98℄.Di�
ulties asso
iated with MRFs are the proper sele
tion of the parameters 
on-trolling the strength of spatial intera
tions and they require 
omputationally intensivealgorithms [Held 97℄. These methods work well in supervised mode, wherein the num-ber of regions and their asso
iated parameters are known or 
an be estimated before-hand. A solution to this problem 
onsists in iterating an estimation/segmentation 
y
le[Won 92℄. Given a 
andidate number of regions and an initial random set of regionparameters, a �rst segmentation is 
omputed. Region parameters are then re
omputedusing the 
urrent segmentation. This 
y
le is repeated, with di�erent 
andidate regionnumbers, several times until 
onvergen
e. The number that optimizes a model �tting
riterion is retained as the true number of regions [Won 92℄.To perform semi-unsupervised segmentation, where the number of 
lasses is as-sumed to be known a priori, a method of 
on
urrently estimating the underlying imageand any asso
iated model parameters is required. Alternatively, the problem maybe viewed as one of parameter estimation from in
omplete data. The Expe
tation-Maximization (EM) algorithm was �rst proposed by Dempster et al. [Dempster 77℄as an iterative maximal-likelihood pro
edure for parameter estimation from missing orin
omplete data.The EM 
lustering provides a framework for in
orporating our knowledge about a
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ent image segmentation methodsdomain. K-means and the hierar
hi
al algorithms make fairly rigid assumptions aboutthe data. For example, 
lusters in K-means are assumed to be spheres. EM 
lus-tering o�ers more �exibility. The 
lustering model 
an be adapted to what we knowabout the underlying distribution of the data. The methodology has been extensivelyapplied to the problem of image segmentation [Belongie 98, Zhang 01b, Carson 02,Robles-Kelly 02℄. The EM algorithm is an iterative pro
ess where ea
h iteration 
on-sists of two steps. The �rst of these (E-step) �nds an expression for the expe
ted valueof the log likelihood over the hidden data, given the previous parameter estimate. These
ond step (M-step) maximises this expe
tation over the parameter spa
e.Note that like thresholding and 
lustering algorithms, EM does not dire
tly in-
orporate spatial modelling and it 
an therefore be sensitive to noise and intensityinhomogeneities. Re
ently, a di�used expe
tation�maximization (DEM) algorithm hasbeen proposed for grey-level images [Bo

ignone 04℄, in whi
h a di�usion step providesspatial 
onstraint satisfa
tion.Minimum Des
ription Length (MDL) prin
iple suggests that the optimal model isone whi
h minimizes the sum of the 
oding length of the data given the model andthe 
oding length of the model itself, that is, the best �tted model is the one thatprodu
es the shortest 
ode length of the data. These two lengths formally 
orrespondto likelihood and prior probability in the Bayesian framework, respe
tively. Therefore,minimizing des
ription length is equivalent to maximizing a posterior probability. MDLhas been e�e
tively applied to image segmentation by a number of authors [Pateux 00,Galland 03℄. The advantage of applying MDL to merge regions is that de
isions aremade adaptively by taking into a

ount lo
al region statisti
s.Hierar
hi
al 
lustering (Graph-based)Hierar
hi
al 
lustering te
hniques are based on the use of a proximity matrix indi
atingthe similarity between every pair of data points to be 
lustered [Turi 01℄. The �nalresult is a �dendogram representing the nested grouping of patterns and similarity levelsat whi
h grouping 
hange� [Jain 99℄. One of the drawba
ks of hierar
hi
al algorithmsis the time 
omplexity. The memory spa
e 
omplexity is also a problem due to thesimilarity matrix needing to be stored.An interesting 
ategory of hierar
hi
al 
lustering algorithms is originated fromgraph theory. These methods generally present interesting results and a 
omplete
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omparison of the di�erent methods of graph 
uts are proposed in[Soundararajan 03℄.Graph 
ut algorithms use the Gestalt prin
iples of per
eptual grouping to formthe image regions. These algorithms try to divide the initial graph into subgraphsthat 
orrespond to image regions. Though several partitioning te
hniques exist theyall use the same underlying representation of the image: a graph G = (V,E,W ) withverti
es (nodes) v ∈ V 
orresponding to image elements (whi
h may be pixels, featuredes
riptors, atomi
 regions, or others), links2 e ∈ E ⊆ V × V and an asso
iatedweighted matrix W . The link between two verti
es vi and vj , is denoted by eij. Theweight of a link wi,j is proportional to the similarity between the nodes vi and vj andit is usually referred to as the a�nity between elements i and j in the image.A graph theory based on image segmentation 
onsists of two main steps: 1) thegraph 
reation and 2) the graph partitioning. These algorithms are usually applied onthe pixel-based graph, where the nodes 
orrespond to the pixels and the links to their
onne
tions. The weights asso
iated to an edge express the (dis)similarity of the pairof nodes it 
onne
ts. The similarity value 
an use any number of image 
ues in
ludinggrey level intensity, 
olour, texture, and other image statisti
s. It is also 
ommon toadd a distan
e term that ensures that the graph is sparse by linking together onlythose nodes that 
orrespond to elements in the image that are near ea
h other. On
ethe graph is built, the segmentation pro
ess 
onsists on determining whi
h subsets ofnodes and links 
orrespond to homogeneous regions in the image. The key prin
iplehere is that nodes that belong to the same region or 
luster should be joined by linkswith large weights if a similarity measure is used, while nodes that are joined by weaklinks are likely to belong to di�erent regions.A popular 
riterion for su
h partitions is based on extremal 
uts through the graph.In 
omputer vision, the idea of segmenting images by way of optimally partitioning agraph into k subgraphs so that the maximum inter-subgraph 
ut is minimized wasintrodu
ed by Wu and Leahy [Wu 93℄. The algorithm works re
ursively by splitting asegment in two regions A,B by a minimum 
ut:
cut (A,B) =

∑

i∈A,j∈B

wi,j (2.1)2Links are usually noted as edges though we de
ide to use links notation here to distinguish fromthe image edges.
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MinCut (A,B) = min {cut (A,B)} (2.2)until the whole graph is partitioned into k parts. Intuitively, the minimum 
ut 
or-responds to �nding the subset of links of minimum weight that 
an be removed topartition the image.Although performing well in many situations Wu and Leahy pointed out a fewproblems that result from the underlying prin
iple behind min-
ut. For example, sin
ethe algorithm returns the smallest 
ut separating the 
lusters, the algorithm will oftenreturn the 
ut that minimally separates the 
lusters even though they are stronglylinked to the rest of the graph. The problem is that it is often 
heaper to 
ut a fewstrong links than many weak ones. Finally, multiple �minima 
uts� may exist in theimage that are quite di�erent from ea
h other. Therefore, a small amount of noise(o

urring even in a single pixel) 
ould 
ause the segmentation to 
hange drasti
ally[Grady 06℄.Veskler [Veksler 00℄ introdu
ed a new graph node t and 
onne
t the pixels thatdelimit the image to t with links of appropriately 
hosen small weight. Given a pixel

p in the image, the minimum 
ost 
ontour separating p from the image 
an be foundusing the minimum 
ut that separates p from t. Results shown in the paper indi
atethat the algorithm is indeed 
apable of �nding interesting image regions without manyof the asso
iated artefa
ts that o

ur in typi
al min-
ut segmentation. It is importantto keep in mind that the images upon whi
h the above algorithms work are usuallylimited in size. This limitation is 
ommon to graph-theoreti
 algorithms and it is a
onsequen
e of the amount of memory required to store the graphs asso
iated withlarge images and of the 
omputational 
ost of partitioning su
h graphs.Boykov et al. [Boykov 01b℄ presented an algorithm that relies on min-
ut to performenergy minimization e�
iently. They address the problem of assigning labels to a setof pixels so that the labelling is pie
ewise smooth and 
onsistent with observed data.They de�ne a suitable energy fun
tional and show that given an initial labelling min-
ut 
an be used to approximately minimize this fun
tional with regard to two 
lassesof operations that work respe
tively on single labels and label pairs.In [Wang 01℄, Wang and Siskind proposed a modi�
ation to the minimum 
ut 
ri-terion to redu
e the preferen
e of minimum 
ut for small boundaries. They propose
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ut, de�ned as
MeanCut (A,B) =

cut (A,B)

L
(2.3)where L is the length of the boundary dividing A and B. Like other min-
ut basedalgorithms, the minimum mean 
ut is used re
ursively to produ
e �ner segmentations.It is interesting to point out that this algorithm uses an additional step of regionmerging, sin
e the minimum mean 
ut may lead to some spurious 
uts where no imageedge exists. [Wang 03b℄ generalized the minimum mean 
ut by using two edge weightsto 
onne
t pairs of nodes, the �rst weight 
omes from the similarity measure andthe se
ond weight 
orresponds to a normalization term based on the segmentationboundary length.Dupuis and Vasseur [Dupuis 06℄ developed an approa
h for the 
omputation of thea�nity matrix based on the 
ombination of a�nity matri
es from various 
ues andits integration in the segmentation pro
ess. A prin
ipal 
omponents analysis (PCA)applied to the whole set of the normalized a�nity matri
es provided the un
orrelatedrelevant 
ues and their respe
tive weights for the �nal 
ombination. They propose tointegrate the evaluation of the a�nity matrix at ea
h iteration of an agglomerativealgorithm in order to take into a

ount the dynami
s of the segmentation pro
ess.Finally, they de�ne a 
riterion of satisfa
tion based on the 
ovarian
e matrix of thea�nity matri
es, whi
h determines the end of the iterations.Introdu
ed by Felzenszwalb and Huttenlo
her [Felzenszwalb 04℄, the so-
alled e�-
ient graph-based image segmentation algorithm is another method using 
lustering infeature spa
e. This method works dire
tly on the data points in feature spa
e, without�rst performing a �ltering step, and uses a variation on single linkage 
lustering. Thekey to the su

ess of this method is adaptive thresholding. To perform traditionalsingle linkage 
lustering, a minimum spanning tree of the data points is �rst generated,from whi
h any edges with greater length than a given threshold are removed. In theend of the pro
ess the 
omponents that remain 
onne
ted be
ome the 
lusters in thesegmentation.The graph 
uts segmentation algorithm has been extended in two di�erent dire
-tions in order to address issues of speed. The �rst type of extension to the graph
uts algorithm has fo
used on speed in
reases by 
oarsening the graph before ap-
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ent image segmentation methodsplying the graph 
uts algorithm. This 
oarsening has been a

omplished in manyways: 1) by applying a standard multilevel approa
h and solving subsequent, smallergraph 
uts problems in a �xed band to produ
e the �nal, full-resolution segmentation[Sharon 00, Yu 04℄ and 2) by applying some over-segmentation algorithm to the imageand treating ea
h atomi
 region as a �super-node� in a 
oarse graph to whi
h graph
uts are applied [Callaghan 05℄.Spe
tral analysis uses the data representation provided by the dominant eigenval-ues and eigenve
tors of a similarity matrix. There are many di�erent algorithms thatuse the spe
tral properties of the a�nity matrix, they di�er in the number of eigen-ve
tors/eigenvalues used, as well as in the 
lustering pro
edure, but all use the datarepresentation provided by the dominant eigenvalues and eigenve
tors of the a�nitymatrix. We refer the reader to [Weiss 99, Ng 02℄ for a review.Perona and Freeman [Perona 98℄ suggested a 
lustering algorithm (known as the'fa
torization method') based on treating as an indi
ator fun
tion the �rst largest eigen-ve
tor v1 of the similarity matrix W . A threshold T is 
hosen, and ea
h node i isassigned to one part if v1i
< T and to the other part otherwise. Perona and Free-man motivated the approa
h by showing that for blo
k diagonal a�nity matri
es, the�rst eigenve
tor has non-zero in 
omponents 
orresponding to points in the dominant
luster and zeros in 
omponents 
orresponding to points outside the dominant 
luster.In [Weiss 99℄, Weiss dis
ussed the relationships between four di�erent spe
tral algo-rithms [Perona 98, Shi 00, S
ott 90, Costeira 95℄, and proposed an interesting 
ombina-tion of the Shi and Malik algorithm [Shi 00℄ with S
ott and Longuet-Higgins algorithm[S
ott 90℄. In Ng et al. [Ng 02℄, the normalized row ve
tors of the matrix formed bythe �rst k weighted eigenve
tors are used as the input to a K-means 
lusterer, and aperturbational analysis was used to show that the results should be stable if the datawas already �nearly 
lustered�.Shi and Malik [Shi 00℄ used a quite di�erent eigenve
tor for solving 
lustering prob-lems. Rather than examining the �rst eigenve
tor of W they look at generalized eigen-ve
tors. Let D be the degree matrix of W : Dii =

∑
j wi,j. De�ne the generalizedeigenve
tor y as a solution to:

(D −W )y = λDy (2.4)
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ond generalized eigenve
tor, denoted by y2, as the y 
orrespondingto the se
ond smallest eigenvalue λ. Shi and Malik suggested thresholding this se
ondgeneralized eigenve
tor of W in order to partition the nodes into two parts. Theymotivated the approa
h by showing that the se
ond generalized eigenve
tor is an ap-proximate solution to a 
ontinuous version of a dis
rete problem in whi
h the goal isto minimize:
yT (D −W )y

yTDy
(2.5)subje
t to the 
onstraint that yi ∈ {1,−b} and yTD1 = 0, where 1 is a ve
tor ofappropriate length 
onsisting of unit entries and b is a positive real 
onstant.The signi�
an
e of the dis
rete problem is that its solution 
an be shown to providethe partition that minimizes the normalized 
ut (NCut) 
riterion for two regions.

NCut (A,B) =
cut (A,B)

links (A, V )
+

cut (A,B)

links (B, V )
(2.6)where links (A, V ) =

∑
i∈A,j∈V w (i, j) is the total 
onne
tion from nodes in A to allnodes in the graph V and links (B, V ) is similarly de�ned.The great advantage of the normalized 
ut over previous minimum 
ut methods isthe normalization, whi
h res
ales the 
ut weight to remove trivial solutions asso
iatedwith the removal of one or very few nodes. As Shi and Malik noted, there is no guaran-tee that the real solution will bear any relationship with the dis
rete one. Computingthe normalized 
ut exa
tly for a given graph is an NP-
omplete problem, however, Shiand Malik showed that an approximate solution 
an be obtained from the eigenve
torwith the se
ond largest eigenvalue.In spe
tral 
lustering, there is resear
h showing that using more eigenve
tors anddire
tly 
omputing k-way partitioning is better [Yu 03℄. Yu and Shi [Yu 03℄ studiedmulti-way partitions in the 
ontext of normalized 
uts and spe
tral 
lustering. Meilaand Shi [Meila 01℄ showed a 
onne
tion between the eigenve
tors and eigenvalues usedin normalized 
uts and those of a Markov matrix obtained by normalizing the a�nitymatrix W .The original NCut formulation relies on the fa
t that the a�nity matrix 
an bemade sparse, whi
h allows the algorithm to handle larger images than would be pos-sible otherwise and it also allows for the use of optimized eigensolvers that work onsu
h sparse matri
es. However, this is not su�
ient for large images. Belongie et
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ent image segmentation methodsal. [Belongie 02℄, and Fowlkes et al. [Fowlkes 04℄ introdu
ed a modi�
ation to theNCut framework that makes it possible to segment large images, or image sequen
es[Fowlkes 01℄. The modi�
ation is based on the Nyström method for approximating theleading eigenvalues of a matrix using only a small number of randomly sampled imagepixels. These random samples are used to build a smaller (non-square) a�nity matrixwhose leading eigenve
tors 
an be 
omputed at a mu
h lower 
omputational expensethan those of the a�nity matrix for the full image. These eigenve
tors are then usedto interpolate the 
omplete solution to the NCut problem.Sharon et al. [Sharon 00, Sharon 01℄ proposed a di�erent approa
h for makingthe NCuts pra
ti
al on large images. Their method solves a 
oarser NCut problemwhi
h in
ludes region based statisti
s in the a�nity measure, and then interpolatesthe solution to �ner levels of detail, providing a hierar
hy of segmentations for a givenimage.2.4 Cooperative methodsElementary segmentation te
hniques based on boundaries or regions often fail to pro-du
e a

urate segmentation results on their own. To over
ome this di�
ulty there hasbeen a trend towards algorithms that take advantage of the 
omplementary nature ofboth te
hniques. More elaborated image segmentation approa
hes based on the 
om-bination, integration or iteration between methods, espe
ially those of edge dete
tionand uniform region extra
tion have been proposed.The 
ooperative s
hemes are useful when some sort of 
omplementary properties areexplored among the individual methods. For instan
e, it is 
ommon to 
ombine edge-based with region-based approa
hes. As the �rst method presents good lo
alization
hara
teristi
s but it is sensitive to noise usually resulting in several edge gaps, theregion-based methods have poor a

ura
y on boundaries, although produ
ing natural
losed 
ontours and they are more insensitive to noise. By using the 
omplementarynature of edge-based and region-based information, it is possible to redu
e the problemsthat arise in ea
h individual method. The trend towards integrating several te
hniquesseems to be the best way to follow [Muñoz 03℄. By having a 
ooperative method it isexpe
ted that it will 
over a wider range of images on whi
h the algorithm is able towork for segmentation.



2.4 Cooperative methods 43Combining the outputs of image segmentation and edge dete
tion to improve thequality of the segmented image is an old idea. Muñoz et al. [Muñoz 03℄ in theirre
ent review on 
ombining methods 
lassi�ed these proposals by the timing of theintegration between methods as: embedded integration, when the edge information isextra
ted �rst, and this information is then used within the segmentation algorithm,whi
h is mainly based on regions; post-pro
essing integration, where edge and regioninformation are extra
ted independently as a preliminary step, and an a posteriorifusion pro
ess tries to exploit the dual information in order to modify, or re�ne, theinitial segmentation obtained by a single te
hnique.We append two new 
lasses to this 
lassi�
ation: the hybrid framework and theintera
tive framework. Thus we distinguished the 
ooperative methods into four dif-ferent types: the sequential [Beveridge 89, Gambotto 93, Fan 01℄, the parallel [Chu 93,Zhu 96, Germond 00℄, the hybrid [Haris 98, Kermad 02, Lezoray 03, Makrogiannis 05,Callaghan 05, Duarte 06℄, and intera
tive frameworks [Mortensen 99, Olabarriaga 01,Blake 04, Rother 04, Farmer 05℄. Sequential and parallel types 
orrespond respe
tivelyto embedded and post-pro
essing 
lasses of Muñoz et al. 
lassi�
ation. Hybrid frame-work 
ombines methods that are themselves 
ooperative approa
hes. The intera
tiveframework 
lass in
ludes the methods whi
h, due to a high demand for a

urate results,usually adopt human intervention.2.4.1 Sequential frameworkThe sequential framework usually 
onsists of using previously extra
ted edge infor-mation within a region segmentation algorithm. Although the method obtained in asequential framework is more robust than its individual 
omponents, the 
ooperationbetween the modules is still rudimentary: ea
h sub-task is performed sequentially andits result is used to feed the following task.Figure 2.2 illustrates the sequential framework. The de
ision to merge in regiongrowing algorithms is generally based only on the 
ontrast between the 
urrent pixeland the region. The edge map integration provides an additional 
riterion in su
hde
isions. The seeds are lun
hed in pla
ements whi
h are free of edges. Finding anedge pixel means that the growing pro
ess has rea
hed the boundary of the region andtherefore the pixel must not be aggregated.
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Figure 2.2: S
heme of sequential framework for image segmentation.The work of Beveridge et al. [Beveridge 89℄ o�ered a good example of a pro
edurethat integrates both histogram analysis and region merging. In their paper an inputimage is divided into se
tors of �xed size and �xed lo
ation. An intensity histogram is
al
ulated for ea
h se
tor and used to produ
e a lo
al segmentation. For every se
tor,information from its neighbours is used to dete
t 
lusters for whi
h there may notbe enough lo
al support due to the arti�
ially indu
ed partition of the image. Afterthe lo
al segmentations are 
omplete, the se
tor boundaries are removed by mergingtogether similar regions in neighbouring se
tors. The results show that this algorithmprodu
es good segmentations in parts of the image that are reasonably homogeneous,and over-segmented regions when there is texture, signi�
ant intensity gradients, orobje
ts with non-uniform brightness.Gambotto [Gambotto 93℄ suggested using edge information to stop the region grow-ing pro
ess. His proposal assumes that the gradient takes a high value over a large partof the region boundary. The iterative growing pro
ess is thus 
ontinued until the max-imum of the average gradient 
omputed over the region boundary is dete
ted. Yu andWang [Yu 99℄ used the edge information to determine the seeds for region growing butapplied a new algorithm. A so-
alled di�eren
e in strength (DIS) map is �rst 
reated.The pixel with the smallest DIS value among the unlabelled pixels is 
hosen as the seedof a region. The region grows until no more neighbouring pixels 
an be joined to it.Then, a new seed is 
hosen from the unlabelled pixels. The pro
ess 
ontinues until allpixels in the image are labelled. The major problems of 
ooperative te
hniques thatare based on region growing are a

ura
y of the segmentation and e�
ien
y in termsof speed of region growing around the pixels.



2.4 Cooperative methods 45Fan et al. [Fan 01℄ developed an automati
 
olour image segmentation te
hniqueby integrating 
olour-edge extra
tion and seeded region growing on the YUV 
olourspa
e. The 
olour-edges are �rst obtained by an isotropi
 
olour-edge dete
tor and the
entroids between the adja
ent edge regions are taken as the initial seeds for regiongrowing. Moreover, the results of 
olour-edge extra
tion and SRG are integrated toprovide more a

urate segmentation of images. The disadvantage is that their seedsare over-generated.S
laro� and Liu [S
laro� 01℄ proposed a method for deformable shape dete
tionand re
ognition based on over-segmentation and region merging guided by statisti
alshape model and MDL prin
iple. Luo and Khoshgoftaar [Luo 04℄ proposed an imagesegmentation algorithm by 
ombining mean shift 
lustering and minimum des
riptionlength (MDL) prin
iple to 
omplement their strengths and weaknesses. Their approa
his to apply mean shift 
lustering to generate an initial over-segmentation and thenmerge regions based on MDL prin
iple.Pantofaru and Hebert [Pantofaru 05℄ presented a framework whi
h 
onsists of 
om-paring the performan
e of mean shift [Comani
iu 02℄ and e�
ient graph-based 
luster-ing [Felzenszwalb 04℄, based on three important 
hara
teristi
s: 
orre
tness, stabilitywith respe
t to parameter 
hoi
e, and stability with respe
t to image 
hoi
e. Theypropose a hybrid algorithm whi
h �rst performs the �rst stage of mean shift-based seg-mentation, mean shift �ltering, and then applies the graph-based segmentation s
heme,as an attempt to 
reate an algorithm whi
h preserves the 
orre
tness of the meanshift-based segmentation but it is more robust with respe
t to parameter and image
hoi
e. They demonstrated that, although both the mean shift segmentation and hy-brid segmentation algorithms 
an 
reate realisti
 segmentations with a wide variety ofparameters, the hybrid algorithm has slightly improved stability.2.4.2 Parallel frameworkAfter the extra
tion of edge and region information obtained independently the par-allel framework 
arry out a posteriori integration. Parallel framework is based on thefusion of the results from single segmentation methods, attempting to 
ombine themap of regions and the map of edge outputs with the aim of providing an a

urate andmeaningful segmentation.
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ent image segmentation methodsFigure 2.3 shows a diagram of this parallel approa
h. This framework 
onsidersregion-based segmentation as an approximation to segmentation whi
h is then 
om-bined with salient edge information to a
hieve a more a

urate representation of theboundary of the obje
ts. Thus, edge information enables an initial result to be re�ned.

Figure 2.3: S
heme of parallel framework for image segmentation.Chu and Aggarwal [Chu 93℄ presented an optimization method that integrates mul-tiple region segmentation maps and edge maps in parallel 
ooperation, where an arbi-trary mixing of region and edge maps are allowed.Zhu and Yuille [Zhu 96℄ proposed a region 
ompetition approa
h to unify the a
tive
ontour model, region growing, and Bayes for image segmentation. This approa
his derived by minimizing a generalized Bayes 
riterion using the variational prin
ipleand 
ombines aspe
ts of a
tive 
ontour model and region growing. Their approa
halternates boundary estimation and region estimation steps. It requires the sele
tionof a number of seed regions for initialisation of the statisti
al measurements on whi
hthe region estimation is based. It would be advantageous both to minimise dependen
eon su
h initial 
onditions and for the region and boundary pro
essing to be autonomous,so that where ne
essary one 
ould be used independently from the other.Germond et al. [Germond 00℄ proposed to mix in a 
ooperative framework severaltypes of information and knowledge provided and used by 
omplementary individualsystems like a multi-agent system, a deformable model or an edge dete
tor, where a
ooperative segmentation performed by a set of region and edge agents 
onstrained
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ally and dynami
ally by both, the spe
i�
 grey levels in the 
onsidered im-age, statisti
al models of the brain stru
tures and general knowledge about MRI brains
ans. Intera
tions between the individual systems follow three modes of 
ooperation:integrative, augmentative and 
onfrontational 
ooperation, 
ombined during the threesteps of the segmentation pro
ess namely, the spe
ialization of the seeded region grow-ing agents, the fusion of heterogeneous information and the retroa
tivity over sli
es.Kermad and Chehdi [Kermad 02℄ presented a system that integrates the informa-tion resulting from two 
omplementary segmentation methods: edge dete
tion andregion extra
tion. This permits the 
orre
tion and adjustment of the 
ontrol parame-ters of the methods used. The suggested 
ooperation approa
h introdu
es a me
hanismwhi
h 
he
ks the 
oheren
e of the results through a 
omparison of the two segmenta-tions. From over-segmentation results both methods are iterated by loosening 
ertain
onstraints until they 
onverge towards stable and 
oherent results. This 
oheren
e isa
hieved by minimising a dissimilarity measure between the edges and the boundariesof the regions.Christoudias et al. [Christoudias 02℄ presented an algorithm where a region adja-
en
y graph is 
reated to hierar
hi
ally 
luster the modes of the mean shift approa
h.Also, edge information from an edge dete
tor is 
ombined with the 
olour informationto better guide the 
lustering.Zhou et al. [Zhou 05℄ presented a method that 
ombines the 
lassi
al gradient ve
tor�ow (GVF) algorithm [Xu 98℄ with mean shift. Due to the dependen
e on the gradientve
tors of an edge map, the 
lassi
al GVF is sensitive to the shape irregularities, andhen
e the snake 
annot be ideally lo
ated on the 
on
ave boundaries. They proposean improved representation of the internal energy for
e by redu
ing the Eu
lideandistan
e between the guessed 
entroid and the estimated one of the snake. The meanshift te
hnique is used to 
onstrain the spatial di�usion of the gradient so that it isable to handle e�
iently boundary 
on
avities.2.4.3 Hybrid frameworkFigure 2.4 gives a possible stru
ture of a hybrid framework. This example beginsby obtaining an edge map whi
h is used in the watershed algorithm to obtain anover-segmented result. This result is then 
ompared with the result from the dual
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h: ea
h boundary is 
he
ked to �nd out if it is 
onsistent in both results (edgesand regions). When this 
orresponden
e does not exist the boundary is removed. Thisis a
hieved by using a region similarity graph where the similarity is proportional withthe intervening 
ontours between the regions. This graph is segmented by some graph
ut method.

Figure 2.4: S
heme of hybrid framework for image segmentation.Haris et al. [Haris 98℄ proposed a hybrid image segmentation using watershedsand fast region merging algorithm whi
h 
ombines edge and region-based te
hniquesthrough the morphologi
al algorithm of watersheds. This is done by applying edgepreserving statisti
al noise �lter to 
ompute an estimate of the image gradient. Theimage is then partitioned into primitive regions using the watershed transform on theimage gradient magnitude. The result of this is then used as an input to a bottom upregion merging pro
ess. The obje
tive 
ost fun
tion, the so-
alled region dissimilarityfun
tion, is a fun
tion of the square error of the pie
ewise 
onstant approximation ofthe observed image, and is de�ned over the spa
e of the partitions. For region mergingthe authors adopt a solution for fast region merging, the fast neighbour region mergingby 
reating a simpli�
ation of the region adja
en
y graph (RAG). This algorithm wasdesigned and implemented for 2D and 3D images and it produ
es very satisfa
toryresults in segmentation performan
e and exe
ution.Lezoray and Cardot [Lezoray 03℄ 
ombined di�erent types of methods to obtaina segmentation of a 
olour image. They divided the segmentation pro
ess into three
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olour 
lustering, region merging and watershed segmentation. In the �rst stage2D histograms are used to obtain a rapid and 
oarse 
lustering of the 
olour image.This 
lustering is fast, simple and unsupervised, although over-segmented. The se
ondstage pro
eeds to a region merging of adja
ent regions until the stabilization of a 
ostasso
iated with the partitioning of the 
olour image. In the third stage, a segmentationre�nement is based on a morphologi
al �ltering and 
olour watershed.Makrogiannis et al. [Makrogiannis 05℄ proposed a hybrid algorithm that 
ombinesthe 
on
epts of multi-resolution fuzzy 
lustering and region-based graph segmentationto produ
e the �nal regions. Watershed approa
h is applied to produ
e the initial over-segmented image and a se
ond stage, known as the merging stage, is used to form the�nal regions. This stage 
onsists of the dissimilarity 
al
ulation pro
ess and the mergingalgorithm. The dissimilarity 
al
ulation is 
arried out using a multis
ale generationpro
ess in the feature spa
e. A 
lustering approa
h based on non-parametri
 densityestimation, known as subtra
tive 
lustering, is used to determine the population andlo
ation of the most prominent 
luster 
entres at di�erent resolutions. The fuzzy C-means algorithm is subsequently employed to produ
e the membership ve
tors. Thedissimilarity at ea
h resolution is inferred using standard fuzzy arithmeti
 operations.The multis
ale dissimilarity fun
tion takes into a

ount the stru
ture of 
lusters overmultiple s
ales to evaluate the degree of dissimilarity. The result of this operation is theintegration of the global 
luster analysis results into the general region-based s
heme.Pan et al. [Pan 03℄ proposed a 
ombination of mean shift with watershed algo-rithm. First, mean shift pro
edure is used to �nd the highest density regions whi
h
orrespond to 
lusters 
entred on the modes (lo
al maxima) of the underlying prob-ability distribution in the feature spa
e. The prin
ipal 
omponent of ea
h signi�
ant
olour is extra
ted by mode. Se
ondly, homogeneous regions 
orresponding to themodes are used as markers to label an image, then marker-
ontrolled watershed trans-form is applied to the image segmentation. The algorithm was applied to blood 
ellssegmentation.O'Callaghan and Bull [Callaghan 05℄ proposed the 
ombination of an initial seg-mentation using watershed transform with spe
tral methods. The morphologi
al wa-tershed transform is applied to a gradient image whi
h is a result of 
ombination of atexture gradient and modulated intensity gradient, trying to embed in a single imageall per
eptual gradients. For texture representation the authors use sub-band median
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ent image segmentation methods�lters applied to the texture sub-band magnitude (the magnitude of the 
omplex de-tail 
oe�
ients 
omputed from a wavelet 
omplex transform). This method followsan approa
h proposed by Hill et al. [Hill 03℄ whi
h also integrates edge and textureinformation. This sequen
e of operations results in a set of homogeneous texture re-gions, although over segmented images. To further redu
e the number of segments, theprimitive regions are represented in a graph and pro
essed using spe
tral 
lustering,using a weighted mean 
ut algorithm. The authors argued that weighting the 
uts bythe length of the boundary makes the partition independent of the number and geo-metri
 arrangements of the segments while taking into 
onsideration the importan
eof the boundary lengths. For building the similarity matrix, the authors followed anon-parametri
 approa
h of Puzi
ha et al. [Puzi
ha 99℄ by measuring the similaritybetween feature distributions. In this way rather than 
lustering single feature pointsthe spe
tral method 
luster feature distributions. This morphologi
al-spe
tral 
ombi-nation strategy leverage the over segmentation weakness of the watershed by providingto the spe
tral approa
h small texture pat
hes that 
an be 
hara
terized statisti
ally.In [Duarte 06℄, Duarte et al. proposed an approa
h that starts from an over-segmented image whi
h is obtained by applying a standard morphologi
al watershedtransformation on the original image. Then, this over-segmented image is des
ribedby a simpli�ed undire
ted weighted graph, where ea
h node represents one region andweighted links measure the dissimilarity between pairs of regions a

ording to their in-tensities, spatial lo
ations and original sizes. Finally, the resulting graph is iterativelypartitioned in a hierar
hi
al fashion into two subgraphs, 
orresponding to the two mostsigni�
ant 
omponents of the a
tual image, until a termination 
ondition is met. Theyuse a histogram thresholding method to automati
ally determine the merging termi-nation. This graph-partitioning task is solved by a normalized 
ut approa
h using ahierar
hi
al so
ial meta heuristi
.Li and Zeng [Li 06℄ presented a strategy based on wavelet, morphology and 
om-bination method. Firstly, the wavelet transforms and morphology are used to get ridof the e�e
t of the defo
using and get the sub-images that in
lude the parti
les. Thenbased on the 
hara
teristi
s of the sub-images, edge dete
tion and adaptive thresholdingare employed adaptively. Finally, a simpli�ed watershed algorithm for the overlappingparti
les is used.
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tive frameworkThe intervention of a human operator is often needed to initialise the method, to 
he
kthe a

ura
y of the result produ
ed automati
ally, or even to 
orre
t the segmentationresult manually. Intera
tion is usually adopted in appli
ations with a high demandfor a

urate results and where the volume of images is reasonable, allowing for humanmanipulation. A major disadvantage of these methods is that they are only suitablefor foreground-ba
kground segmentation.All the above-mentioned algorithms are automati
. A major advantage of this typeof segmentation algorithms is that they 
an extra
t boundaries from a large numberof images without o

upying human time and e�ort. However, in an un
onstraineddomain, for non-pre
onditioned images, the automati
 segmentation is not always re-liable. On the other hand, a simple user assistan
e in obje
t re
ognition is oftensu�
ient to 
omplement de�
ien
ies and to 
omplete the segmentation pro
ess. Thereare many di�
ult segmentation tasks that require a detailed user assistan
e. This is of-ten true in medi
al appli
ations, where image segmentation is parti
ularly di�
ult dueto restri
tions imposed by image a
quisition, pathology and biologi
al variation. Toaddress these problems a variety of intera
tive segmentation methods were developed[Olabarriaga 01, Rother 04℄.Figure 2.5 gives an example of an intera
tive framework. In this example the userdraws a fat pen trail en
losing the obje
t boundary, marked in blue. This de�nes thetrimap with foreground/ba
kground/un
lassi�ed labels. The automati
 segmentationalgorithm produ
es a �rst segmentation result. Missing parts of the obje
t 
an be addede�
iently by user re�nement: the user roughly applies a foreground brush, marked inred, and the automati
 segmentation method adds the whole region.Re
ently, resear
hers have managed to improve image 
ut-out by using region-basedmethods, e.g., intelligent paint [Barrett 02℄, sket
h-based intera
tion [Tan 01℄, intera
-tive graph 
ut image segmentation [Boykov 01a℄ and GrabCut [Rother 04℄. Region-based methods work by allowing the user to give loose hints as to whi
h parts of theimage are foreground or ba
kground without en
losing regions or being pixel a

urate.These hints usually take the form of 
li
king or dragging on foreground or ba
kgroundelements and are thus qui
k and easy to do. An underlying optimization algorithmextra
ts the a
tual obje
t boundary based on the user input hints.



52 Survey on re
ent image segmentation methods

Figure 2.5: S
heme of intera
tive framework for image segmentation.The intera
tive image segmentation algorithms [Boykov 01a, Blake 04, Rother 04℄aim to separate, with minimal user intera
tion, a foreground obje
t from its ba
kgroundso that, for pra
ti
al purposes, it is available for pasting into a new 
ontext. Some stud-ies [Ruzon 00, Wang 05℄ fo
us on inferen
e of transparen
y in order to deal with mixedpixels and transparent textures su
h as hair. Other studies [Boykov 01a, Blake 04℄
on
entrate on 
apturing the tenden
y for images of solid obje
ts to be 
oherent, viaMarkov Random Field prior. For a review on intera
tive approa
hes for image segmen-tation see e.g. [Olabarriaga 01, Rother 04℄.Rui et al. [Rui 96℄ proposed a segmentation algorithm based on 
lustering andgrouping in spatial�
olour�texture spa
e. The user de�nes where the obje
t of inter-est is and the algorithm groups regions into meaningful obje
ts. Wang and Cohen[Wang 05℄ 
ombined the segmentation and matting3 problem together and proposeda uni�ed optimization approa
h based on belief propagation [Yedidia 02℄. They itera-tively estimate the opa
ity value for every pixel in the image, based on a small sampleof foreground and ba
kground pixels marked by the user.Boykov and Jolly [Boykov 01a℄ proposed a method for intera
tive segmentationbased on graph 
uts. The user input is minimal, 
onsisting of a few mouse-
li
ks indi-3Matting approa
hes try to simplify the problem by photographing foreground obje
ts against a
onstant 
oloured ba
kground, whi
h is 
alled blue s
reen matting.
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ating some pixels whi
h are inside the obje
t of interest, and other are outside. Anenergy fun
tion based on both boundary and region information is then minimized sub-je
t to these user-imposed 
onstraints. The global minimum is found by using graph
ut te
hniques. With a relatively small amount of user input, the algorithm su

ess-fully segments a variety of obje
ts from both medi
al and natural images. GrabCut[Rother 04℄ extends the graph-
ut by introdu
ing iterative segmentation s
heme, thatuses graph-
ut for intermediate steps. The user draws a re
tangle around the obje
tof interest - this gives the �rst approximation of the �nal obje
t/ba
kground labelling.Then, ea
h iteration step gathers 
olour statisti
s a

ording to the 
urrent segmenta-tion, re-weights the image graph and applies graph-
ut to 
ompute new re�ned segmen-tation. After the iterations stop the segmentation results 
an be re�ned by spe
ifyingadditional seeds, similar to the original graph-
ut.Intelligent Paint proposed by Barrett and Cheney [Barrett 02℄ is a region-based in-tera
tive segmentation te
hnique based on hierar
hi
al image segmentation by tobog-gan watershed [Liu 03℄. The strategy it uses 
oordinates human-
omputer intera
tionto extra
t regions of interest from ba
kgrounds using paint strokes with a mouse.Protiere and Sapiro [Protiere 07℄ proposed an intera
tive algorithm for soft segmen-tation of natural images. The user �rst roughly s
ribbles (user-provided labels) di�erentregions of interest and from them the whole image is automati
ally segmented. Thissoft segmentation is obtained via fast, linear 
omplexity 
omputation of weighted dis-tan
es to the user-provided s
ribbles. The adaptive weights are obtained from a seriesof Gabor �lters and are automati
ally 
omputed a

ording to the ability of ea
h single�lter to dis
riminate between the sele
ted regions of interest.Boundary-based methods 
ut out the foreground by allowing the user to surroundits boundary with an evolving 
urve. The user tra
es along the obje
t boundary andthe system optimizes the 
urve in a pie
ewise manner. Examples in
lude intelligents
issor [Barrett 98℄ and LiveWire [Fal
ão 00℄. Besides being easier to manipulate ratherthan just sele
ting pixels manually with a traditional sele
tion tool, these te
hniquesstill demand a large amount of attention from the user. There is never a perfe
t mat
hbetween the features used by the algorithms and the foreground image. As a result,the user must 
ontrol the 
urve 
arefully. If a mistake is made, the user has to �ba
kup� the 
urve and try again. The user is also required to en
lose the entire boundary,whi
h 
an take some time for a 
omplex high-resolution obje
t [Li 04℄.
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ent image segmentation methodsThe intelligent s
issors segmentation tool des
ribed in [Barrett 98℄ allows obje
tswithin images to be extra
ted qui
kly and a

urately using simple gesture motions witha mouse. When the gestured mouse position 
omes in proximity to an obje
t edge, alive-wire boundary �snaps� to, and wraps around the obje
t of interest [Barrett 98℄. Itformulates boundary �nding as an un
onstrained graph sear
h in whi
h the boundaryis represented as an optimal path within the graph. The live-wire tool allows the userto intera
tively sele
t an optimal boundary segment by immediately displaying theminimum 
ost path from the 
urrent 
ursor position to a previously spe
i�ed �seed�point in the image.Mortensen and Barret [Mortensen 99℄ proposed a region-based intelligent s
issorsapproa
h whi
h uses toboggan watershed for image over-segmentation and then treatshomogeneous regions as graph nodes. After applying the toboggan segmentation, ea
h
onne
ted region is assigned with a di�erent label. Next, a weighted graph is 
on-stru
ted by tra
ing the boundary of ea
h region su

essively. On
e the weighted graphis 
onstru
ted, the remaining algorithm is the same as the pixel-based approa
h. How-ever, when 
ompared with the pixel-based approa
h, the number of graph nodes 
reatedby the region-based approa
h is lessened and hen
e the 
omputational 
ost is greatlyredu
ed.Suetake et al. [Suetake 07℄ argued that the intelligent s
issors is too sensitive toa noise and texture patterns in an image sin
e it utilizes the gradient information
on
erning the pixel intensities. They propose a new intelligent s
issors based onthe 
on
ept of the separability in order to improve the obje
t boundary extra
tionperforman
e. Rother et al. [Rother 04℄ evaluated the performan
e of some of thedes
ribed methods and have 
learly shown that methods based on graph 
uts allowa
hieving better segmentation results with less user e�ort required when 
omparedwith the other methods.A generi
 approa
h for feature sele
tion that is related with the intera
tive frame-work uses the 
lassi�
ation method as a subroutine, rather than as a postpro
essor.Farmer and Jain [Farmer 05℄ proposed a 
losed-loop framework 
alled wrapper-basedsegmentation that not only adapts the parameters of the segmentation algorithm, butalso a
tually dire
t the segmentation based on the underlying shape of the obje
t ofinterest. Figure 2.6 shows the 
losed-loop wrapper-based segmentation framework pre-sented in [Farmer 05℄.
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Figure 2.6: Wrapper-based image segmentation.They initially perform low-level segmentation to label the image as a set of non-overlapping blobs. Then they use the wrapper framework to sele
t the blobs that
omprise the �nal segmentation based on the 
lassi�
ation performan
e of the wrapper.The sele
tion pro
ess involves grouping the set of homogeneous regions in the imagethat together 
omprise the obje
t of interest. The blob 
ombination with the highestprobability of 
orre
t 
lassi�
ation, based on their 
lassi�
ation against a set of trainingimages, for a given 
lass is 
onsidered the most likely 
ombination.2.5 SummaryIn this 
hapter we have reviewed a lot of image segmentation proposals. Spe
ial em-phasis has been pla
ed on the strategy used to 
arry out the 
ooperative pro
ess whi
hintegrate edge and region information and identi�ed the various strategies and methodsused to fuse su
h information. A 
lassi�
ation of 
ooperative segmentation te
hniqueshas been proposed and we have des
ribed several algorithms, pointing out their spe
i�
features.Based on all the te
hniques dis
ussed in this 
hapter, it is 
lear that image segmen-tation pro
edure is a 
omplex issue. Another 
on
lusion is that image segmentation isappli
ation dependant and some parameters have to be re�ned a

ordingly to the typeof image. The large amount of methods is an indi
ation that the ��nal solution� is stillfar to 
ome.
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tually, it is not feasible to determine the best approa
h to segmentation. Thereare several reasons for this, being the two most important fa
tors (1) the la
k ofa generally a

epted and 
lear methodology for evaluating segmentation algorithms[Zhang 96℄, and (2) the di�
ulty in implementing other people's algorithms due to thela
k of ne
essary details [M
Cane 97℄. Obviously, unless a given segmentation algo-rithm is spe
i�
ally implemented and tried out on the same set of images, it is verydi�
ult to evaluate from the published results how well it will work for those images.Thus, we would like to emphasize the need for the image segmentation 
ommunity to
reate a 
entral repository of algorithm implementations, data and evaluation mea-sures so that resear
hers 
an qui
kly and e�e
tively 
ompare their algorithms with wellestablished methods. We will address this evaluation issue on the next 
hapter.



CHAPTER 3
Image segmentation evaluation

This 
hapter proposes a new approa
h for evaluation of segmentation basedon regions that takes into a

ount not only the a

ura
y of the boundary lo-
alization of the 
reated segments but also the under- and over-segmentatione�e
ts, regardless to the number of regions in ea
h partition. In addition ittakes into a

ount the way humans per
eive visual information. This newmetri
 
an be applied both to provide a ranking among di�erent segmenta-tion algorithms automati
ally and to �nd an optimal set of input parametersof a given algorithm.3.1 Introdu
tion1The pra
ti
al appli
ation of an image segmentation algorithm requires that we under-stand how its performan
e varies in di�erent operating 
onditions. Evaluating algo-rithms let resear
hers know the strengths and weaknesses of a parti
ular approa
h andidenti�es aspe
ts of a problem where further resear
h is needed. Harali
k [Harali
k 94℄underlines the ne
essity of the evaluation of 
omputer vision algorithms if the �eld isto produ
e methods of pra
ti
al use to engineers.In spite of signi�
ant advan
es in image segmentation te
hniques, evaluation ofthese methods thus far has been largely subje
tive. Typi
ally the e�e
tiveness of a newalgorithm is demonstrated only by the presentation of a few segmented images that areevaluated by some method, or it is otherwise left to subje
tive evaluation by the reader.1The work in
luded in this 
hapter was presented at the International Conferen
e on Image Analysisand Re
ognition (ICIAR2006) [Monteiro 06℄. 57



58 Image segmentation evaluationThe readers frequently do not know whether the results have been opportunisti
allysele
ted or they are typi
al examples, and how well the demonstrated performan
eextrapolates to larger sets of images.Evaluating the output of segmentation algorithms is still problemati
. The work ofMartin et al. [Martin 01℄ presents a signi�
ant advan
e in this dire
tion by providingsegmentation results that 
an be used as a baseline for 
omparing the output of di�erentmethods, as well as suitable error metri
s to quantify the performan
e of the algorithmsin terms of the quality of their segmentations. However, at this time to our knowledgeonly the normalized 
uts algorithm has been evaluated in this way, and the results ofthis evaluation 
annot be interpreted in a meaningful way in the absen
e of 
omparativeresults for other segmentation methods. In fa
t there are very few 
omparative studieson the methods used for evaluation [Zhang 96℄.The sele
tion of an appropriated method for the segmentation of a parti
ular imageis a di�
ult issue, as there is no universally a

epted �gure(s) of merit to evaluate theperforman
e of an image segmentation result. We still need to rely in the experien
e,knowledge and intuition of the person in 
harge of 
on
eiving the image segmentationalgorithm in the sele
tion phase, together with the semanti
 information about thetype of images to be segmented and the qualitative assessment of the �nal user.Typi
ally resear
hers show their segmentation results on a few images and point outwhy the results 'look good'. We never know from su
h studies if the results are goodor typi
al examples. Sin
e none of the proposed segmentation algorithms are generallyappli
able to all images, and di�erent algorithms are not equally suitable for a parti
-ular appli
ation, there is the need to make 
omparisons so that the better ones 
anbe sele
ted. The majority of studies proposing and 
omparing segmentation methodsevaluate the results only with one evaluation method. However, results vary signi�-
antly among di�erent evaluators, be
ause ea
h evaluator may have distin
t standardsfor measuring the quality of the segmentation.The main di�
ulty in evaluating segmentation algorithms stems from the ill-de�nednature of the problem being addressed. Zhang, in his survey [Zhang 96℄, proposes thisde�nition of image segmentation: '[Image segmentation℄ 
onsists of subdividing animage into its 
onstituent parts and extra
ting these parts of interest (obje
ts).'Without expli
it knowledge of what one would like the output of the algorithm tobe, it is hard to say whether one algorithm is better than another. Many resear
hers
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tion 59prefer to rely on quality human judgement of results for evaluation. Borra and Sarkar[Borra 97℄ argued that segmentation performan
e 
an be evaluated only in the 
ontextof a task su
h as obje
t re
ognition. Pal and Pal [Pal 93℄ say that 'a human beingis the best judge to evaluate the output of any segmentation algorithm'. M
Cane[M
Cane 97℄ proposes an evaluation method based entirely on the appli
ation for whi
hthe algorithm was designed. If a segmentation method leads to a better performan
eon a task, then that segmentation method is better for that task, regardless of what ahuman expert thinks about the quality of the segmentation.In some sense boundary dete
tion and region segmentation are two dual problemsand their performan
e evaluation appears to be a similar task. One may 
onvert a seg-mented region map to an equivalent boundary map by marking the region boundariesonly and then applying any boundary dete
tion evaluation method. However, a simpleexample as shown in Figure 3.1, reveals a fundamental di�eren
e: although in terms ofthe boundaries the two segmentation results only di�er marginally, their dis
repan
yin terms of regions is substantially larger. In the present work although we made areview on boundary based evaluation, our �rst 
on
ern is with region segmentationevaluation.
(a) (b)Figure 3.1: Two segmentation results.Some resear
hers argue that segmentation algorithms should be evaluated in the
ontext of a parti
ular task su
h as obje
t re
ognition [Borra 97℄, that is di�erentalgorithms should be 
ompared in terms of the potential bene�t they provide for aparti
ular higher-level task. Other resear
hers (see for example [Martin 01℄) proposethat segmentation algorithms should be evaluated as stand-alone modules by 
omparingtheir output to 'ground truth' whi
h is usually a segmentation produ
ed by humanobservers.This latter view is more suitable for our purposes so, for the remainder of the 
hap-ter, experimental results are 
onsidered in the light of what a human observer would see



60 Image segmentation evaluationin a given image. This leads us to two essential problems: 1) Di�erent human observerswill produ
e di�erent segmentations of the same image, and 2) Human observers usehigh level knowledge, and solve high level vision problems su
h as re
ognition and per-
eptual 
ompletion while segmenting the image. Resear
h by Martin et al. [Martin 01℄indi
ates that human segmentations do not vary randomly, instead they show regular-ities that 
an be exploited to design and evaluate segmentation algorithms. They alsosuggest ways in whi
h the use of higher level knowledge by human observers 
an bea

ounted for, thus allowing for the dire
t 
omparison of segmentations produ
ed byhuman observers and segmentation algorithms.A potential problem for a measure of 
onsisten
y between segmentations is thatthere is no unique segmentation of an image. One approa
h is to ask human subje
tsto segment the images by hand. If a reasonable 
onsensus emerges, the hand segmen-tations 
an be treated as ground truth, and 
ompared to the outputs of segmentations
hemes. Martin et al. [Martin 01℄ take this approa
h. They present a database
ontaining hand segmented images from the Corel database [Martin 01℄. They de�nean error measure whi
h quanti�es the 
onsisten
y between segmentations of di�eringgranularities and �nd that di�erent human segmentations of the same image are highly
onsistent. A

ording to Martin et al. [Martin 01℄, two subje
ts may segment an imagedi�erently for any of several reasons:
• Per
eption. If two subje
ts per
eive the same s
ene in two di�erent ways, thenthey may see di�erent obje
ts and produ
e di�erent segmentations.
• Attention. Subje
ts may pay attention to di�erent parts of the s
ene to di�erentdegrees, and may therefore over-segment the obje
ts of fo
us, and under-segmentthe other obje
ts.
• Re�nement. Two subje
ts may segment an image identi
ally in all regards,ex
ept that one subje
t may divide obje
ts into smaller pie
es than the othersubje
t did.The two last e�e
ts produ
e variations between segmentations but not in
onsisten-
ies, then the error should be smaller. This implies that we need to de�ne segmentation
onsisten
y measures that do not penalize su
h di�eren
es. If two segmentations arisefrom di�erent per
eptual organizations of the s
ene then it is fair to de
lare the seg-mentations in
onsistent. One desirable property of a good measure is to a

ommodate



3.2 Problem formulation 61re�nement only in regions that human segmenters �nd ambiguous and to penalizedi�eren
es in re�nement elsewhere.An alternative approa
h is to allow human subje
ts to evaluate dire
tly the outputof segmentation algorithm using psy
hovisual tests and judge whi
h of segmentationsis more meaningful to them. Sha�rey et al. [Sha�rey 02℄ proposed an evaluationpro
edure that subje
ts human observers to a psy
hovisual test 
omparing dire
tly theoutput of di�erent segmentation algorithms and judge whi
h pair of segmentations ismore meaningful to them. Heath et al. [Heath 97℄ evaluated the output of di�erent edgedete
tors on a subje
tive quantitative s
ale using the 
riterion of ease of re
ognizabilityof obje
ts (for human observers) in the edge images. Chalana and Kim [Chalana 97℄ usemultiple expert observers to agree on ground truth in the 
ontext of medi
al imagery,while Hoover et al. [Hoover 96℄ do so in 
omputer vision through 
arefully 
reatedground truth to test range �nding algorithms.Only a few evaluation methods a
tually explore the segments obtained from thesegmentation pro
ess. Some measures are best suited to evaluate edge dete
tion[Sahoo 88℄, working dire
tly on the binary image of the regions' boundaries [Huang 95℄.Although we 
an always treat segmentation as a boundary map, the problem is in thesimpli�ed use of the edge map, as simply 
ounting the mis
lassi�ed pixels, on anedge/non-edge basis. Pixels on di�erent sides of an edge are di�erent in the sense thatthey belong to di�erent regions - that is why it may be more reasonable to use thesegmentation partition itself.Evaluation of image segmentation di�ers 
onsiderably from the binary foregroundba
kground segmentation evaluation problem examined in [Goumeidane 03, Huang 95℄,in that the 
orre
tness of the two 
lass boundary lo
alization is not the only quantityto be measured. This derives from the presen
e of an arbitrary number of regions inboth the referen
e segmentation and the segmentation to be evaluated.3.2 Problem formulationAn evaluation metri
 is desired to take into a

ount the following e�e
ts:
• Over-segmentation. A region of the referen
e is represented by two or moreregions in the examined segmentation.
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• Under-segmentation. Two or more regions of the referen
e are represented bya single region in the examined segmentation.
• Ina

urate boundary lo
alization. Ground truth is usually produ
ed byhumans that segment at di�erent granularities.
• Di�erent number of segments. We need to be able to 
ompare two segmen-tations when they have a di�erent number of segments.Under-segmentation is 
onsidered to be as a mu
h more serious problem as it is eas-ier to re
over true segments through a merging pro
ess after over-segmentation ratherthan trying to split an heterogeneous region. One desirable property of a good eval-uation measure is to a

ommodate re�nement only in regions that human segmenters
ould �nd ambiguous and to penalize di�eren
es in re�nements elsewhere. In additionto being tolerant to re�nement, any evaluation measure should also be robust to noisealong region boundaries and tolerant to di�erent number of segments in ea
h partition.Segmentation evaluation 
an be judged a

ording to the amount of mis-segmentedpixels estimated by a dire
t 
omparison between referen
e and resulted segmentationmask. Pixels 
an be 
lassi�ed into four sets: well-
lassi�ed pixels (true positives,

Tp), in
orre
tly dete
ted pixels (false positives, Fp), 
orre
tly undete
ted pixels (truenegatives, Tn), and in
orre
tly undete
ted pixels (false negatives, Fn). True negativepixels are ignored in some evaluation measures, e.g. Pre
ision-Re
all 
urves.Let S and R be two segmentations of the same image, where S = {s1, s2, ..., sk} isthe segmentation mask to be evaluated, 
ontaining k regions, and R = {r1, r2, ..., rq} isthe referen
e mask, 
ontaining q regions. The pixel 
lassi�
ation sets 
an be expressedas:
Tp = S ∩R Fp = S ∩ R Fn = S ∩R Tn = S ∪R (3.1)where R and S denotes the 
omplement of R and S respe
tively. We assume that animage is 
omposed of obje
ts that when aggregated form all the image. So, if a pixelis 
lassi�ed as true for one obje
t it is 
lassi�ed as false for other obje
t. Figure 3.2shows the 
lassi�
ation of pixels a

ording to the 
omparison between the referen
eobje
t and the segmented obje
t.These possible measures 
an be arranged in a 
onfusion matrix [Stehman 97℄. Thismatrix 
ontains information about a
tual and segmented regions done by a segmen-
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Referen
e obje
t Segmented obje
t

Pixel 
lassi�
ationFigure 3.2: Pixel 
lassi�
ation in the segmentation evaluation pro
ess.tation system. The diagonal elements represent 
orre
tly 
lassi�ed pixels while the
ross-diagonal elements represent mis
lassi�ed pixels. Figure 3.3 shows the 
onfusionmatrix for a two region segmentation algorithm.SegmentedYES NOReferen
e YES Tp FnNO Fp TnFigure 3.3: Confusion matrix in a two region segmentation problem.3.3 Related workA review on evaluation of image segmentation is presented by Zhang in [Zhang 96℄, who
lassi�es the methods into three 
ategories: analyti
al, where performan
e is judgednot on the output of the segmentation method but on the basis of their properties,prin
iples, 
omplexity, requirements and so forth, without referen
e to a 
on
rete im-plementation of the algorithm or test data. While in domains su
h as edge dete
tionthis may be useful, in general the la
k of a general theory of image segmentation limits
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al goodness methods, whi
h 
ompute some kind of 'goodness'metri
 su
h as uniformity within regions [Borsotti 98, Huang 95℄, 
ontrast between re-gions [Levine 85℄, or shape of segmented regions [Sahoo 88℄. For edge dete
tion, humanintuition based measures have been introdu
ed by Heath et al. [Heath 97℄ that proposean edge dete
tion assessment based on the bootstrap resampling te
hnique; and �nally,empiri
al dis
repan
y methods, whi
h evaluate segmentation algorithms by 
omparingthe resulting segmented image against a manually-segmented referen
e image, whi
his often referred to as ground truth, and 
omputes error measures.As stated by Zhang [Zhang 96℄, the major di�
ulty in applying analyti
al methodsis the la
k of general theory for image segmentation. The analyti
al methods may onlybe useful for simple algorithms or straightforward segmentation problems, where theresear
hers have to be 
on�dent in the models on whi
h these algorithms are based.Empiri
al goodness methods, also known as unsupervised evaluation methods quan-titatively evaluate the results of segmentation algorithms a

ording to some human
hara
terization about the properties of the ideal segmentation. These methods havethe advantage that they do not require manually segmented images to be supplied asground truth data. The great disadvantage is that these metri
s are heuristi
 and mayexhibit strong bias towards a parti
ular algorithm. For example the intra-region andthe inter-region grey-level uniformity metri
 will assume that a well-segmented imageregion should have low varian
e of grey-level. This will 
ause that any segmentation al-gorithm whi
h forms regions of uniform texture to be evaluated poorly. Although theseevaluation methods 
an be very useful in some appli
ations [Palmer 96, Borsotti 98℄,their results do not ne
essarily 
oin
ide with the human per
eption of the goodness ofsegmentation. For this reason, when a referen
e image is available or 
an be generated,empiri
al dis
repan
y methods are preferred.Empiri
al dis
repan
y methods, whi
h 
ompare segmentation output with groundtruth segmentation of the test data and quantify the levels of agreement and/or dis-agreement, have the bene�t that the dire
t 
omparison between a segmented image anda referen
e image is believed to provide a �ner resolution of evaluation, and as su
h,they are the most 
ommonly used methods of segmentation evaluation. A detailedsurvey on di�erent dis
repan
y errors 
an be found in [Ortiz 06℄.Zhang [Zhang 96℄ has proposed a dis
repan
y evaluation based on mis
lassi�edpixels. Yasno� et al. [Yasno� 77℄, in one of the earliest attempts, have shown that



3.4 Previous evaluation measures 65measuring the dis
repan
y based only on the number of mis
lassi�ed pixels does not
onsider the pixel position error. Their solution is based on the number of mis
lassi�edpixels and their distan
e to the nearest 
orre
tly segmented pixels, where ea
h pixelhas an asso
iated 
orre
t 
lass, and takes measures of 
lassi�
ation error from the pix-elwise 
lass 
onfusion matrix. Two error measures, the mis
lassi�
ation per
entage andpixel distan
e error are used. However, they only applied it to foreground/ba
kgroundsegmentation.Other dis
repan
y measures 
al
ulate the distan
es between wrong segmented pix-els and the nearest 
orre
tly segmented pixels [Odet 02℄, thus introdu
ing a spatial
omponent to the measure, or are based on di�eren
es between feature values mea-sured from regions of the 
orre
tly segmented and output images. Huang and Dom[Huang 95℄ introdu
ed the 
on
ept of distan
e distribution signatures. In [Odet 02℄ theuse of binary edge masks and s
alable dis
repan
y measures are proposed. Althoughit was adapted to segmentation region maps in [Goumeidane 03℄, that was only donewith ba
kground/foreground segmentations.Another 
on
ept sometimes used in evaluation is the re
eiver operating 
hara
ter-isti
 (ROC) 
urve that 
omes from psy
hophysi
s and signal dete
tion theory and hasre
eived an important amount of attention within the vision 
ommunity [Bowyer 01,Brown 06, Faw
ett 06℄. A ROC 
urve is a plot of false positive rate against true posi-tive rate as some parameter is varied. The 
onfusion matrix 
an be used to 
onstru
t apoint in ROC spa
e. ROC 
urves are 
ommonly used by the medi
al 
ommunity, whofound them useful in bringing out the sensitivity (true positive rate) versus spe
i�
ity(1 − false positive rate), and in re
ent years have been in
reasingly adopted in theevaluation of medi
al imaging te
hniques [Skudlarski 99, Sorenson 05, Mendonça 06℄.The major drawba
k of ROC 
urves is that they are only suitable for binary segmen-tation problems, su
h as edge dete
tion. An ex
eption of the two-
lass 
lassi�
ationproblems is the work of Rees et al. [Rees 02℄ whi
h addressed multi-
lass 
lassi�
ationevaluation by means of ROC analysis. An extensive literature resear
h on the use ofROC 
urves 
an be found in Kelly Zou's bibliography of ROC literature [Zou 05℄.In their re
ent work, Davis and Goadri
h [Davis 06℄ demonstrate that for a givendataset of positive and negative examples, there is a one-to-one 
orresponden
e betweena 
urve in ROC spa
e and a 
urve in Pre
ision-Re
all spa
e, su
h that the 
urves 
ontainexa
tly the same 
onfusion matri
es, if there is at least one true positive pixel.



66 Image segmentation evaluation3.4 Previous evaluation measuresIn this se
tion we present some of the best known measures used in image segmentationevaluation. A

ording to the evaluation approa
h we divide these measures in region-based and boundary-based.3.4.1 Region-based evaluationThe region-based s
heme evaluates the segmentation a

ura
y in the number of regions,the lo
ations and the sizes. Let the segmentation be S and the 
orresponding groundtruth be R. Both S and R are fun
tions on the image plane with labels as their fun
tionvalues. A region-based evaluation between two segmented images 
an be de�ned asthe total amount of di�eren
es between 
orresponding regions. Of 
ourse only regionsthat are likely the same in both segmentations should be taken into a

ount.Hamming distan
eHuang and Dom [Huang 95℄ introdu
ed the 
on
ept of dire
tional Hamming distan
ebetween two segmentations, S and R, denoted by dH (S ⇒ R). They began by es-tablishing the 
orresponden
e between region i = {1, 2, ..., k} of S with region j =

{1, 2, ..., q} of R su
h that si ∩ rj is maximized. The dire
tional Hamming distan
efrom S to R is de�ned as:
dH (S ⇒ R) =

∑
ri∈R

∑
st 6=sj ,st∩ri 6=∅

|ri ∩ st| (3.2)where |·| denote the size of a set. Therefore, dH (S ⇒ R) is the total area under theinterse
tions between all ri ∈ R and their non-maximal interse
ted regions from S. Aregion-based evaluation measure based on normalized Hamming distan
e is de�ned as
DH = 1− dH (S ⇒ R) + dH (R⇒ S)

2× |S| (3.3)where |S| is the image size and DH ∈ [0, 1]. The smaller the degree of mismat
h the
loser the DH is to one.Moreover, they de�ne two types of errors in region segmentation: missing rate (em
R )and false alarm rate (ef

R). The former indi
ates the per
entage of the points in R being



3.4 Previous evaluation measures 67mistakenly segmented into the regions in S whi
h are non-maximal with respe
t tothe 
orresponding region in R; while the latter des
ribes the per
entage of points in Sfalling into the regions in R whi
h are non-maximal interse
ted with the region under
onsideration. We therefore have
em

R =
dH (S ⇒ R)

|S| and e
f
R =

dH (R⇒ S)

|S| (3.4)These measures have been used to 
ompare several segmentation algorithms byintegration of region and boundary information [Freixenet 02℄.Lo
al Consisten
y ErrorTo 
ompensate for the di�eren
e in granularity while 
omparing segmentations, manymeasures allow label re�nement uniformly through the image. Martin, in his the-sis [Martin 02℄ proposed an error measure to quantify the 
onsisten
y between imagesegmentations of di�ering granularities - Lo
al Consisten
y Error (LCE) that allowslabelling re�nement between segmentation and ground truth.Let r (S, pi) be the set of pixels 
orresponding to the region in segmentation S that
ontains the pixel pi. Then, the lo
al re�nement error asso
iated with pi is
E (S,R, pi) =

|r (S, pi) \r (R, pi)|
|r (S, pi)|

(3.5)where \ denotes set di�eren
e. Finally, the overall performan
e measure is de�ned as
LCE (S,R, pi) =

1

N

∑

i

min {E (S,R, pi) , E (R, S, pi)} (3.6)where E (S,R, p) measures the degree to whi
h two segmentations agree at pixel p, and
N is the size of region where pixel p belongs. Note that LCE is an error measure, witha s
ore 0 meaning no error and a s
ore 1 meaning maximum error.Due to its toleran
e of re�nement, this measure is not sensible to over- and under-segmentation and may be therefore not appli
able in some evaluation situations. Thus,it is only meaningful if the two segmentations have similar number of segments. Asobserved by Martin [Martin 02℄, there are two segmentations that give zero error forLCE - one pixel per segment, and one segment for the whole image.
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tional Consisten
y ErrorTo over
ome the problem of degenerate segmentations, Martin proposed an adaptationof the LCE formula that penalizes dissimilarity between segmentations proportional tothe degree of region overlap. If we repla
e the pixelwise minimum with a maximum weget a measure that does not tolerate re�nement at all. The Bidire
tional Consisten
yError (BCE) is de�ned as:
BCE (S,R, pi) =

1

N

∑

i

max {E (S,R, pi) , E (R, S, pi)} (3.7)Partition distan
e measureCardoso and Corte-Real [Cardoso 05℄ proposed a dis
repan
y measure - partition dis-tan
e (dsym) de�ned as: "given two partitions P andQ of S, the partition distan
e is theminimum number of elements that must be deleted from S, so that the two indu
ed par-titions (P and Q restri
ted to the remaining elements) are identi
al". dsym (Q,P ) = 0means that no points need to be removed from S to make the partitions equal, i.e.,when Q = P .In addition to dsym measure, they proposed an asymmetri
 partition distan
e de-�ned as: "given two partitionsR andQ de�ned in a set S of N elements, the asymmetri
partition distan
e is the minimum number of elements that must be deleted from S,so that the indu
ed partition Q is �ner than the indu
ed partition R".3.4.2 Boundary-based evaluationBoundary-based approa
h evaluates segmentation in terms of both lo
alization andshape a

ura
y of extra
ted regions boundaries.Distan
e Distribution SignaturesHuang and Dom in [Huang 95℄ presented a boundary performan
e evaluation s
hemebased on the distan
e between distribution signatures that represent boundary pointsof two segmentation masks.Let BS represent the boundary point set derived from the segmentation S and BRthe set of boundary pixels of the ground truth R. A distan
e distribution signaturefrom the set BS to the set BR of boundary points, denoted dB (Bs, BR), is a dis
rete
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tion whose distribution 
hara
terizes the dis
repan
y, measure in distan
e, from
BS to BR. The distan
e from x in set BS to BR is de�ned as the minimum absolutedistan
e from all the points in BR:

d (x,BR) = min {dE (x, y)} , ∀y ∈ BR (3.8)where dE denotes the Eu
lidean distan
e between points x and y.The dis
repan
y between BS and BR is des
ribed by the shape of the signa-ture, whi
h is 
ommonly measured by its mean and standard deviation. As a rule,
dB (Bs, BR) with a near-zero mean and a small standard deviation indi
ates high sim-ilarity between segmentation masks. Sin
e the Huang and Dom [Huang 95℄ paper donot normalize these measures, we 
annot determine between two di�erent results whi
hsegmentation is the most desirable.In order to normalize the evaluation measure between 0 and 1, we propose a modi-�
ation to the distan
e distribution signature of Huang and Dom. Thus, we introdu
ea c value that sets an upper limit for the error. For d (x,BR) = min {dE (x, y) , c}, thetwo boundary distan
es 
ould be 
ombined in a fun
tion similar to the one presentedin Equation (3.3):

DB = 1− dB (BS, BR) + dB (BR, BS)

c× (|R|+ |S|) (3.9)where |R| and |S| are the number of boundary points in referen
e mask and segmentedmask, respe
tively.Pre
ision-Re
all measuresMartin in his thesis [Martin 02℄, propose the use of pre
ision and re
all measures to
hara
terize the agreement between the oriented boundary elements (termed edgels)of the region boundaries of two segmentations. Thus, given two segmentations, Sand R, where S is the result of segmentation and R is the ground truth, pre
ision isproportional to the fra
tion of edgels from S that mat
hes with the ground truth R,and re
all is proportional to the fra
tion of edgels from R for whi
h a suitable mat
hwas found in S. Pre
ision and re
all measures are de�ned as follows:
Precision =

Tp

Tp + Fp

Recall =
Tp

Tp + Fn

(3.10)
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ompute pre
ision and re
all we must determine whi
h true positive pixels are
orre
tly dete
ted, and whi
h dete
tions are false. We 
ould simply 
onsider 
oin
i-dent boundary pixels as true positive and de
lare all others pixels to be either falsepositive or false negative. However, this approa
h would not tolerate any lo
aliza-tion error, and would be a poor indi
ator of performan
e sin
e the ground truth data
ontains boundary lo
alization errors as a result of handmade segmentation. In Mar-tin's work, pre
ision and re
all are 
omputed using a bipartite mat
hing formulationthat mat
hes edgels using their lo
ation and orientation. He uses Andrew Goldberg'sCost S
aling Assignment pa
kage [Goldberg 95℄ to solve the assignment problem thatallows to 
ompare two boundary maps while both permitting lo
alization error andavoiding over-
ounting. In 
ases where segmentation 
lassi�es pixels as on-boundaryor o�-boundary, we 
an 
orrespond boundary pixels instead of edgels, and omit theorientation penalty from the edgels weight.In probabilisti
 terms, pre
ision is the probability that the result is valid, andre
all is the probability that the ground truth data was dete
ted. A low re
all value istypi
ally the result of under-segmentation and indi
ates failure to 
apture salient imagestru
ture. Pre
ision is low when there is signi�
ant over-segmentation, or when a largenumber of boundary pixels have greater lo
alization errors than some threshold.Pre
ision and re
all measures have been used in the information retrieval systemsfor a long time [Raghavan 89℄. These measures are also used in the medi
al 
ommunitywhere they go under the names of spe
i�
ity and sensitivity, respe
tively. The inter-pretation of the pre
ision and re
all for evaluation of segmentation are a little di�erentfrom the evaluation of retrieval systems. In retrieval, the aim is to get a high pre
isionfor all values of re
all. However in image segmentation, the aim is to get both highpre
ision and high re
all. The two statisti
s may be distilled into a single �gure ofmerit:
F =

PR

αR+ (1− α)P
(3.11)where α determines the relative importan
e of ea
h term. Following [Martin 02℄, α issele
ted as 0.5, expressing no preferen
e for either.The main advantage of using pre
ision and re
all for the evaluation of segmenta-tion results is that we 
an 
ompare not only the segmentations produ
ed by di�erentalgorithms, but also the results produ
ed by the same algorithm using di�erent input
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e these measures are not tolerant to re�nement, it is possiblefor two segmentations that are perfe
t mutual re�nements of ea
h other to have verylow pre
ision and re
all s
ores.Earth Mover's Distan
eUsing the 
on
ept of Earth Mover's Distan
e (EMD) to measure per
eptual similaritybetween images was �rst explored by Peleg et al. [Peleg 89℄ for the purpose of measuringdistan
e between two grey-s
ale images. More re
ently EMD has been used for imageretrieval [Rubner 00℄.EMD evaluates dissimilarity between two distributions or signatures in some featurespa
e where a distan
e measure between single features is given. The EMD between twodistributions is given by the minimal sum of 
osts in
urred to move all the individualpoints between the signatures.Let P = {(p1, wp1
) , ..., (pm, wpm

)} be the �rst signature with m pixels, where pi isthe pixel representative and wpi
is the weight of the pixel; the se
ond signature with npixels is represented by Q = {(q1, wq1

) , ..., (qn, wqn
)}; and D = [dij ] the distan
e matrixwhere dij is the distan
e between two 
ontour points' image 
oordinates pi and qj . The�ow fij is the amount of weight moved from pi to qj . The EMD is de�ned as the worknormalized by the total �ow fij , that minimizes the overall 
ost:

EMD (P,Q) =

∑
i

∑
j

fijdij

∑
i

∑
j

fij

(3.12)As pointed by Rubner et al. [Rubner 00℄, if two weighted point sets have unequaltotal weights, EMD is not a true metri
. It is desirable for robust mat
hing to allowpoint sets with varying total weights and 
ardinalities. In order to embed two setsof 
ontour features with di�erent total weights, we simulate equal weights by addingthe appropriate number of points, to the lower weight set, with a penalty of maximaldistan
e. Sin
e normalizing signatures, with the same total weight do not a�e
t theirEMD, we made ∑i,j fij = 1. Equation (3.12) be
omes,
EMD (P,Q) =

∑

i

∑

j

fijdij (3.13)
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t to the following 
onstraints: fij ≥ 0, ∑j fij = wpi
and ∑i fij = wqj

.As a measure of distan
e for the EMD ground distan
e we use
dij = 1− e−

‖pi−qj‖
α (3.14)where ‖pi − qj‖ is the Eu
lidean distan
e between pi and qj and α is used in orderto a

ept some deformation resulted from manual segmentation of ground truth. Theexponential map limits the e�e
t of large distan
es, whi
h otherwise dominate theresult.3.5 Weighted evaluation measureIn the 
ontext of image segmentation, the referen
e mask is generally produ
ed byhumans. There is an agreement that interpretations of images by human subje
tsdi�er in granularity of label assignments, but they are 
onsistent if re�nements ofsegments are admissible [Martin 02℄. One desirable property of a good evaluationmeasure is to a

ommodate re�nement only in regions that human segmenters 
ould�nd ambiguous and to penalize di�eren
es in re�nements elsewhere. In addition tobeing tolerant to re�nement, any evaluation measure should also be robust to noisealong region boundaries and tolerant to di�erent number of segments in ea
h partition.For the purpose of evaluating image segmentation results, a 
orresponden
e betweenthe examined segmentation mask, S, and the referen
e mask, R, has initially beenestablished, indi
ating whi
h region of S better represents ea
h referen
e region. Thisis performed by asso
iating ea
h region ri of mask R with a di�erent region sj of mask

S on the basis of region overlapping, i.e. sj is 
hosen so that ri ∩ sj is maximized. Theset of pixels assigned to sj but not belonging to ri are false positives, Fp, that 
an beexpressed as Fp = sj ∩ ri, where ri denotes the 
omplement of ri. The pixels belongingto ri but not assigned to sj are false negatives, Fn, and 
an be expressed as Fn = sj∩ri.The minimum required overlap between ri and sj is 50% of the referen
e region.Pixels belonging to regions where this ratio is not a
hieved are 
onsidered as false pixels.These measure quantify the errors due to under and over segmentation. Clearly, morevisually signi�
ant regions that were missed in the segmented mask are assigned asigni�
antly higher error.
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tions is an obje
tive dis
repan
y measure thatquanti�es the deviation of the results of segmentation from the ground truth and 
anbe expressed as:
εF =

Fp + Fn

2N
(3.15)where N is the set of all pixels in the image. The value of εF is proportional to thetotal amount of errors and indi
ates the a

ura
y of region boundaries lo
alization.The quality of the segmentation is inversely proportional to the amount of deviationbetween the two masks.In appli
ations where the �nal evaluator of quality is the human being, it is funda-mental to 
onsider human per
eption to deal with the fa
t that di�erent kind of errorsare not visually signi�
ant to the same degree. To build a spatial a

ura
y measurewith high per
eptive meaning, we have to use the following assumptions:

• The visual relevan
e of a wrong pixel in
rease with its distan
e from the borderof the referen
e mask.
• As we move away from the border, false negative pixels a
hieve always greaterrelevan
e, sin
e they mean that a bigger part of the obje
t is being missed.
• With false positives the situation is slightly di�erent. Although they also in
reasetheir relevan
e at far lo
ations, that in
rement tends to stabilize with the distan
efrom the referen
e border.To a

ommodate human per
eption, the di�erent error 
ontributions are weighteda

ording to their visual relevan
e. Gelas
a et al. [Gelas
a 04℄ present a psy
hophysi
alexperiment to assess the di�erent per
eptual importan
e of errors. They 
on
lude thata false positive pixel 
ontributes di�erently to the quality than a false negative. Falsenegatives are more signi�
ant, and the larger the distan
e the larger the error.We de�ne two weighted fun
tions wp and wn to deal with that fa
t where wp isasso
iated with false positive pixels and wn is asso
iated with false negative pixels. Let

dp be the distan
e of a false positive pixel from the boundary of the referen
e region,and dn be the distan
e of a false negative pixel.
wp =

αp log (1 + dp)

D
(3.16)

wn =
αndn

D
(3.17)
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tions are normalized by the image diagonal distan
e D. The weightedfun
tion for ea
h false pixel is also represented in Figure 3.4.
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Figure 3.4: Weight fun
tions for false negative and false positive pixels.The weights for false negative pixels in
rease linearly and are larger than thosefor false positive pixels at the same distan
e from the referen
e region border. As wemove away from the border of an obje
t, missing parts are more important than addedba
kground, e.g., in medi
al imaging, it may be enough that the segmented regionoverlaps with the true region, so the tumour 
an be lo
ated. But if there are missingparts of the tumour the segmentation results will be poor.To obtain a measure between [0, 1], we normalize the total amount of weight by theimage size. The dis
repan
y measure of weighted distan
e, εw, be
omes:
εw =

1

N


∑

fn

wn +
∑

fp

wp


 (3.18)where fn and fp represent the false pixels. We de�ne a new measure of similarity as

sw = 1− εw. The value of sw = 1 indi
ates a perfe
t mat
h between the segmentationand the referen
e mask.3.6 Analysis on evaluation methodsWe 
ondu
ted two experiments to validate the measure proposed in this work. The�rst with results obtained frommanual segmentations and the se
ond with syntheti
allygenerated segmentations.To a
hieve 
omparative results about di�erent evaluation methods, two strategies
an be followed: the �rst one 
onsists in applying the evaluation methods to segmented



3.6 Analysis on evaluation methods 75images obtained from di�erent segmentation approa
hes. The se
ond one 
onsists insimulating results of segmentation pro
esses. To exempt the in�uen
e of segmentationalgorithms, the latter has been adopted and a set of images obtained from manualsegmentation available at the Berkeley Segmentation Database [Martin 01℄ was used.As the ground truth is not unique, we used as ground truth the manual segmentationwith the best F-measure against all the others. Figure 3.5 shows the segmentationresults used in this 
omparative study where result (i) is also used to set up the weightedparameters of false pixels.A good evaluation measure has to give large similarity values for results (a)-(e)and has to strongly penalize other results ((f)-(i)). Figure 3.6 shows the 
omparisonresults between the proposed method and the methods presented in Se
tion 3.4.1, forthe images in Figure 3.5, expressed in terms of region-based evaluation.Due to its toleran
e to re�nement, LCE gives low error (high similarity) s
ores, evenwhen the segmentation result is very di�erent from the ground truth (images (f)-(i)).Measure DH has a similar behaviour. BCE and dsym give good evaluations for images((f)-(i)). However, sin
e these measures are not tolerant to re�nement, the results arepoor for results ((a)-(e)).The results obtained from images ((a)-(e)) show that the proposed measure is tol-erant to re�nement, in a

ordan
e with the way human per
eive visual information.Sin
e our measure weights the segmentation errors a

ording to their distan
e to the
orre
t segmentation it strongly penalizes segmentation errors of images ((f)-(i)).Results of boundary-based evaluation on the same set of segmentation results arereported in Figure 3.7. On 
omparing the results of the boundary-based measures, itis made evident that they are well 
orrelated. EMD tolerates well some amount ofdeformations that normally happens in the manual segmentation pro
ess. However,when the number of pixels in ground truth di�ers a lot from the number of pixels inthe segmented image, EMD gives poor results. Despite its su

ess, the EMD methodstill needs to be re�ned to address the limitation in the 
omplexity of algorithm thatrequire to be further redu
ed. The DB measure gives similar results with F-measure,but it is even more intolerant to re�nement.Table 3.1 presents the evaluation results obtained from a set of trivial syntheti
allygenerated segmentations presented in Figure 3.8, where we make 
onstant the numberof false dete
tions in ea
h segmentation.
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Image Ground truth
(a) (b) (
)
(d) (e) (f)
(g) (h) (i)Figure 3.5: The �rst row shows original image and the segmentation ground truth. From(a) to (e) we have di�erent manual segmentations of the same image. Images from (f) to (i)are segmentation results of other images.
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Figure 3.6: Evaluation of segmentation, in terms of similarity, from a set of evaluations
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(a) (b) (
) (d)Figure 3.8: Syntheti
ally generated set of segmentations, where (a) is the referen
e.Sin
e LCE, BCE, dsym and DH , are just proportional to the total amount of falsedete
tions, di�erent position of those pixels do not a�e
t the similarity. This makesthose methods unreliable for appli
ations where the results will be presented to humans.Note that sw produ
es results that agree with the visual relevan
e of errors.Table 3.1: Numeri
al evaluation of segmentations from Figure 3.8.images LCE BCE dsym DH sw(b) 0.99380 0.98088 0.99349 0.99349 0.99741(
) 0.99380 0.98088 0.99349 0.99349 0.99612(d) 0.99380 0.98088 0.99349 0.99349 0.991593.7 SummaryIn this 
hapter we introdu
e a new approa
h for segmentation evaluation based onregions that takes into a

ount, using a single metri
, not only the a

ura
y of theboundary lo
alization but also the under-segmentation and over-segmentation e�e
tsa

ording to the ambiguity of the regions, regardless to the number of segments inea
h partition. The proposed metri
 is based on examining the spatial a

ura
y of seg-mentation results using a manually generated referen
e mask. Its output is a weightedsum of mis
lassi�ed pixels, e�e
tively indi
ating how well the examined segmentationmask 
orresponds to the referen
e one. We introdu
e a modi�
ation to the distan
esignature of Huang and Dom, the DB measure; and apply the 
on
ept of Earth Mover'sDistan
e to the evaluation of image segmentation. We experimentally demonstratedthe e�
ien
y of the new measure against well known methods. This metri
 
an be ap-plied both to automati
ally provide a ranking among di�erent segmentation algorithmsand to �nd an optimal set of input parameters of a given algorithm. This measure willbe used in the evaluation of image segmentation experimental results in Chapter 6.



CHAPTER 4
Hybrid spatial segmentation: themodel

This 
hapter presents a new framework to spatial image segmentation. Themain idea is to use atomi
 regions to guide a segmentation using the inten-sity and gradient information through a spe
tral graph-
ut approa
h. Thismethod produ
es simpler segmentations less over-segmented and it is 
om-pared favourably with state-of-the-art methods (See also Chapter 6).4.1 Introdu
tionImage segmentation is one of the largest domain in image analysis, and aims at iden-tifying regions, the so-
alled segments that have a spe
i�
 meaning within images.Another de�nition of image segmentation is the identi�
ation of regions that are uni-form with respe
t to some parameter, su
h as image intensity, texture or motion. Whilethe latter de�nition is often used for te
hni
al reasons, the former de�nition should bepreferred from an appli
ation point of view. Although the e�ort made in the 
omputervision 
ommunity there is no algorithm that is known to be optimum in image seg-mentation. Di�erent images require di�erent methods, di�erent appli
ations demandnew approa
hes. Mu
h resear
h is being done to dis
over new methods building up onprevious ideas.Sin
e the Gestalt movement in psy
hology [Wertheimer 38℄, it has been known thatper
eptual grouping plays a powerful role in human visual per
eption. The main goalof this 
hapter is to develop an algorithm for e�
ient segmentation of a grey level79



80 Hybrid spatial segmentation: the modelimage that a) identi�es per
eptually homogeneous regions in the images, b) makesminimal assumptions about the s
ene, and 
) avoids merging of multiple obje
ts intosingle segments and vi
e-versa. The presentation of an improved rainfalling watershedapproa
h, the de�nition of a new stru
ture for region based graph, the presentation ofa new similarity fun
tion, and the appli
ation of multi
lass normalized 
uts to groupatomi
 regions are the main 
ontributions of this 
hapter.Spe
tral segmentation is a promising approa
h to per
eptual grouping or imagesegmentation that takes into a

ount global image properties as well as lo
al spatialrelationships. It treats image segmentation as a graph partitioning problem. A 
ommon
hara
teristi
 of these te
hniques is the idea of 
lustering/separating pixels or otherimage elements using the dominant eigenve
tors of a matrix derived from the pairwisepixel similarities, as measure by one or more 
ues. It thus segments an image from aglobal point of view. The advantage of having a global obje
tive fun
tion is that hardde
isions are made only when information from the whole image is taken into a

ountat the same time [Malik 01℄.These methods use the eigenve
tors and the eigenvalues of a matrix representationof a graph to partition an image into disjoint regions. A salient region in the image isthe one for whi
h the similarity a
ross its border is small, whereas the similarity withinthe region is large. A well known spe
tral graph analysis method is normalized 
utalgorithm [Shi 00℄ that minimizes a dis
riminative energy fun
tion de�ned in terms ofthe graph link weights. The normalized 
ut algorithm is a graph partitioning algorithmthat has previously been used su

essfully for image segmentation. It has originallyapplied to pixels by 
onsidering ea
h pixel in the image as a node in the graph. Oneimportant issue of this approa
h is the size of the 
orresponding similarity matrix. Ifthe graph node set 
ontains all the pixels of an image, the size of the similarity matrixis equal to the squared number of pixels, and therefore generally too large to �t into
omputer memory 
ompletely.The energy fun
tion modelled by the normalized 
ut is 
apable of generating 
leanresults, even though the intensity regions 
an sometimes be broken into a small numberof pie
es. As a re
ent paper [Carson 02℄ notes: � large, uniform ba
kground areas inthe image are sometimes arbitrarily split into two pie
es due to the use of position asa feature. On the whole, however, in
luding position yields better segmentation resultsthan ex
luding it.�



4.2 Overview of the proposed method 81Sin
e the use of positional information as a feature is known to be problemati
[Carson 02℄, several authors have explored alternatives. One possibility is to performa fairly atomi
 segmentation at the very beginning, and then 
ompute feature ve
torsfrom these regions rather than from pixels. Thus to redu
e the size of the graph, nodes
an be used to represent disjoint atomi
 regions 
overing the image instead of singlepixels. The output of the preliminary segmentation step is a set of spatially 
oherent
lusters, whi
h 
ould then be used to 
ompute the a�nity matrix for the spe
tral-basedsegmentation algorithm. It 
an also be used dire
tly for segmentation by a mergingpro
ess.Our WNCUT1 approa
h over
omes the problem of over-segmentation in the prelim-inary segmentation stage by using the spe
tral methods to intelligently re-assemble thesub-set of atomi
 regions into the �nal segmented obje
t based on a similarity fun
tionamong the regions. A
tually our approa
h prefers the obje
ts to be over-segmentedinto a number of smaller regions to ensure that a minimal amount of ba
kground is
onne
ted to any of the obje
t regions.In order to apply WNCUT, �rst we must represent the mi
ro-regions in graphterms. Suppose that the image under 
onsideration is partitioned into a set of kdisjoint regions denoted by R = {R1, ..., Rk}. Then R 
an be represented by a set of knodes in an undire
ted graph, 
alled the Region Similarity Graph (RSG). An evident
omputational advantage is obtained des
ribing the image by a set of regions insteadof pixel in the RSG stru
ture: it enables a faster region merging in images with higherspatial resolution.4.2 Overview of the proposed methodThe proposed methodology has four major stages. First, we smooth image noise, asa pre-pro
essing stage, using an anisotropi
 �lter. Next, we 
reate an over-segmentedimage based on the initial magnitude gradient image. In the third stage, the over-segmented image will be the input for the image RSG 
onstru
tion. Finally, we applya multi
lass normalized 
ut approa
h on the RSG. A blo
k diagram of the proposedmethod is depi
ted in Figure 4.1.This framework integrates edge-based and region-based segmentation with spe
tral-1From Watershed Normalized Cut.
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Figure 4.1: Blo
k diagram of the proposed method.based 
lustering as follows:1. Redu
e image noise using the bilateral �lter;2. Compute gradient magnitude and remove the weakest edges by gradient minimasuppression (pre-�ooding);3. Make initial partitioning using the gradient information;4. Make a simple post-pro
essing to remove single tiny regions by merging themwith neighbouring regions. These regions are 
onsidered to be spurious;5. Cal
ulate the statisti
s of all atomi
 regions;6. Initialize the region similarity graph where ea
h node 
orresponds to an atomi
region;7. Use a spe
tral-based approa
h in order to obtain the �nal segmentation.



4.3 Noise redu
tion and gradient 
omputation 83We illustrate the algorithm by an example shown in Figure 4.2. An input im-age is de
omposed into a number of atomi
 regions to redu
e the graph size in apre-segmentation stage as in Figure 4.2.(b). Ea
h atomi
 region has nearly 
onstantintensity and it is represented by a node in the graph G. Two verti
es are 
onne
ted iftheir atomi
 regions are adja
ent (i.e. share the same boundary). Figure 4.2.(
) showsthe result produ
ed by our algorithm where ea
h 
losed region is assigned a 
olour.
(a) Input image (b) Atomi
 regions (
) SegmentationFigure 4.2: Example of image segmentation. (a) Input image. (b) Atomi
 regions. Ea
hatomi
 region is a node in the graph G. (
) Segmentation (labelling) result.4.3 Noise redu
tion and gradient 
omputationImages taken with digital 
ameras will pi
k up noise from a variety of sour
es. As thewatershed algorithm is very sensitive to noise it is desirable to apply noise redu
tion�lter in the pre-pro
essing step. Several methods have been proposed in the litera-ture to redu
e the spurious boundaries 
reated due to noise and produ
e a meaningfulwatershed segmentation. Ogor [Ogor 95℄ proposed morphologi
al opening and 
losing.Gau
h [Gau
h 99℄ used Gaussian blurring. Hernandez and Barner [Hernandez 00℄ sug-gested median �ltering. However, some of these �lters tend to blur image edges whilethey suppress noise whi
h is undesirable for the watershed algorithm.4.3.1 Bilateral �lterTo prevent this e�e
t we use the non-linear bilateral �lter [Tomasi 98℄. The bilateral�lter was �rst introdu
ed by Smith and Brady under the name �SUSAN� [Smith 97℄ asa non-linear �lter that 
ombines domain and range �ltering. It was redis
overed laterby Tomasi and Mandu
hi [Tomasi 98℄ who 
alled it the 'bilateral �lter' whi
h is nowthe most 
ommonly used name.



84 Hybrid spatial segmentation: the modelThe basi
 idea underlying bilateral �ltering is to repla
e the intensity of a pixel(nu
leus) by taking a weighted average of the pixels within a neighbourhood (in a
ir
le) with the weights depending on both the spatial and intensity di�eren
e betweenthe 
entral pixel and its neighbours. In smooth regions, pixel values in a small neigh-bourhood are similar to ea
h other and the bilateral �lter a
ts essentially as a standarddomain �lter, averaging away the small, weakly 
orrelated di�eren
es between pixelvalues 
aused by noise. Bilateral �lter preserves image stru
ture by only smoothingover those neighbours whi
h form part of the "same region" as the 
entral pixel.Expressed formally, given an input signal f (x), using a 
ontinuous representationnotation as in [Tomasi 98℄, the output signal h (x) is obtained by:
h (x) =

∫
Ω
f (ξ) c (ξ, x) s (f (ξ) , f (x)) dξ∫
Ω
c (ξ, x) s (f (ξ) , f (x)) dξ

(4.1)where c (ξ, x) measures the spatial 
loseness between the 
entre pixel x and a nearbypoint ξ; the photometri
 similarity is given by s (f (ξ) , f (x)), and Ω represents the�lter support.Considering a grey level image I, the result of the bilateral �lter Ibf is de�ned as:
Ibf (p0) =

∑
p 6=p0

I (p) · c (p, p0) · s (I (p) , I (p0))

∑
p 6=p0

c (p, p0) · s (I (p) , I (p0))
(4.2)where the so-
alled nu
leus p0 := (u0, v0) is the pixel whi
h is going to be �ltered and

p := (u, v) is a pixel whi
h belongs to the 
onvolution mask around the nu
leus.The de
reasing weight fun
tions c and s, whi
h represent 
loseness (in the spatialdomain) and similarity (in the range domain) respe
tively, are Gaussian distributionsof the form:
c (p, p0) = exp

(
−(p− p0)

2

2σ2
s

) (4.3)
s (I (p) , I (p0)) = exp

(
−(I (p)− I (p0))

2

2σ2
r

) (4.4)The parameter σs is the standard deviation of the spatial 
omponent of the blurringfun
tion and σr is the standard deviation of the intensity 
omponent. The non-linearity



4.3 Noise redu
tion and gradient 
omputation 85of the �lter 
omes from the division by the two Gaussian distributions and from thedependen
y on the pixel intensities through the spatial 
omponent.We 
an 
ontrol the spatial support of the �lter and thus the level of blurring byvarying σs. By varying σr we 
an 
ontrol how mu
h an adja
ent pixel is down weightedbe
ause of the intensity di�eren
e. If the grey level di�eren
e between two regions islarger than σr, the algorithm 
omputes averages of pixels belonging to the same regionas the referen
e pixel. Thus, the algorithm does not blur the edges whi
h is its mains
ope. In our experiments we apply the bilateral �lter implementation of Smith andBrady [Smith 97℄ with σr = 30 and σs = 4.Figure 4.3 shows the 
omparison between the usual unilateral �lter (e.g. the mean�lter) and the bilateral �lter for an 1D signal. Sin
e the spatial support of the bilateral�lter is a 
ir
le with radius σs the bilateral �lter preserves dis
ontinuities where theunilateral �lter uses both obje
t and ba
kground intensities in the smoothing pro
ess,as showed by the red lines of Figure 4.3.
(a) (b)Figure 4.3: Unilateral versus bilateral �lter. (a) Unilateral �lter. (b) Bilateral �lter.It is well known that median �lters preserve the lo
ation of edges while eliminat-ing stru
tures su
h as impulses, whi
h 
an 
orrespond to undesirable lo
al intensityminima or maxima. In 
ases where the 
entral pixel is un
orrelated with the wholeneighbourhood, and hen
e it is treated as pulse noise, the denominator of Equation(4.2) is zero. This is dealt by repla
ing the intensity of the pixel intensity with themedian of its 
losest neighbours.Figure 4.4 shows the result of smoothing an image with Gaussian smoothing,anisotropi
 di�usion [Perona 90℄ and bilateral �lter, respe
tively.Sin
e bilateral �ltering does not involve the solution of partial di�erential equationsit is a good non-iterative alternative to anisotropi
 di�usion proposed by Perona and
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(a) (b)
(
) (d)Figure 4.4: Noise redu
tion �lters. (a) Image with added Gaussian noise with σ = 10. (b)After Gaussian �lter with σ = 2. (
) After anisotropi
 di�usion �lter with 100 iterations. (d)After bilateral �lter with σr = 30 and σs = 4.Malik [Perona 90℄. Despite the di�eren
e in implementation both methods are designedto smooth the image while edges are preserved.4.3.2 Gradient 
omputationThe gradient 
omputation step is 
ru
ial as it is used in two di�erent se
tions of theproposed algorithm: in the preliminary segmentation and in the 
onstru
tion of theregion similarity graph.Provided that the original noise level is not high or the noise has been e�e
tivelyredu
ed in the �rst stage, then any of the known gradient operators, namely 
lassi
alSobel, Prewitt or morphologi
al operators may perform well. However, if the originalnoise level is high or the noise has not been e�e
tively redu
ed in the �rst stage, theuse of small s
ale Gaussian derivative �lters may further redu
e noise.Images are �rst 
onvolved with Gaussian oriented �lter pairs to extra
t the magni-tude of orientation energy (OE) of edge responses as used by Malik et al. in [Malik 01℄.The �lters shown in Figure 4.5 are tuned to dete
t edges of di�erent shapes, parame-
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essing 87terised by ρ = {ρo, ρs, ρe}, where ρo, ρs and ρe refer to orientation, s
ale and elongationrespe
tively.

Fo (ρ) Fe (ρ)Figure 4.5: Linear �lters of 4 orientations, 2 elongations and 2 s
ales, in both odd and evenphases that form quadrature pairs.Given image I, the orientation energy approa
h 
an be used to dete
t and lo
alizethe 
omposite edges, and it is de�ned as:
OE (ρ) = (I ∗ Fe(ρ))

2 + (I ∗ Fo(ρ))
2 (4.5)where Fe(ρ) and Fo(ρ) represent a quadrature pair of even and odd-symmetri
 �l-ters whi
h di�er in their spatial phases. The even-phase �lters are the se
ond-orderderivative and the 
orresponding odd-symmetri
 �lters are their Hilbert transformswhi
h 
orrespond to the �rst-order derivative, both smoothed with Gaussian fun
tionsspe
i�ed by ρ.At ea
h pixel i, we 
an de�ne the dominant orientation energy (OEi (ρ)

∗) and theparameter (ρ∗i ) as the maximum energy a
ross s
ale, orientation and elongation:
OEi (ρ)

∗ = maxOE (ρ) ρ∗i = arg maxOE (ρ) (4.6)Orientation energy OE (ρ) has a maximum response for 
ontours of shape ρ, whereasthe zero-
rossing of �lter Fe(ρ) lo
ate the positions of the edges. The value OE∗ iskept at the lo
ation of i only if it is greater than or equal to the neighbouring values.Otherwise it is repla
ed with a value of zero.



88 Hybrid spatial segmentation: the model4.4 Over-segmentation as pre-pro
essingAn ideal over-segmentation should be easy and fast to obtain, and should not 
ontaintoo many segmented regions and it should have its region boundaries as a superset ofthe true image region boundaries. In this se
tion we present a pre-pro
essing stagethat groups pixels into �atomi
 regions�. The motivations of this preliminary groupingstage resemble the per
eptual grouping task: (1) abandoning pixels as the basi
 imageelements, we instead use small image regions of 
oherent stru
ture to de�ne the 
orre-sponding graph representation. In fa
t, sin
e the real world does not 
onsist of pixels,it 
an be argued that this is even a more natural image representation than pixels asthose are merely a 
onsequen
e of the digital image dis
retization; and (2) the numberof pixels in natural images is high even at moderate resolutions. By treating regions asthe elementary unit for image pro
essing, we 
an redu
e the 
omputational 
omplexitywithout a 
orresponding loss of a

ura
y.This se
tion presents two strategies for the pre-segmentation stage: 
hunk graphsand rainfalling watershed. Alternatively, the atomi
 regions 
ould be 
omputed us-ing other methods, su
h as normalized 
uts [Ren 03℄, graph 
uts [Felzenszwalb 04℄,edge dete
tion followed by edge tra
ing and 
ontour 
losing [Barbu 05℄ or by an over-segmented version of the mean-shift approa
h [Luo 04℄.4.4.1 Chunk graphThe obje
tive is to partitioning the image into a number of disjoint regions so thatea
h region has 
onsistent intensity. In this se
tion we propose a graph 
oarseningapproa
h based on a 
hunk graph de�ned below. This re�nement or 
oarsening 
ouldbe thought of as a hierar
hi
al stru
ture on the image where graph 
omputation isperformed at di�erent levels of granularity with the 
onne
ted pixels from the lowerlevel 
ollapsing into nodes in the higher level. In addition to signi�
antly redu
ing thenumber of nodes in the graph, this 
oarsening 
reates small aggregates of pixels whi
hhave similar intensities, adapted to the image at hand.A 
hunk graph G′ = (V ′, E ′) of a graph G is de�ned as follows: Ea
h node of
G′ represents a 
hunk, whi
h is a subset of G; ea
h 
hunk 
orresponds to a set ofhomogeneous pixels; 
hunks on G′ are disjoint and their union is G.A graph is then 
onstru
ted to present the spatial relationship of the pixels. The



4.4 Over-segmentation as pre-pro
essing 89graph G is initially set to represent the 8-neighbour of ea
h pixel in the image. Sin
ewe want to �nd sets of homogeneous nodes the pro
essing order of the nodes is notimportant. The edges 
orresponding to 
onne
tions between homogeneous nodes areremoved. The resulting graph G′ 
ontains nodes that represent homogeneous atomi
regions in the image. Therefore, we transform graph G = (V,E) into a new graph
G′ = (V ′, E ′), where E ′ ⊆ E. Graph G′ is 
omposed by a set of subgraphs (
hunks)that follow the normalized 
ut 
riterion in their 
onstru
tion. This means that edgesbetween two nodes in the same 
hunk should have relatively high similarity weights, andedges between nodes in di�erent 
hunks should have lower similarity weights. Figure4.6 shows an example of a two level 
hunk graph.

Level 1 Level 2Figure 4.6: Graph 
hunk sampling. Computation is performed at di�erent levels of granu-larity where the 
onne
ted pixels from the lower level 
ollapse into nodes in the higher level.In the following dis
ussion, we denote nodes of graph G′ using vi and vj, and use
eij to represent the edge 
onne
ting nodes vi and vj . An edge eij is labelled a

ordingto the absolute di�eren
e of the mean intensities of nodes vi and vj. A merge, M (i, j),is a graph transformation operation that merges the nodes vi and vj . The pro
edure ofnode merging is a
tually to integrate two or more 
hunks into a bigger one. It is also
alled an edge 
ontra
tion as the edge eij is removed. The graph G is transformed ina new graph G′ that has node vi and all other nodes of G ex
ept node vj. The graphlinks weights between the atomi
 regions are de�ned in terms of the smallest mat
hing
ost for �tting both atomi
 regions by the same intensity.By the above de�nition, a merge always redu
es the total number of regions. Thismerge pro
ess is guaranteed to 
onverge. A de
ision fun
tion, 
alled the merge 
rite-rion determines whether two nodes should be merged. Basi
ally, this merge 
riterionmeasures the strength of the boundary between two regions by 
omparing two quan-



90 Hybrid spatial segmentation: the modeltities: one based on measuring the dissimilarity between elements along the boundaryof the two 
omponents and the other based on the measure of the dissimilarity amongneighbouring elements within ea
h of the two 
omponents. We de�ne two measures
Inw (A) = max

eij∈N8(A,E)
wij (4.7)

Outw (A,B) = min
vi∈A,vj∈B,(vi,vj)∈E

wij (4.8)where A andB are regions, Inw (A) is the internal variation within the region, N8 (A,E)are the 8-neighbours of A, and Outw (A,B) is the external variation between the re-gions. We merge together two regions2 when the external variation between them issmall regard to their respe
tive internal variations
Outw (A,B) ≤MInw (A,B) (4.9)with

MInw (A,B) = min (Inw (A) + τ (A) , Inw (B) + τ (B)) (4.10)where the threshold value τ (A) = α/|A| determines how large the external variation
an be with regards to the internal variation to still be 
onsidered similar, α is some
onstant parameter, and |A| is the size of A.Neighbouring pixels whose properties are similar enough are joined. A pixel is not
hained until all the pixel pairs whi
h are more similar are 
hained. This ensures thatea
h pixel is always joined to its best �t neighbour. We illustrate the algorithm by anexample on image segmentation shown in Figure 4.7.
(a) Input image (b) 9461 
hunks (
) SegmentationFigure 4.7: Example of image segmentation. (a) Input image. (b) Atomi
 regions produ
edby the 
hunk graph. (
) Segmentation result.2A region 
ould be formed only by a single pixel.



4.4 Over-segmentation as pre-pro
essing 914.4.2 The watershed transformWatershed transform is a 
lassi
al and e�e
tive method for image segmentation in greys
ale mathemati
al morphology. For images the idea of the watershed 
onstru
tionis quite simple. An a
tivity image is 
onsidered as a topographi
 relief, as shown inFigure 4.8, where for every pixel in position (x, y), its a
tivity level plays the role ofthe z-
oordinate in the lands
ape. Lo
al maxima of the a
tivity image 
an be thoughtof as mountain tops, and minima 
an be 
onsidered as valleys.

(a) (b)

(
) (d)Figure 4.8: Image as a topographi
 relief. (a) Intensity image, (b) gradient and (
) itstopographi
 representation. (d) Watershed segmentation result.A drop of water pla
ed anywhere on this surfa
e will follow the path of steepestdes
ent until it rea
hes a minimum. This idea helps to establish an equivalent relation-ship among pixels that tra
e to the same minimum and it is used to group pixels inthe image under di�erent 
at
hment basins. Thus, the algorithm works by �nding theminima of the surfa
e, whi
h 
orrespond to the 
at
hment basins and tries to groupevery other pixel under one of these basins, produ
ing a segmented output. Sin
e



92 Hybrid spatial segmentation: the modelmost stru
tures 
ontain several 
at
hment basins, generally watershed segmentationprodu
es a large number of regions even for simple images.A general topographi
 interpretation of a two-dimensional fun
tion is depi
ted inFigure 4.9. The most important notions in this 
ontext are the ones of minima, 
at
h-ment basins (or simply basins), and watersheds that are separating basins from ea
hother. Using this terminology, the watershed approa
h transforms an image into adisjoint set of basins plus a set of watersheds.
(a) (b)Figure 4.9: (a) Minima, 
at
hment basins, and watersheds on the topographi
 representationof a gradient image. (b) Building dams at the pla
es where the water 
oming from two di�erentminima would merge (adapted from [Vin
ent 91℄).The watershed approa
h has been applied in many image segmentation problemsand it is known to yield robustness in extra
ting meaningful regions and 
ontours[Roerdink 01℄. The watershed transform approa
h to image segmentation 
ombinesregion growing and edge dete
tion te
hniques: it groups the image pixels around theregional minima of the image and the boundaries of adja
ent regions follow the 
restlines dividing the in�uen
e zones of the minima. This transform is a powerful te
h-nique to partition an image into many regions while retaining edge information and itprodu
es a 
omplete division of the image in separated regions even if the 
ontrast ispoor, thus avoiding the need for any kind of 
ontour joining.Several algorithms have been proposed for the 
omputation of watershed transformapplied to images [Vin
ent 91, Beu
her 93, Moga 97, De Smet 99℄. Yet, the appli
ationof watershed algorithms to an image is often disappointing: like many other methods,the watershed algorithm is sensitive to noise and lo
al texture, and often the image isover-segmented into a large number of tiny regions due to the large number of min-ima within an image or its gradient. However, unlike other methods, whi
h typi
allyprodu
e in
orre
t or displa
ed boundaries in the presen
e of noise, the watershed al-
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essing 93gorithm usually produ
es extra boundaries. This is referred to as over-segmentation,whi
h means that apart from the real boundaries, the algorithm also produ
es spuriousboundaries due to noise. Even though small 
hanges in the edge map values 
an re-route the �ow of water produ
ing di�erent watersheds. This problem 
an be removedby pre-pro
essing the image to redu
e noise and using a good post-merging s
heme.This 
an make the watershed algorithm robust and if 
ombined with the right mergings
heme it is a good 
hoi
e for automati
 and semi-automati
 segmentation problems.One of two di�erent algorithms are generally used to implement watershed segmen-tation, namely immersion and rainfalling simulation. Ea
h of these 
an be used todete
t the segments in the image either dire
tly or using morphologi
al operators. Webrie�y review these approa
hes as follows.Immersion watershedIn the �ooding or immersion approa
h [Vin
ent 91℄, single pixel holes are pier
ed atea
h regional minimum of the a
tivity image whi
h is regarded as topographi
 land-s
ape. When sinking the whole surfa
e slowly into a lake water leaks through the holes,rising uniformly and globally a
ross the image, and pro
eeds to �ll ea
h 
at
hmentbasin. Then, in order to avoid water 
oming from di�erent holes merge, virtual damsare built at pla
es where the water 
oming from two di�erent minima would merge(
f. Figure 4.10). When the image surfa
e is 
ompletely �ooded the virtual dams orwatershed lines separate the 
at
hment basins from one another and 
orrespond to theboundaries of the regions.Figure 4.10 illustrates the immersion simulation approa
h. Figure 4.10.a) shows a1D fun
tion with �ve minima. Water rises in and �lls the 
orresponding 
at
hmentbasins, as in Figures 4.10.b)-
). When water in basins b3 and b4 begin to merge adam is built to prevent this over�ow of water. Similarly, the other watershed lines are
onstru
ted. The �nal result 
ontaining �ve segments is shown in Figure 4.10.d).Rainfalling watershedThe original 
on
ept behind the watershed transform was rainfalling on a terrain and�owing down paths of steepest des
ent to lo
al minima [Beu
her 79℄. If a drop of waterwere to fall on any point of the altitude surfa
e, a

ording to the law of gravitation, itwould �ow down to a lower altitude, along the steepest slope path, until it rea
hes a
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(a) (b)

(
) (d)Figure 4.10: Illustration of immersion watershed transform on a 
ontinuous 1D fun
tioninterpreted as a lands
ape. The lands
ape is sequentially �ooded from bottom to top. a)Holes are pier
ed at ea
h regional minimum. b) At 
ertain �ooding height there are tworegions with one dam between basin b3 and basin b4. 
) At intermediate �ooding height thereare three regions with two dams. d) Final segmentation with �ve segments.point or region of minimum altitude. The a

umulation of water in the neighbourhoodof a minimum is 
alled 
at
hment basin. The whole set of points of the surfa
e whosesteepest slope paths rea
h a given minimum 
onstitutes the 
at
hment basin asso
i-ated with this minimum, and all points that drain into a 
ommon 
at
hment basinare part of the same watershed, in other words, watersheds are the borders between
at
hment basins. Thus, raindrops falling on both sides of a watershed line �ow intodi�erent 
at
hment basins. An illustration of a 
omplete �ooding pro
ess on a one-dimensional fun
tion is given by Figure 4.11 where �ve 
at
hment basins are de�nedby the rainfalling simulation.In the 
ase of the rainfalling approa
h, every pixel 
an be tra
ed to a minimumindependent of the tra
ing of other pixels while in the immersion approa
h most pixelsget their labels from a previously labelled neighbour.The optimized implementation of the rainfalling method is two or three times faster
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(a) (b)Figure 4.11: Illustration of rainfalling watershed transform on a 
ontinuous 1D fun
tioninterpreted as a lands
ape. a) Rainfalling pro
ess de�nes four top levels or dams. b) Finalsegmentation with the same �ve 
at
hment basins as immersion watershed approa
h.than the immersion method [De Smet 00℄. Moreover, the rainfalling watershed treatsthe �oating point type so that there is no round-o� error in the implementation. There-fore, rainfalling-based watershed is more a

urate than immersion-based.4.5 Rainfalling watershed implementationWe propose a new implementation to the rainfalling watershed simulation in order toover
ome some of the problems asso
iated with watershed transform. To des
ribe ourimplementation, we �rst de�ne terms that are required to understand the working ofthe algorithm. We then dis
uss in detail our implementation of watershed segmentationby rainfalling simulation.Let us 
onsider a gradient image f whose domain is denoted as Df ⊂ R2. Let
N8 (p) denote the neighbours of a pixel p in a 8− connectivity grid.De�nition 1 (Regional minimum) A pixel p ∈ Df is 
alled a regional minimum if
∄q ∈ N8 (p) so that f (q) < f (p).A regional minimum is a 
onne
ted set of one or more pixels of similar value sur-rounded by pixels of higher value. In other words, a pixel belongs to a regional minimumif there is no des
ending path leading from it to another pixel with stri
tly lower value.De�nition 2 (A
tivity slope) A pixel p is on an a
tivity slope if ∀p ∈ Df , ∃q ∈
N8 (p) so that f (q) < f (p).



96 Hybrid spatial segmentation: the modelDe�nition 3 (Flat region) A pixel p lies on a �at region with altitude h if ∃q ∈
N8 (p) so that h = f (q) = f (p)A �at region is a smooth 
onne
ted-
omponent region of uniform gradient valuesfrom whi
h it is impossible to rea
h a lo
ation of di�erent altitude without having todes
end or 
limb. A �at region 
an be 
lassi�ed into three types namely maximumplateau, plateau, and minimum �at region.De�nition 4 (Inner pixel) A pixel p is an inner pixel of a �at region if ∀q ∈ N8 (p)so that f (q) = f (p).De�nition 5 (Border pixel) A pixel p is 
alled a border pixel p ∈ B of a �at regionif p is on the �at region and it is not an inner pixel.De�nition 6 (Indoor pixel) A pixel p is an indoor pixel of a �at region if p is onthe �at region and ∃q ∈ N8 (p) so that f (q) > f (p).De�nition 7 (Outdoor pixel) A pixel p is an outdoor pixel of a �at region if p ison the �at region and ∃q ∈ N8 (p) so that f (q) < f (p).De�nition 8 (Maximum plateau region) A �at region is 
alled a maximum plat-eau region in Df if ∀q ∈ B, q is an outdoor.De�nition 9 (Plateau region) A �at region is 
alled a plateau region in Df if
∃p, q ∈ B, so that p is an outdoor and q is an indoor.De�nition 10 (Minimum �at region) A �at region is 
alled a minimum �at regionin Df if ∀q ∈ B, so that q is an indoor.De�nition 11 (Cat
hment basin) A pixel belongs to a 
at
hment basin for a givenregional minimum (RM) if one of the following three 
onditions are ful�lled:
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h is 
onne
ted to the RM or to an indoor pixelof the minimum �at region of RM.2. The pixel is on the same �at region as the RM.3. The pixel is on a a
tivity slope line whi
h is 
onne
ted to one of the pixels ful�lling
ondition 2.The 
at
hment basin of a regional minimum ρk is de�ned as the set of pixels thatare topographi
ally 
losed to ρk than to any other minimum.De�nition 12 (Watershed) The boundaries between basins form the watersheds.Unlike standard watershed algorithms, the aim of the approa
h des
ribed in thisse
tion is to provide a strategy for watershed segmentation whi
h does not require apre-pro
essing step in order to either sort all pixels of the input image [Vin
ent 91℄,to pre-
ompute the lo
al minima from where the basins are �ooded [Meyer 94℄, or tointrodu
e a metri
 for plateau pixels [Moga 97℄.4.5.1 Plateau regions analysisTwo problems arise when applying the watershed transform to an image. The �rstproblem is the o

urren
e of plateau regions, i. e. regions of 
onstant a
tivity valueas dis
ussed in numerous publi
ations [Gau
h 99, Stoev 00, Roerdink 01℄. The se
ondproblem, whi
h is partly linked to the plateau region problem, is the dependen
y of thewatershed lo
ation on both the used algorithm and the grid 
onne
tivity [Roerdink 01℄.A pixel is said to be part of a plateau region if its value is equal to the value ofat least one of its 8-neighbouring pixels in the a
tivity image and its value is over thepre-�ooding threshold. In our work a plateau region belongs to a unique 
at
hmentbasin and a 
at
hment basin has at most only one plateau region, as we will see below.Conventionally, motion on a plateau surrounded by lower altitudes is oriented to-ward the 
losest downward outdoor of the plateau [Moga 97℄. However, physi
al mean-ing of �at regions in intensity images [Vin
ent 91, Moga 97℄ is not the same as ingradient magnitude images [Gau
h 99, Stoev 00℄. Flat regions in intensity images 
or-respond to uniform intensity regions of the image, while in gradient magnitude images,�at regions 
orrespond to uniform variations of image intensity (ramps). Therefore,
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h we use to analyse �at regions in rainfalling simulation has a di�erentinterpretation relying on the a
tivity image used (intensity image or gradient image).To our knowledge this is the �rst time that this spe
i�
ity is handled.Moga and Gabbouj [Moga 97℄ des
ribed a parallel implementation for 
omputingwatershed transform based on rainfalling simulation. To deal with plateau regions,they transform the original image into a �lower 
omplete image�, i.e. an image wherethe only pixels without neighbours of lower altitude are the pixels of minima. Inthis lower image the pixels belonging to a non-minimum plateau are labelled with thegeodesi
 distan
e to the plateau's nearest outdoor. Afterwards a raindrop starts atea
h pixel and its path toward the line with the steepest des
ent is followed until aregional minimum is rea
hed.Stoev and Strasser [Stoev 00℄ presented a sequential approa
h where every pixel
p is 
ompared with the adja
ent pixels and if possible the path of steepest des
entis followed and p is pushed on a sta
k Sc 
ontaining the pixels on the 
urrent path.Otherwise, if a �at region is rea
hed, the whole �at region is pro
essed in order todetermine the nearest outdoor. If there are outdoors, the inner pixels are assigned tothe appropriate outdoors and the path 
ontinues. They do not make any distin
tionbetween plateau regions and minimum �at regions, so it does not dete
t ramps inintensity images.Gau
h [Gau
h 99℄ avoided �at region problems by working with Gaussian smoothed�oating point images. This removes all regions with uniform intensity. However, thisapproa
h has several problems: if the neighbours of an edge de
rease in intensity rapidlyon the left and gradually on the right, the dete
ted lo
ation of the edge will be to theright of the 
orre
t position; in very smoothed images whi
h have few intensity minimathe tops of same ridge-like stru
tures may be missed.A 
hara
teristi
 of some rainfalling approa
hes [Gau
h 99, Hernandez 00℄ is thepredominan
e of edges along a 45◦ angle. This is due to the fa
t that they do not s
alethe neighbouring pixels in diagonal dire
tions on the 
omputation of steepest des
entwhi
h produ
es higher values on those dire
tions. It in
reases the tenden
y to follow4-
onne
ted dire
tions.Classi
al rainfalling method pours water onto the terrain surfa
e of the entire imagemany times [Gau
h 99, Kim 02℄, thus requiring a long pro
essing time to obtain asatisfa
tory segmented image. Moreover, if the water falls on a wide and �at surfa
e,



4.5 Rainfalling watershed implementation 99the �ow route to the lowest position be
omes longer, and the pro
essing time in
reasesin proportion to the length of the �ow route. Therefore, to solve su
h problems, plainregions 
orresponding to �at regions need to be ex
luded from the rainfall pro
ess.In the next se
tion we propose an improved approa
h that 
an in
rease the speedand over
ome the main short
oming of rainfalling watershed segmentation method -the �at regions. Our a
tivity image is the magnitude gradient of an image whi
hsimpli�es the dete
tion of uniform intensity regions as they are represented by zeros onthe gradient magnitude. The only plateaus are result of ramps in the image intensitywhi
h o

ur less times than uniform intensity regions.The proposed method performs rainfall only within the regions of interest (ROI)in whi
h a pixel shows variation in gradient magnitude (see Figure 4.12). The set ofneighbour pixels with 
onstant gradient magnitude, i.e. within a �at region, are desertregions where rain rarely falls or, to be more pre
ise, where only a raindrop falls.4.5.2 Water �ow tra
ingThe regional minima are the points whi
h de�ne the bottoms of watersheds, so the goalhere is to identify the drainage dire
tions for ea
h pixel in the image. By following theimage gradient downhill from ea
h point in the image, the set of points whi
h drain toea
h regional minimum 
an be identi�ed.We smooth the input image with an anisotropi
 �lter des
ribed below and 
onvert itto a �oating point image gradient to predi
t the dire
tion of drainage in the image. Thissimpli�es the pro
ess of identifying minima points and redu
e the over-segmentationproblem. The use of �oating point gradient is quite important as it avoids the problemof quantize the a
tivity image whi
h would lead to a loss of information and a

ura
y.The watershed approa
hes usually require a pre-
omputation of the input imagein order to dete
t the minima pixels (lower 
omplete image in [Moga 97℄). Sin
e theplateau 
omputing 
an be performed only when it is rea
hed, in our algorithm we avoidthe pre-
omputation step by sequentially s
an the input image only on
e. For ea
h notyet labelled pixel, the gradient des
ent labelling 
an be implemented e�
iently in asingle pass through the image. Figure 4.12 presents an example of the sear
h pro
ess to�nd the regional minimum in the 3D terrain surfa
e of an image. The yellow texturedregion represents the desert region, while the other region represents the ROI.
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Figure 4.12: Example of water �ow pro
edure using sear
h mask (For a better illustrationof the �ow pro
edure, the sear
h mask in the �gure is 5× 5).Sin
e we use a 3× 3 sear
h mask to 
ompute the downhill sear
h of the rainfallingwatershed, to handle the image borders we build a one-pixel wide wall around thea
tivity image and set the height to a value higher than the maximum value of thegradient image. This step is used to prevent water from leaking out of the surfa
e.A drop of water falls at (xi, yi) within the ROI, ex
luding the desert areas. Thedownhill or gradient des
ent dire
tion of a pixel is then 
omputed by examining its
onne
ted neighbours. Ea
h pixel p is 
ompared with its 8-neighbours and if it is on asteepest des
ent line to some pixel q, the value of p in the label is set to point to q. Thissear
h pro
ess is then repeated until the 
entre position of the mask has the lowestheight. Hen
e, every time a regional minimum (xm, ym) is rea
hed, the path setted inthe dire
tion of the prede
essor q is traversed ba
kwards and the pixels are labelledwith the regional minimum's Id. Here, restri
ting the rainfall to ROIs redu
es boththe target region to be pro
essed and the length of the �ow route, thereby in
reasingthe speed of the segmentation method based on the water �ow model.
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p epswp sp sepFigure 4.13: The 3× 3 sear
h mask used in water �ow tra
e (steepest des
ent).In this step, the rainfalling 
on
ept is 
arried out by 
al
ulating the steepest des
entdire
tion for ea
h pixel p. The dire
tions are limited to the pixels neighbouring the
entral pixel 
p of a 3 × 3 sear
h mask, as shown in Figure 4.13, a

ording to thefollowing formula:
steepest descent = min

{
(nwp− cp)

/√
2, (np− cp) , (nep− cp)

/√
2,

(wp− cp) , (ep− cp) ,

(swp− cp)
/√

2, (sp− cp) , (sep− cp)
/√

2
}At this time we present a new approa
h to handle the problem of plateau regions.If we assume that the pixel p, whi
h has not yet been pro
essed, is the next pixel onthe path, �ve 
ases illustrated in Figure 4.14 
an happen:Case 1: p has no adja
ent pixel with lower altitude, hen
e p is an isolated regionalminimum;Case 2: p has only one adja
ent pixel q with lowest altitude. This is the regular 
ase,where the algorithm follows the steepest des
ent path;Case 3: p has adja
ent pixels with the same altitude whi
h means that p is an indoorpixel;Case 4: p has at least one adja
ent pixel with the same altitude and at least one lowerpixel q whi
h means that p is an outdoor pixel;Case 5: p has more than one adja
ent pixel with lowest altitude where q1 and q2 arenon-adja
ent pixels. In this 
ase the algorithm 
annot determine whi
h of theadja
ent pixels is the one the raindrop should �ow to.When 
ase 1 o

urs, a regional minimum is rea
hed and a new Id is assigned tothe pixels on the path. In 
ase 2, the pixel p is assigned to the path and if the lowestneighbour q is not marked yet, it is 
onsidered as the next pro
essed pixel: p ← q. If
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Figure 4.14: The �ve 
ases whi
h 
an o

ur when the steepest des
ent path is followed.
q is already marked and it is an indoor pixel to a plateau region, the 
urrent path isterminated and its pixels are labelled with the label of p; if q is not an indoor pixel, the
urrent path is also terminated and its pixels are labelled with the label of q. In 
ase3, if p is an indoor pixel to a plateau region the 
urrent path 
omes to an end and itspixels are labelled with the label of the pixel that pre
edes p in the path. Then therea
hed plateau has to be pro
essed, sin
e the steepest path 
annot be unequivo
allydetermined within plateaus. Thus, when a plateau is rea
hed we label every pixel onthe same plateau with the same label. We hold the lo
ation of indoor pixels to be usedin 
ases 2 and 5. If p is an indoor pixel to a minimum �at region3, the path is labelledwith the label of p. The same label is assigned to all the pixels in the �at region. In3A pixel is on a minimum �at region if its value is lower than the pre-�ooding threshold.
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ase 4, the path is terminated and labelled with label of o; the plateau is labelledwith p label and a new drop is put in q pixel whi
h begins a new path. Case 5 o

urswhen the pixel p is adja
ent to m non-adja
ent pixels qi, i = 1, .., m with the samealtitude. In this 
ase the algorithm 
annot unequivo
ally de
ide whi
h pixel shouldbe pro
essed next. In [Moga 97℄, the authors 
onsider the �rst dete
ted pixel withthe lowest altitude as the next pixel to be pro
essed whi
h 
ould produ
e erroneousresults. In our approa
h all adja
ent lowest pixels are traversed as if they were hit bya raindrop. After pro
essing all qi, the pixel with the lowest and nearest minimum is
hosen to be the next pro
essed one p← qj and the path 
omputation 
ontinues.Sin
e this approa
h is dire
ted towards image segmentation, we put emphasis on thede
omposition of an image into labelled regions or, in terms of the watershed transform,into 
at
hment basins, whereas the extra
tion of watershed lines is not 
onsidered asan output of the algorithm. Our watershed produ
es a segmentation with zero-widthwatershed lines. This means that we assign to ea
h pixel the label of the 
at
hment(minimum) it belongs to so that the set of basins tessellates the image plane. On
e allpixels in the image have been asso
iated with their respe
tive minima, the output imagewill 
ontain the watershed regions of the image. We 
an simply lo
ate the watershedlines by bounding the output image dete
ting 
hanges in watershed region numbers.4.6 Multi
lass normalized 
utAlthough the pre-pro
essing step serves to redu
e the number of regions in the outputof the watershed algorithm, it does not resolve the problem of over-segmentation. Fromour observation and testing it reveals that even when the small gradients are set tozeros, it 
ould still 
ause over-segmentation. Generally there are two methods to redu
ethis over-segmentation. One is to use the markers [Grau 04, Levner 07℄ before theinitial segmentation to extra
t the desired regional minimal to �ood them. Althoughthe markers work well for many types of images (espe
ially medi
al images) theirsele
tion requires either expli
itly prior knowledge of the image stru
ture or 
arefuluser intervention. The other is to use some 
riteria to merge the regions produ
ed bythe initial segmentation. In our algorithm we use the latter method to produ
e the �nalsegmentation. Thus we propose a spe
tral-based multi
lass normalized 
ut approa
hto produ
e a meaningful segmentation.



104 Hybrid spatial segmentation: the modelTraditionally graph-based methods map an image onto a graph where nodes are
omposed of pixels and links are 
omposed of 
onne
tions between nodes. Ea
h nodehas a weight based on some features and ea
h link has a weight generally de�ned bythe weight di�eren
e of the nodes it 
onne
ts. The algorithm will group nodes or will
ut the graph into 
onne
ted regions [Shi 00℄ by link weight (re�e
ting similarity ofpairs of nodes). It 
an be used without any supervision, and it does not require alearning phase. Graph-based segmentation takes into a

ount global image propertiesas well as lo
al spatial relationships and results in a region map that is ready for furtherpro
essing, e.g. region labelling.These methods have been applied in 
lustering and parti
ularly in image seg-mentation. It is largely re
ognized that segmentation 
an be 
onsidered as a graph-partitioning problem; there are several approa
hes in the literature to solve this prob-lem, in
luding the spanning trees [Kwok 97℄, graph 
uts [Shi 00℄, and the binary par-tition tree [Salembier 00℄.There are di�erent ways to measure the quality of a segmentation but in generalwe want the elements in a region to be similar and the elements in di�erent regionsto be dissimilar. This means that links between two nodes in the same region shouldhave relatively low weights, and links between verti
es in di�erent regions should havehigher weights. The normalized 
ut 
riterion balan
es the weight of the 
ut with theweights of the resulting regions.The 
ore 
omputational te
hnique of the normalized 
ut algorithm is a generalizedeigenvalue problem. Although it is an elegant way to optimize the normalized 
ut
riterion, the 
omputational 
omplexity of an eigenvalue de
omposition is very high.In the original des
ription of the normalized 
ut algorithm for image segmentation, onenode 
orresponds to one pixel, so the number of nodes in the graph equals the numberof pixels in the image.Spe
tral methods use the eigenve
tors and eigenvalues of a matrix derived from thepairwise similarities of pixels. The problem of image segmentation based on pairwisesimilarities 
an be formulated as a graph partitioning problem in the following way:
onsider the weighted undire
ted graph G = (V,E,W ) where ea
h node vi ∈ V 
or-responds to a lo
ally extra
ted image features, e.g. pixels and the links in E 
onne
tpairs of nodes. A weight wi,j ∈ R+
0 is asso
iated with ea
h link based on some propertyof the pixels that it 
onne
ts (e.g., the di�eren
e in intensity, 
olour, motion, lo
ation



4.6 Multi
lass normalized 
ut 105or some other lo
al attribute). Let Γ = {Vi}ki=1 be a multi
lass disjoint partition of
V su
h as V = ∪k

i=1Vi and Vi ∩ Vj = ∅, i 6= j. Image segmentation is redu
ed tothe problem of partitioning the set V into disjoint non-empty sets of nodes (V1, .., Vk),su
h similarity among nodes in Vi is high and similarity a
ross Vi and Vj is low. Thesolution in measuring the goodness of the image partitioning is the minimization of thenormalized 
ut as a generalized eigenvalue problem.In order to redu
e the number of nodes in the graph we repla
e the individual pixelsby mi
ro segments in a pre-pro
essing stage. Image is de
omposed into a number ofatomi
 regions where ea
h one is a vertex in the graph RSG. However, it is veryimportant that the atomi
 regions will already yield a meaningful segmentation, i.e.the atomi
 regions must be homogeneous and the edges 
ontained in the image must
orrespond to segment boundaries. Watershed segmentation is a 
lassi
al and e�e
tivemethod for image segmentation in grey s
ale mathemati
al morphology that deliversthese requirements. This method, in a wide perspe
tive, has been applied su

essfullyinto some �elds like remote sensing images pro
essing of satellite and radar [Chen 04℄,biomedi
al appli
ations [Grau 04℄ and 
omputer vision [Kim 03℄.Shi and Malik [Shi 00℄ introdu
ed the normalized 
ut segmentation 
riterion forbipartitioning segmentation. Let VA, VB be two disjoint sets of the graph VA ∩ VB = ∅.We de�ne links (VA, VB) to be the total weighted 
onne
tions from VA to VB:
links (VA, VB) =

∑

i∈VA,j∈VB

wi,j (4.11)The intuition behind the normalized 
ut 
riterion is that not only we want a parti-tion with small link 
ut but we also want the subgraphs formed between the mat
hednodes to be as dense as possible. This latter requirement is partially satis�ed by in-trodu
ing the normalizing denominators in the NCut equation. The normalized 
ut
riterion for a bipartition of the graph is then de�ned as follows:
Ncut (A,B) =

links (A,B)

links (A, V )
+
links (A,B)

links (B, V )
(4.12)By minimizing this 
riterion we simultaneously minimize the similarity a
ross par-titions and maximize the similarity within partitions. This formulation allows us tode
ompose the problem into a sum of individual terms and formulate a dynami
 pro-
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lass normalized 
ut (kNCut). So, the NCut problemis naturally extended to a kNCut, �nding a partition Γ that minimizes the fun
tion
kNCut (Γ) =

links
(
V1, V1

)

links (V1, V )
+
links

(
V2, V2

)

links (V2, V )
+ ... +

links
(
Vk, Vk

)

links (Vk, V )
(4.13)where Vi represents the 
omplement of Vi and links (VA, VB) =

∑
i∈VA,j∈VB

wi,j.For a �xed k partitioning of the nodes of G, reorder the rows and 
olumns of Wa

ordingly so that
W =




W11 W12 ... W1k

W21 W22 ... W2k

... ... ... ...

Wk1 Wk2 ... Wkk




(4.14)
and the rows of W 
orrespond to the nodes in Vi. Let D = diag (D1, ..., Dk) be the
n×n diagonal matrix so that Di is given by the sum of the weights of all links on node
i: Di =

k∑
j=1

Wij . It is easy to verify that
links

(
Vi, Vi

)
= Di −Wii and links (Vi, V ) = Di (4.15)Barnes [Barnes 82℄ formulated the multi
lass partitioning problem in terms of anindi
ator matrix. A multi
lass partition of the nodes of G is represented by an n× kindi
ator matrix X = [x1, ...,xk] where X (i, l) = 1 if i ∈ Vl and 0 otherwise. Sin
e anode is assigned to one and only one partition there is an ex
lusion 
onstraint between
olumns of X : XIk = In. It follows that

links
(
Vi, Vi

)
= xT

i (D−W)xi and links (Vi,V) = xT
i Dxi (4.16)Therefore,

kNCut (Γ) =
xT

1 (D−W)x1

xT
1 Dx1

+ ... +
xT

k (D−W)xk

xT
k Dxk

= k −
(

xT
1 Wx1

xT
1 Dx1

+ ... +
xT

k Wxk

xT
k Dxk

)
(4.17)

subje
t to XTDX = Ik.



4.6 Multi
lass normalized 
ut 107The solution for the generalized Rayleigh quotients that 
ompose Equation (4.17)is the set of eigenve
tors X asso
iated with the set of the smallest eigenvalues Φ =

{0 = ν1 ≤ ... ≤ νk} of the system
(D −W )X = ΦDX (4.18)However, this problem is NP-hard [Shi 00, Meila 01℄ and therefore generally in-tra
table. If we ignore the fa
t that the elements of xi are either zero or one, and allowthem to take 
ontinuous values, by using the method of Lagrange multipliers as shownin [Chan 94℄, Equation (4.18) 
an be expressed by the standard eigenvalue problem.Let yi = D1/2xi and Y = [y1,y2, ...,yk].̃

WY = Y Λ (4.19)subje
t to Y TY = Ik, where W̃ = D−1/2WD−1/2 is the normalized graph Lapla
ianmatrix4, with Λ = {1 = λ1 ≥ ... ≥ λk} where λi = 1− νi.If Y is formed with any k eigenve
tors of W̃ then W̃Y = Y Λ where Λ is the k × kdiagonal matrix formed with the eigenvalues 
orresponding to the k eigenve
tors in Y .These k eigenve
tors must be distin
t to satisfy Y TY = Ik. This means that
Y T W̃Y = Y TY Λ = IkΛ = Λ (4.20)and the trace of Y T W̃Y is the sum of the eigenvalues 
orresponding to the k eigen-ve
tors in Y . It follows that this sum is maximized by sele
ting the eigenve
tors 
or-responding to the k largest eigenvalues of W̃ . So, Equation (4.17) be
omes equivalentto

kNCut (Γ) = k − trace
(
Y T W̃Y

)
= k −

k∑

i=1

λi (4.21)Theorem 1 (Fan's Theorem [Fan 49℄) Let the eigenvalues λi of a symmetri
 ma-trix Q be so arranged that λ1 ≥ λ2 ≥ ... ≥ λn. For any positive integer k ≤ n, the sums
∑k

i=1 λi and ∑k

i=1 λn+1−i are respe
tively the maximum and minimum of ∑k

j=1 y
T
j Qyjwhen k orthonormal ve
tors yj(1 ≤ j ≤ k) vary in the spa
e.4Although the Lapla
ian matrix is usually represented by I − W̃ , repla
ing W̃ with I − W̃ only
hanges the eigenvalues (from λ to 1− λ) and not the eigenve
tors.



108 Hybrid spatial segmentation: the modelIt follows from Fan's Theorem that the maximum on the right hand side of Equation(4.21) is a
hieved when Y is taken to by any orthonormal basis for the subspa
e spannedby the eigenve
tors 
orresponding to the k largest eigenvalues of W̃ . From this we rea
hthe following relaxed optimization problem
min

XT DX=Ik

kNCut (Γ) = k − max
Y T Y =Ik

trace
(
Y T W̃Y

) (4.22)By putting together Fan's theorem with Equation (4.22) we establish a lower bound
l (k) on kNCut (Γ) as

min
Γ
NCutk (Γ) ≥ k −

k∑

i=1

λi (4.23)where λ1, ..., λk are the k largest eigenvalues of W̃ . (For a proof see [Meila 01℄.)For k = 2 the bound be
omes l (2) = 2 − (1 + λ2) = 1 − λ2 = ν2 that is these
ond smallest eigenvalue of the generalized eigensystem of Equation (4.18). This is
onsistent with the bi-partitioning method proposed by Shi and Malik [Shi 00℄.The 
ore 
omputational te
hnique of the normalized 
ut algorithm is the eigenvalueproblem Equation (4.27). It requires the solution to a large sparse system of symmetri
equations. The LANCZOS algorithm [S
ott 87℄ provides an ex
ellent method for ap-proximating the eigenve
tors 
orresponding to the smallest or the largest eigenvaluesof a sparse matrix with a time 
omplexity of O (n3/2k
) where n is the dimension of thematrix and k the number of eigenve
tors.4.6.1 Multi
lass NCut in a random walk viewThe Markov 
hain des
ribing the sequen
e of nodes visited by a random walker is 
alleda random walk on a weighted graph. We asso
iate a random variable, st, representingthe state of the Markov 
hain to every node in a step t; If the random walker is in state

i at time t, we say st = i.We de�ne a random walk by the following single-step transition probability pi,j thatrepresents the probability of jumping from a node i to a node j in one step, given thatwe are in node i, whi
h is proportional to the weight wi,j of the link 
onne
ting nodes
i and j: pi,j = Pr [st+1 = j|st = i] = wi,j/di, where di is the degree of node i, given bythe sum of links 
onne
ting node i to all the nodes.



4.6 Multi
lass normalized 
ut 109The kNCut 
riterion 
an also be understood in the Markov random walk framework.Let VA, VB ∈ V . We de�ne PVA,VB
= Pr [VA → VB|VA] as the probability of the randomwalk going from set VA to set VB in one step if the 
urrent state is in VA.

PVA,VB
=

∑
i∈VA,j∈VB

wi,j∑
j∈V wi,j

=
links (VA, VB)

links (VA, V )
(4.24)From this and from Equation (4.17) we express Equation (4.13) as:

kNCut (Γ) = k −
k∑

i=1

PVkVk
(4.25)The sto
hasti
 transition matrix P is obtained by normalizing the similarity matrixin order to the rows sums be all 1 (the degree matrix of P is the identity matrix).

P = D−1W (4.26)The NCut is strongly related to the 
on
ept of low 
ondu
tivity sets in the Markovrandom walk [Meila 01℄. Minimizing the NCut for the bipartition VA, VB means thatthe probabilities of evading set VA, on
e the walk is in it and of evading VB are bothminimized.The relationship between the Lapla
ian matrix W̃ and the Markov random walktransition matrix P was presented by Meila and Shi [Meila 01℄. Equation (4.19) 
anbe transformed into a standard eigenvalue problem of,
PZ = ΛZ (4.27)where the eigenve
tors of P are related with the eigenve
tors of W̃ by Z = D−1/2Y .Sin
e D is diagonal this means that the i-th row of Y is the same as the i-th rowof Z s
aled by D1/2

i . So after the rows of Z are normalized to length 1, the optimalsolution obtained from Z is identi
al to the solution obtained from Y .
Z = [z1, ..., zk] is an n × k matrix formed by sta
king the k largest eigenve
torsof the eigensystem from Equation (4.27) in 
olumns. The 
ontinuous solution X̃ isobtained from Z by renormalizing ea
h of Z's rows to have a unit norm.

X̃ = Z
(
ZTZ

)−1/2 (4.28)



110 Hybrid spatial segmentation: the modelRe
overing a dis
rete solution X from the 
ontinuous solution X̃ is however a
omplex task. To over
ome this problem, a majority of the theoreti
al work on spe
tralmethods have dealt with su

essive bi-partitioning generating 2k partitions [Shi 00℄.4.6.2 Dis
rete partitionDue to the orthogonal invarian
e of the eigenve
tors [Ng 02℄ any 
ontinuous solution
an be repla
ed by a dis
rete solution X = X̃R for any orthogonal matrix R ∈ Rk×k.We 
an obtain this optimal dis
rete solution using the 
lassi
al perturbation theoryfor matrix eigenvalue problems. In this work we follow a similar approa
h to the onepresented by Yu and Shi in [Yu 03℄.To dis
retize Z into X, we �rst normalize the rows of Z into X̃ and then sear
h forthe rotation R that brings X̃ the 
losest possible to a binary indi
ator ve
tor X. Theoptimum dis
rete solution 
an be found iteratively. Given a 
ontinuous solution, wesolve for its 
losest dis
rete partitioning solution; given a dis
rete solution, we solve forits 
losest 
ontinuous optimum. After 
onvergen
e, X 
orresponds to a partitioningthat is nearly globally optimal.An optimal partition X should satisfy the following 
onditions:
minimize φ (X,R) =

∥∥∥X − X̃R
∥∥∥

2

subject to X ∈ {0, 1}n×k
, XIk = In

RTR = Ik

(4.29)
This 
an be solved by an iterative optimization pro
ess:
• Given R, we want to minimize φ (X) =

∥∥∥X − X̃R
∥∥∥

2. The optimal solution isgiven by non-maximum suppression:
X (i,m) = istrue

(
m = arg max

[
X̃ (i, k)

])
, i ∈ V (4.30)We let the �rst 
luster 
entroid to be given by the row of the 
ontinuous solution

X̃ 
orresponding to the row of Z with the maximum sum, and then repeatedly 
hooseas the next 
entroid the row of X̃ that is 
losest to being 900 from all the 
entroidsalready pi
ked.
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• Given X, we want to minimize φ (R) =

∥∥∥X − X̃R
∥∥∥

2. The solution is given bysingular value de
omposition (SVD) diagonalization:
U · Ω · V = XT X̃

R = V UT

(4.31)where U and V are k × k orthonormal matri
es, UTU = V TV = Ik, and Ω is a
k× k matrix that 
ontains the singular values of XT X̃ in de
reasing order on itsdiagonal and it is equal to zero elsewhere.Sin
e φ (R) = 2 (n− trace (Ω)), the larger trace (Ω) is the 
loser X is to X̃R.Su
h iterations monotonously de
rease the distan
e between the 
ontinuous opti-mum and the dis
rete solution.Figure 4.15 shows a 
omparison between 
ontinuous and dis
retized eigenve
tors.Although there is 
orre
t information in the 
ontinuous solution, it 
ould be very hardto split the pixels into segments.4.7 Region similarity graphSpe
tral-based methods use the eigenve
tors and eigenvalues of a matrix derived fromthe pairwise similarities of features (pixels or regions). This e�e
t is a
hieved by 
on-stru
ting a fully 
onne
ted graph.Based on the graph 
onstru
tion, there are two main groups of methods for imagesegmentation: region-based methods where ea
h node represents a set of 
onne
tedpixels, and pixel-based methods where ea
h node 
orresponds to a pixel of the image.Region-based methods are usually modelled by a region adja
en
y graph (RAG). How-ever, in the merging pro
ess these methods take into a

ount only lo
al information.Pixel-based methods 
onstru
t an undire
ted weighted graph, taking ea
h pixel as anode and 
onne
ting ea
h pair of pixels with a weighted link. This re�e
ts the likeli-hood that these two pixels belong to the same obje
t. In these methods segmentation
riteria are based on global similarity measures. In general, these methods are basedon the partition of the graph by optimizing some 
ut value instead of merging the mostsimilar adja
ent regions.
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(d)Figure 4.15: Continuous vs. dis
rete eigenve
tors: (a) A generalized 
ontinuous eigenve
tor.(b) The dis
rete solution of the same eigenve
tor. (
)-(d) Graphi
 representation of valuesfrom the red rows in the images.Considering all pairwise pixel relations in an image may be too 
omputational ex-pensive. Unlike other famous 
lustering methods [Shi 00, Yu 03℄ whi
h use all pixelsto 
onstru
t the graph, our method is based on sele
ting links from a region sim-ilarity graph where ea
h node 
orresponds to an atomi
 region. We represent theover-segmented image by a weighted undire
ted graph G = (V,E,W ), 
alled regionsimilarity graph (RSG). The RSG is similar to the region adja
en
y graph (RAG)[Haris 98, Hernandez 00℄ but it allows the existen
e of links between pairs of non-adja
ent regions.The proposed RSG stru
ture takes advantages of both, region and pixel-based rep-resentations. The set of nodes V 
orresponds to the over-segmented regions wherenodes are represented by the 
entroid of ea
h mi
ro-region. The set of links E repre-sent relationships between pairs of regions, and the link weights W represent similaritymeasures between pair of regions and they are de�ned taking into a

ount the intensitydi�eren
e between regions and the maximum amount of gradient in the line 
onne
ting
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entroids (intervening 
ontours). Figure 4.16 shows a syntheti
 image andits 
orresponding RAG and RSG.

(a) (b) (
)Figure 4.16: (a) Original image. (b) Corresponding RAG. (
) RSG with links betweennon-adja
ent regions.Some 
hara
teristi
s of the RSG model that yield to some relevant advantages withregard to the RAG model are:
• It is de�ned on
e and it does not need any dynami
 updating when mergingregions. Merging two regions in a RAG stru
ture requires a 
onsiderable amountof pro
essing to update RAG to re�e
t 
hanges generated by the merging. Itrequires identity updating for every pixel in the merged region, as well as everyregion adja
ent to those two regions.
• The segmentation, formulated as a not ne
essarily adja
ent graph partition prob-lem, leads to the fa
t that extra
ted obje
ts are not ne
essarily 
onne
ted.4.7.1 Pairwise spatial similarityThe quality of a segmentation based on a RSG depends fundamentally on the linkweights (similarity) that are provided as input. The weights should be large for nodesthat belong to the same group and small otherwise. Using the mi
ro-regions obtained inthe pre-segmentation step as graph nodes, the 
orresponding weight fun
tion W ∈ R+

0is de�ned assigning ea
h link with the similarity between two nodes.This weighted graph depends on external parameters that are related to the de�ni-tion of similarity (whi
h is task dependent) and to the transformation from per
eptualsimilarity to link weight. Exponential de
reasing fun
tion is supported psy
hophysi-
ally. It has been argued by Shepard [Shepard 87℄ that there is a robust psy
hologi
allaw that relates the distan
e between a pair of items in psy
hologi
al spa
e and the



114 Hybrid spatial segmentation: the modelprobability that they will be per
eived as similar. Spe
i�
ally, this probability is anegative exponential fun
tion of the distan
e between the pair of items.In the RSG model nodes are represented by the 
entroid of ea
h region as a resultof the initial over-segmentation. Links together with their asso
iated weights are de-�ned using the spatial similarity between nodes, their 
onne
tivity and the strengthof intervening 
ontours [Malik 01℄ between region 
entroids. The resulting graph is astru
ture where region nodes represent 
omplete image regions.For ea
h pair of nodes, node similarity is inversely 
orrelated with the maximum
ontour energy en
ountered along the path 
onne
ting the 
entroids of the regions.If there are strong links along a line 
onne
ting two 
entroids, these atomi
 regionsprobably belong to di�erent segments and should be labelled as dissimilar. So, edgeinformation 
an be integrated by redu
ing the pairwise similarity of su
h 
entroids.Let i and j be two atomi
 regions:
wic (i, j) = exp

[
−maxt∈line(i,j) ‖OE∗ (xi, xj)‖2

σ2
ic

] (4.32)where line (i, j) is the straight line between 
entroids xi and xj.The intensity distan
e between nodes 
ontributes for the link weight a

ording tothe following fun
tion:
wI (i, j) = exp

(
−
(
Ixi
− Ixj

)2

σ2
I

) (4.33)These 
ues are 
ombined in a �nal link weight similarity fun
tion, with the values
σic and σI sele
ted in order to maximize the dynami
 range of W :

W (i, j) = wic (i, j) · wI (i, j) (4.34)In almost all the graph-based approa
hes proposed in the literature the spatialdistan
e 
ue is also used to 
ompute the similarity between graph nodes. However,during our experiments, we note that su
h 
ue is responsible for the partition of imagehomogeneous areas - an issue 
ommonly asso
iated to normalized 
ut algorithm. It isdemonstrated by the 
ommon sense that if we 
onsider two atomi
 regions belongingto the same homogeneous area but distant from ea
h other if we de
rease the similaritybetween nodes with spatial distan
e the probability that normalized 
ut will not merge
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rease. Thus, we de
ided not to use 
entroid spatial distan
e as asimilarity 
ue. To this de
ision we take in attention the fa
t that intervening 
ontoursare equivalent to spatial distan
e without su�ering from the same problems.4.7.2 Implementation details of the RSGFor a 
omputational 
onsideration it is important to sort and label all the regions
reated by the watershed segmentation. In the following some implementation detailsare given about the 
onstru
tion of the RSG. For ea
h region ri, spatial lo
ation xi is
omputed as 
entroids of their pixels. If the region is 
onvex, the 
entroid is inside of itbut if the region is 
on
ave, the 
entroid 
hanges to the 
orresponding lo
ation of thenearest boundary pixel of that region. Two dynami
 data stru
tures are used throughwhi
h it is very 
onvenient to add or remove regions: 1) A label map in whi
h ea
hpixel value 
orresponds to the label of the segment that this pixel belongs to; 2) Anarray of segments where ea
h segment is represented by a linked-list of pixels whi
h
orrespond to the pixels that belong to the segment. This list in
ludes the lo
ationand the grey-level of ea
h pixel.This dual representation of a partitioned image allows for a very e�
ient imple-mentation. The label map grants us immediate a

ess to the label of every pixel in theimage. The array of lists gives us immediate a

ess to the set of pixels that belong toea
h segment. Using this representation two di�erent segments 
an be merged into oneby iterating through the 
orresponding linked-lists and updating the label map. Evenmore, we 
an easily obtain the 
entroid and the mean value of ea
h segment.To 
ompute the similarity matrix the 
urrent approa
h uses only image brightnessand magnitude gradient. Additional features su
h as texture, 
ould be added to thesimilarity 
riterion. This may slow the 
onstru
tion of the RSG but the rest of thealgorithm will pro
eed with no 
hange.4.8 Hybrid segmentation frameworkThe algorithm des
ribed in this 
hapter 
an be well 
lassi�ed into the 
ategory ofhybrid te
hniques (see se
tion 4 of 
hapter 2), sin
e it 
ombines the edge-based, region-based, and the morphologi
al te
hniques together through the spe
tral-based approa
h.Rather than 
onsidering our method as another segmentation algorithm, we propose



116 Hybrid spatial segmentation: the modelthat our hybrid te
hnique 
an be 
onsidered as an image segmentation frameworkwithin whi
h existing image segmentation algorithms that produ
e over-segmentationmay be used in the preliminary segmentation step.To improve e�
ien
y we introdu
e a graph 
ut formulation whi
h is built on a pre-
omputed image over-segmentation instead of image pixels. In this framework graph
G is not a ne
essarily adja
en
y graph with nodes being a set of atomi
 regions. Wepropose a powerful image segmentation algorithm by 
ombining watershed transformand the multi
lass spe
tral method to 
omplement their strengths and weaknesses.In most images there are usually large regions of pixels that belong to the samesalient region and have only small interior intensity variations and they are thus easilyidenti�ed. To 
ombine these pixels into one region and to redu
e the spatial resolutionwithout losing important information we have de
ided to use a gradient watershed algo-rithm that provides over segmented but homogeneous regions with well lo
ated regionboundaries. Sin
e watershed segmentation provides a good set of obje
t boundaries,this approximation produ
es reasonable results and improves the speed signi�
antly.The normalized 
ut and watershed approa
hes have 
omplementary strengths:
• In the output of the watershed approa
h we have a redu
ed 
omplexity represen-tation. The dimension of the graph is far smaller when assigning nodes to atomi
regions than to pixels, redu
ing the 
luster 
omputation.
• We have 
omplete freedom in the 
hoi
e of similarity fun
tion. This means thatregion interior as well as gradient information 
an be used. In parti
ular atomi
regions allow the 
omparison of distributions of feature ve
tors rather than singlepoints as with the pixel based algorithms.
• Further, while the watershed depends fundamentally on lo
al measurements ofsimilarity (via the gradient fun
tion) region a�nities 
an be 
al
ulated over thewhole image, if desired, leading to a more global view of the similarity stru
ture.The 
ombination of watershed and spe
tral methods solves the weaknesses of ea
hmethod by using the watershed to provide small prototype regions from whi
h similaritymatrix 
ould be obtained. Rather than 
lustering single feature points we will 
lus-ter mi
ro-segments, 
on�dent that the underlying primitive segments are reliable. Ourapproa
h a
tually prefers the obje
ts to be over-segmented into a number of smaller re-gions to ensure that a minimal amount of ba
kground is 
onne
ted to any of the obje
t
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riterion takes joint advantage of the two methods aiming at 
om-bining the best qualities of both segmentation approa
hes, giving a �nal segmentationthat is more visually appropriated.Preliminary segmentation by watershed transform is 
apable of produ
ing atomi
regions with 
omplete and a

urate boundaries, whi
h 
an be 
onsidered as a goodstarting point for region merging. We present a new approa
h for lo
ally applying a�oating point based rainfalling simulation in a single image s
an. In the se
ond stagethese atomi
 regions are used to 
onstru
t a graph representation of the image, whi
h ispro
essed by a dis
rete multi
lass normalized 
ut algorithm (kNCut). This 
ombinedframework results in a 
onsiderable speed-up of the entire algorithm.A 
riti
al issue in watershed te
hniques is known to be over-segmentation i.e. thetenden
y to produ
e too many basins [Haris 98℄. Several methods have been proposedin the literature to redu
e the spurious boundaries 
reated due to noise and produ
ea meaningful segmentation. Ogor [Ogor 95℄ proposes morphologi
al opening and 
los-ing. Gau
h [Gau
h 99℄ uses Gaussian blurring. Hernandez and Barner [Hernandez 00℄suggest median �ltering while De Smet et al. [De Smet 99℄ apply non-linear �lteringby anisotropi
 di�usion.In this work we provide three methods to over
ome this problem. First, bilateralanisotropi
 �ltering [Tomasi 98℄ 
an be applied to remove noise from the image. Se
-ondly, some of the weakest edges are removed by a gradient minima suppression pro
essknown as pre-�ooding. This 
on
ept uses a measure of depth of a 
ertain basin. Priorto the transform, ea
h 
at
hment basin is �ooded up to a 
ertain height above itsbottom, i.e. the lowest gradient magnitude and it 
an be thought as a �ooding of thetopographi
 image at a 
ertain level (�ooding level). This pro
ess will 
reate a numberof lakes grouping all the pixels that lie below the �ooding level (see Figure 4.17). Thisstep is useful in redu
ing the in�uen
e of noise and partly eliminates over-segmentation.The third one, handles to 
ontrol over-segmentation eliminating spurious tiny re-gions asso
iated with uniform regions through a merging step. This eliminates tinyregions whi
h have similar adja
ent regions, while maintaining the a

ura
y of thepartition. This stage is required to redu
e the 
omputational 
omplexity in the graphpartitioning. Another advantage of these steps is to prevent large homogeneous (�at)regions from being split in the graph-based segmentation (a 
ommon problem withbalan
ed graph 
ut methods).
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Figure 4.17: Pre-�ooding pro
ess. Lakes are formed by merging neighbouring pixels belowthe �ooding threshold.Our approa
h to solve image segmentation as a graph partitioning problem is relatedto O'Callaghan and Bull [Callaghan 05℄ and De Bo
k et al. [De Bo
k 05℄ work. How-ever, there are important di�eren
es between their works and ours: although De Bo
ket al. use a rainfalling watershed, it does not handle the problem of �at regions. Thus,when a raindrop falls in su
h kind of regions it forms a single region. It results ina larger number of atomi
 regions with dimension 1; O'Callaghan and Bull use animmersion-based watershed to 
ompute initial segmentation; In the merging pro
essDe Bo
k et al. perform a bipartition normalized 
ut similar to the one presented in[Shi 00℄ and O'Callaghan and Bull use a weighted mean 
ut fun
tion for graph parti-tioning. It is also important to note that both s
hemes use a simple region adja
en
ygraph stru
ture to 
ompute region similarity.4.9 SummaryIn this 
hapter we have proposed a new global image segmentation algorithm whi
h
ombines edge- and region-based information with spe
tral te
hniques through the mor-phologi
al algorithm of watersheds. A non-linear smoothing (bilateral �lter) is used toredu
e over-segmentation in the watershed algorithm while preserving the lo
ation ofthe image boundaries. The purpose of the pre-pro
essing step is to redu
e the spatialresolution without losing important image information. An initial partitioning of theimage into primitive regions is set by applying a rainfalling watershed simulation onthe image gradient magnitude. This step presents a new approa
h to over
ome theproblems with �at regions. This initial partition is the input to a 
omputationally e�-
ient region segmentation pro
ess (multi
lass normalized 
ut algorithm) that produ
es



4.9 Summary 119the �nal segmentation. The latter pro
ess uses a region similarity graph representationof the image regions.To prevent large homogeneous regions from being split (a 
ommon problem ofbalan
ed graph based methods) we 
omputed an over-segmentation of the image usingthe watershed te
hnique. Clearly, large homogeneous regions are not partitioned intoseparate regions, unless there is a small amount of linking pixels between parts of thesame region.Using small atomi
 regions instead of pixels leads to a more natural image repre-sentation - the pixels are merely the result of the digital image dis
retization pro
essand they do not o

ur in the real world. Besides produ
ing smoother segmentationsthan pixel-based partitioning methods, it also redu
es the 
omputational 
ost in severalorders of magnitude.Any region-based segmentation algorithm whi
h produ
es an over-segmented image
an be used to extra
t the mi
ro regions that will be 
ombined based on the similarityfun
tion. So, our framework 
an easily integrate these algorithms and over
ome theirproblems of over-segmentation in order to produ
e a better segmentation.



120 Hybrid spatial segmentation: the model



CHAPTER 5
Region-based motion segmentation:the model
This 
hapter des
ribes an approa
h for integrating motion estimation andregion 
lustering te
hniques with the purpose of obtaining pre
ise multiplemotion segmentations. Motivated by the good results obtained with the al-gorithm proposed in Chapter 4 we propose a hybrid approa
h where motionsegmentation is a
hieved within a region-based 
lustering approa
h takenthe initially result of a spatial pre-segmentation and extended to in
ludemotion information. Motion ve
tors are �rst estimated with a multis
alevariational method applied dire
tly over the input images and then re�nedby in
orporating segmentation results into a region-based warping s
heme.The 
omplete algorithm fa
ilitates obtaining spatially 
ontinuous segmenta-tion maps whi
h are 
losely related to a
tual obje
t boundaries.5.1 Introdu
tionMotion segmentation is basi
ally de�ned as grouping pixels that are asso
iated with asmooth and uniform motion pro�le. The segmentation of an image sequen
e based onmotion is a problem that is loosely de�ned and ambiguous in 
ertain ways. Thoughthe de�nition says that regions with 
oherent motion are to be grouped, the resultingsegments may not 
onform to meaningful obje
t regions in the image.The analysis of image motion and the pro
essing of image sequen
es using motioninformation is be
oming more and more important as video systems are �nding an121
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reasing number of appli
ations in the areas of 
oding, entertainment, robot vision,edu
ation, personal 
ommuni
ations and multimedia. In video surveillan
e, segmen-tation 
an help to dete
t spe
ial events or to tra
k obje
ts over time. To reliably
lassify regions of an image sequen
e by their motion information is an important partof many 
omputer vision systems. In video surveillan
e it is important to be able todete
t whi
h are the regions with movement. If one has dete
ted a foreground obje
t,further operations 
an be done on that obje
t, su
h as re
ognition, identi�
ation ortra
king. In roboti
s it is important to know whi
h foreground obje
ts are in order toproperly intera
t with them. In video 
onferen
ing one wants to de
ide whi
h obje
tsare foreground and whi
h ones are ba
kground to be able to en
ode the parts separatelyin order to save bandwidth, as the ba
kground needs to be transmitted only on
e.Re
ent appli
ations su
h as 
ontent-based image/video retrieval, like MPEG-7[Chang 01℄, and image/video 
omposition, require that the segmented obje
ts are se-manti
ally meaningful. Indeed, the multimedia standard MPEG-4 [MPEG4 99℄ spe
i-�es that a video is 
omposed of meaningful video obje
ts. In order to obtain a 
ontent-based representation, an image sequen
e must be segmented into an appropriate set ofsemanti
ally shaped obje
ts or video obje
t planes. Although the human visual system
an easily distinguish semanti
 video obje
ts, automati
 video segmentation is one ofthe most 
hallenging issues in the �eld of image pro
essing.Motion segmentation is 
losely related to two other problems, motion dete
tionand motion estimation. Motion dete
tion is a spe
ial 
ase of motion segmentationwith only two segments 
orresponding to moving versus stationary image regions (inthe 
ase of a stationary 
amera) or global versus lo
al motion regions (in the 
ase ofa moving 
amera) [Dufaux 95℄. In these 
ases, the motion pro�le of a pixel representsonly the probability that a pixel is moving or not. When using stationary 
ameras,ba
kground subtra
tion is a parti
ularly popular method to segment foreground andba
kground. The idea behind ba
kground subtra
tion is to 
ompare the 
urrent imagewith a referen
e image of the ba
kground, and from there de
ide what is ba
kgroundand what is not by looking for 
hange at ea
h pixel.There is a strong interdependen
e between the de�nition of the spatial support of aregion and of its motion estimation. On one hand, estimation of the motion informationof the region depends on the region of support. Therefore, a 
areful segmentation ofthe regions is needed in order to estimate the motion a

urately. On the other hand, a



5.1 Introdu
tion 123moving region is 
hara
terized by 
oherent motion 
hara
teristi
s over its entire surfa
e(assuming that only rigid motion is permitted). Therefore, an a

urate estimation ofthe motion is required in order to obtain an a

urate segmentation of the region.All the motion estimation approa
hes assume that there is point 
orresponden
ebetween two 
onse
utive frames whi
h indu
es dense motion ve
tor �eld of an image.No matter what method is used, at some stage we need a me
hanism to assign ea
hpoint to one of the re
overed motions. This me
hanism must take into a

ount thesmoothness of the world, i.e., the intuitive notion that the points belonging to thesame motion are also spatially 
lustered in the image. This fa
t has been widelya
knowledged in the literature on 2D motion segmentation [Shi 98, Cremers 05℄.The estimation of an a

urate motion �eld plays an important role in motion seg-mentation. However, general motion estimation algorithms often generate an ina

u-rate motion �eld mainly at the boundaries of moving obje
ts, due to reasons su
h asnoise, aperture problem, or o

lusion. Therefore, segmentation based on motion aloneresults in segments with ina

urate boundaries.In this 
hapter, a hybrid framework is proposed to integrate di�erential opti
al �owapproa
h and region-based spatial segmentation approa
h to obtain for the a

urateobje
t motion. Our method adopts the variational opti
al �ow approa
h of Brox et al.[Brox 04℄ in 
onjun
tion with several proposed te
hniques to 
onvert the dense opti
al�ow �eld to region-based motion �eld, with the suppression of noise and outliers.Motion information will be initially represented through a dense motion ve
tor �eld,i.e., it estimates whi
h one best relate the position of ea
h pixel in su

essive imageframes. For the task at hand we adopt a high a

ura
y opti
al �ow estimation basedon a 
oarse-to-�ne warping strategy [Brox 04℄ whi
h 
an provide dense opti
al �owinformation. This method a

elerates 
onvergen
e by allowing global motion featuresto be dete
ted immediately, but it also improves the a

ura
y of �ow estimation be
auseit provides better approximation of image gradients via warping. This te
hnique isimplemented within a multiresolution framework, allowing estimation of a wide rangeof displa
ements.Handling spatial and temporal information in a uni�ed approa
h is appealing asit 
ould solve some of the well known problems in grouping s
hemes based on motioninformation alone [Wang 94, Weiss 97℄. Brightness 
ues 
an help to segment untexturedregions for whi
h the motion 
ues are ambiguous and 
ontour 
ues 
an impose sharp
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al �ow algorithms tend to extend along ba
kground regions.Graph based segmentation is an e�e
tive approa
h for 
utting (separating) sets ofnodes on a graph produ
ing segmentation. As su
h, its extension to integrate motioninformation is just a matter of adding a proper similarity measure between nodes inthe graph.5.2 Previous work in motion segmentationThere is large literature on methods for segmenting from motion (see [Zhang 01a℄for a 
omprehensive review on motion segmentation). The majority of the proposedapproa
hes rely on the partition of ea
h frame into solely two regions: one obje
t andthe ba
kground whi
h 
ould be too restri
tive in some appli
ations, e.g. 
oding.A 
ommon 
lass of methods for segmentation from motion is based on mat
hingfeatures points, su
h as 
orners or interest points. Sin
e these systems pro
ess only arelatively sparse set of feature points, they are used to dete
t and tra
k moving obje
tsin a s
ene, rather than segmenting them with high resolution. Instead of mat
hingfeature points, some systems mat
h small image blo
ks. Others, fo
using on the si-multaneous solution of motion estimation and segmentation assume a �xed numberof regions and they are still more 
on
erned with motion estimation for 
ompression[Chang 97℄.We 
an divide motion segmentation methods into the following three 
ategories:
• Opti
al �ow based segmentation.
• Simultaneous or sequential re
overy of motion and segmentation.
• Fusion of motion estimation and stati
 segmentation.In the �rst approa
h, a dense opti
al �ow �eld is re
overed �rst and then seg-mentation is performed by �tting a model (often a�ne) to the 
omputed �ow �eld[Mémin 98℄. Geometry of the s
ene 
an be used to 
ombine this approa
h with a re-gion growing approa
h. Reliable estimation of opti
al �ow is di�
ult and separating thetwo pro
esses 
auses errors to propagate from the �rst stage to the segmentation. These
ond approa
h attempts to solve the problems of the �rst one by doing simultaneousor sequential motion re
overy and segmentation. In these te
hniques the segmenta-tion is often formulated by using a Markov Random Field (MRF), whi
h is a way of
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orporating spatial 
orrelation into the segmentation pro
ess. The third approa
haims to improve segmentation performan
e by using stati
 segmentation based on theintensities of a single image to provide 
ues for the dynami
 segmentation [Dufaux 95℄.Gelgon and Bouthemy [Gelgon 95℄ used a region-level graph labelling approa
h to 
om-bine the stati
 and dynami
 segmentations. Sin
e the support area for estimating themotion is 
hosen based on the stati
 segmentation, biases in the motion estimation arelikely to mislead the segmentation algorithm.Other approa
hes to motion segmentation have been developed in
luding the sta-tisti
al model �tting algorithm of Bab-Hadiashar and Suter [B.-Hadiashar 98℄ and mo-tion based segmentation te
hniques whi
h do not use the dense motion estimationapproa
hes are just outlined. For instan
e, Torr [Torr 95℄ proposed using the funda-mental matrix for motion segmentation purposes. These algorithms are feature basedand used a sparse set of features to identify the obje
ts. Therefore, the number of datais relatively small.Multibody fa
torization algorithms [Costeira 95℄ provide an elegant framework forsegmentation based on the 3D motion of the obje
t. These methods get as input amatrix that 
ontains the lo
ation of a number of points in many frames and theyuse algebrai
 fa
torization te
hniques to 
al
ulate the segmentation of the points intoobje
ts, as well as the 3D stru
ture and motion of ea
h obje
t. A major advantage ofthese approa
hes is that they expli
itly use the full temporal traje
tory of every point,therefore they are 
apable of segmenting obje
ts whose motions 
annot be distinguishedusing only two frames. Despite re
ent progress in multibody fa
torization algorithms,their performan
e is still far from satisfa
tory. In many sequen
es, for whi
h the 
orre
tsegmentation is easily apparent from a single frame, 
urrent algorithms that use onlymotion information often fail to rea
h this segmentation.Most motion segmentation te
hniques handle the opti
al �ow or just the imagedi�eren
e, as a pre
omputed feature that is provided to a standard segmentationmethod. In 
ontrast to those methods, some more re
ent approa
hes propose to solvethe problems of opti
al �ow estimation and segmentation simultaneously [Mémin 02,Cremers 05, Brox 06a℄. Cremers and Soatto introdu
ed in [Cremers 05℄ the level setbased motion 
ompetition te
hnique. The opti
al �ow is estimated separately for ea
hregion by a parametri
 model and the region 
ontour is evolved dire
tly by means ofthe �tting error of the opti
al �ow. This idea has been adopted in [Brox 06a℄ where the
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 model has been repla
ed by the better performing non-parametri
 opti
al�ow model from [Brox 04℄. A fundamental problem with the simultaneous segmen-tation and velo
ity estimation approa
h is that we typi
ally need a segmentation inorder to 
ompute the motion model parameters and we need motion models in orderto partition the image into regions.When there is 
amera motion in video, segmenting or 
lustering motion is usuallydone by separating the obje
ts (foreground) from the ba
kground. The use of normal-ized 
uts for motion segmentation was introdu
ed in [Shi 98℄, in whi
h graph 
uttingte
hniques are used to obtain a motion related set of pat
hes in the image sequen
e.The relationship between pat
hes is de�ned on the basis of their motion similarity aswell as their spatial and temporal proximity in the image sequen
e. The method ispixel-based, therefore it imposes a high 
omputational overhead and thus, restri
tedto very small image sizes in order to minimize the graph 
utting 
omplexity. As aresult it does not attempt to provide a

urate shape re
overy. Shi and Malik proposean approa
h to this problem whi
h uses a sparse, approximate version of the similaritymatrix in whi
h ea
h unit is 
onne
ted only to a few of its nearby neighbours in spa
eand time and all other 
onne
tions are assumed to be zero.The MPEG-4 video 
oding s
hemes use a blo
k-based approa
h to motion esti-mation. The image is arbitrarily divided up into small blo
ks. For ea
h blo
k, atranslational motion is estimated by making a sear
h in the next frame for the mostsimilar blo
k. These systems are preferably used in the 
ontext of low-bit-rate video
oding. This method again results in a rather 
rude segmentation with a resolutiongiven by the blo
k-size. However, the purpose of video 
oding is, in any 
ase, 
ompres-sion rather than best representing the motion of the underlying obje
t. Using regionsinstead of blo
ks provides more a

ura
y sin
e blo
k-wise motion does not ful�l realmotion in the real world.One of the earliest works on 
ombining multiple features for segmentation is re-ported by Thompson [Thompson 80℄. The image is segmented based on intensity andmotion, by �nding 4-
onne
ted regions that have similar intensity and opti
al �owvalues. The regions are then merged together using a variety of heuristi
s. Bla
k[Bla
k 92℄ presented an approa
h of 
ombining intensity and motion for segmentationof image sequen
es based on Markov Random Fields (MRF). He uses three energyterms: intensity, boundary and motion. Tekalp et al. [Tekalp 98℄ presented a system
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h both 
olour and motion segmentation is done separately, followed by 
lusteringthe 
olour segments together that belong to the same motion segment. This assumesthat the 
olour segments are more detailed, but nevertheless a

urate, than the motionsegments and they only need to be grouped together for 
orre
t segmentation.In several approa
hes intensity is involved at pixel level through a spatial segmenta-tion stage providing a set of regions that are handled by a region-based motion s
heme.In [Ayer 95℄, a spatial segmentation stage is followed by a motion-based region-mergingphase where regions are grouped by iterating estimation of the dominant motion andgrouping of regions that 
onform to that motion. Tsaig and Averbu
h [Tsaig 02℄ pro-posed a framework for automati
 segmentation of moving obje
ts with MRF model.They partitioned ea
h frame into homogeneous regions by using watershed algorithmand 
onstru
ted a region adja
en
y graph. They modelled MRFs on the graph andused the motion information to 
lassify regions as foreground or ba
kground. By treat-ing the region as an elementary unit for the MRF model, they e�
iently redu
ed the
omputational 
omplexity usually asso
iated to MRFs. Although the method produ
egood results it was only applied to foreground-ba
kground motion segmentation.Zeng and Gao [Zeng 04℄ followed the same framework with a solution to the o
-
lusion problem. O

lusion has been an obsta
le to estimate a

urate motion ve
tor.They dete
ted o

lusion region by forward and ba
kward motion validation s
hemeand removed the potential mis
lassi�
ation of the un
overed ba
kground regions. Inaddition, region growing te
hnique is used to improve the segmentation results.Other methods involve, in 
ontrast, motion-based intermediate regions or layers.The idea of segmenting an image into layers was introdu
ed by Wang and Adelson[Wang 94℄ followed by Darrell and Pentland [Darrell 95℄. In the paper of Wang andAdelson, a�ne model is �tted to blo
ks of opti
al �ow, followed by a K-means 
lusteringin motion parameter spa
e. Motion segments are 
lustered in the layer extra
tion stepof the algorithm to derive a set of layers that represent the dominant image motion. Thea�ne model of ea
h layer is re�ned based on its spatial extent. In the layer assignmentstep, a global 
ost fun
tion is optimized in order to improve the assignment of segmentsto layers. The algorithm, then, iterates the layer extra
tion and assignment steps untilthe 
osts would not be improved for a �xed number of iterations and returns thesolution of lowest 
osts. The results presented are 
onvin
ing, though the edges ofsegments are not very a

urate, most likely due to the errors in the 
omputation of
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al �ow at o

lusion boundaries. Darrell and Pentland use a robust estimationmethod to iteratively estimate the number of layers and the pixel assignments to ea
hlayer. They show examples with range images and with opti
al �ow.Smith et al. [Smith 01, Smith 04℄ have developed a Bayesian framework for seg-mentation of video sequen
e into ordered motion layers. Their approa
h is fo
used onthe relationship between the edges in su

essive image frames.Fowlkes et al. [Fowlkes 01℄ proposed a method for 
ombining both stati
 image
ues and motion information 
onsidering all images in a video sequen
e as a spa
e-timevolume and attempt to partition this volume into regions that are 
oherent with respe
tto the various grouping 
ues. This approa
h is based on a te
hnique for the numeri
alsolution of eigenfun
tion problems known as the Nyström method. It exploits the fa
tthat the number of 
oherent groups in an image sequen
e is 
onsiderably smaller thanthe number of units of volume. It does so by extrapolating the 
omplete groupingsolution using the solution to a mu
h smaller problem based on a few random samplesdrawn from the image sequen
e.5.3 Motion estimationMotion segmentation s
hemes must also estimate, at some point in the pro
ess, themotion information in the s
ene. This se
tion gives an overview of motion estimationpro
ess and the di�erent approa
hes available.Motion per
eption is an important 
ognitive element of the visual interpretation ofour 3D world. In an ideal 
ase, the movement of an obje
t in 3D spa
e 
orresponds toa 2D motion in an image sequen
e. These proje
ted motions 
an be represented by amotion ve
tor �eld in the image plane. The estimation of motion from image sequen
eshas a long tradition in 
omputer vision where a

urate te
hniques for estimating thevelo
ity �eld (opti
al �ow �eld) are indispensable 
omponents. All work on imagesequen
es begins by trying to �nd out how the image 
hanges with time, analysinghow di�erent elements in the frame move.Horn and S
hun
k [Horn 81℄ de�ned the opti
al �ow as a velo
ity �eld in the im-age sequen
e whi
h transforms one image into the next. In other words, the motionve
tor �eld is de�ned as the set of motion ve
tors that are used to denote the relativedispla
ement of the image intensity values in a time-varying image sequen
e.
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al �ow relies on the assumption that obje
ts in an imagesequen
e may 
hange position but their appearan
e remains the same (or nearly thesame). Classi
ally this is represented by the grey-level 
onstan
y assumption or theopti
al �ow 
onstraint [Horn 81, Lu
as 81℄. However, this assumption by itself is notsu�
ient for opti
al �ow estimation. Horn and S
hun
k [Horn 81℄ add a smoothnessassumption to regularize the �ow, and Lu
as and Kanade [Lu
as 81℄ assume 
onstantmotion in small windows. Higher a

ura
y 
an be a
hieved using 
oarse-to-�ne and/orwarping methods [Bla
k 96, Brox 04, Bruhn 05b℄. These methods a

elerate 
onver-gen
e by allowing global motion features to be dete
ted immediately, but they alsoimprove the a

ura
y of �ow estimation be
ause they provide a better approximationof the image gradients via warping [Brox 04℄.From the s
ope of the used te
hnique, motion estimation 
an be 
ategorized into thefollowing 
lasses: non-parametri
 blo
k-based [MPEG4 99℄, parametri
 motion model-based [Ayer 95, Torr 95, Bla
k 96, Weiss 97℄, and gradient-based approa
hes [Horn 81,Lu
as 81, Brox 04, Bruhn 05b℄. All of these approa
hes assume that there is point
orresponden
e between two 
onse
utive frames whi
h indu
es dense motion ve
tor�eld of an image.Blo
k-based motion mat
hing has been adopted in the international standards fordigital video 
oding algorithms su
h as H.264 and MPEG-4. They operate by mat
hingspe
i�
 "features" (e.g., small blo
ks) from one frame to the next one. The mat
hing
riterion is usually a normalized 
orrelation measure, typi
ally by analysing the 
orre-lation in the feature neighbourhood. Blo
k mat
hing assumes that the motion �eld ispie
ewise translation. The 
urrent frame is broken up into blo
ks of equal size and forea
h blo
k in the frame, the best mat
h in the referen
e frame is 
omputed within a
ertain neighbourhood.Be
ause of its simpli
ity, fast 
omputation and relative robustness in visual e�e
t,it is one of the most 
ommonly used motion estimation methods even used as an in-termediate stage in some pixel-based approa
hes. The weakness of the non-parametri
blo
k-based method is its inability to des
ribe rotations and deformations, and thepossibility of obtaining motion ve
tors that 
ompletely di�er from the "true" motion.Additionally, a blo
k-based s
heme only provides a 
oarse motion �eld whi
h is insuf-�
ient for motion segmentation.Parametri
 estimation te
hniques (known also as feature-based methods) assume
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ene (opti
al �ow) 
an be des
ribed as a geometri
 transforma-tion, i.e. a�ne or perspe
tive transformation. Thus, rather than estimating the �ow�eld, these te
hniques dire
tly estimate the parameters of the motion model. In most
ases, however, the motion between su

essive frames 
annot be des
ribed as a singlegeometri
 transformation, due to presen
e of independently moving obje
ts thus thes
ene is usually de
omposed into several regions, ea
h exhibiting a 
oherent motion, towhere the motion parameters are then estimated.The fo
us of this thesis is on gradient-based or di�erential methods (known alsoas pixel-based methods), in whi
h the most re
ent progress has been made. Thesemethods have the advantage that they do not have to �nd feature point 
orresponden
e.The motion ve
tor �eld, or the so-
alled opti
al �ow in gradient-based approa
hes, isestimated from the derivatives of image intensity over spa
e and time and they are basedon the assumption of data 
onservation (intensity and gradient). Due to the widelyknown aperture problem, additional assumptions are required to infer a parti
ular 2Dimage velo
ity.5.4 Opti
al �owOpti
al �ow is de�ned as the 2-D ve
tor �eld that mat
hes a pixel in one image tothe warped pixel in the other image. In other words, opti
al �ow estimation tries toassign to ea
h pixel of the 
urrent frame a two-
omponent velo
ity ve
tor indi
atingthe position of the same pixel in the referen
e frame.Given two su

essive images of a sequen
e I (x, y, t) and I (x, y, t+ 1) we seek atea
h pixel x := (x, y, t)T the opti
al �ow ve
tor v (x) := (vx, vy, 1)
T that des
ribes themotion of the pixel at x to its new lo
ation (x+ vx, y + vy, t+ 1) in the next frame.Estimating opti
al �ow involves the solution of a 
orresponden
e problem. Thatis, what pixel in one frame 
orresponds to what pixel in the other frame. In order to�nd these 
orresponden
es one needs to de�ne some property or quantity that it is nota�e
ted by the displa
ement. Many di�erential methods for opti
al �ow are based onthe assumption that the image intensity remains un
hanged along motion traje
tories(brightness 
onstan
y 
onstraint) [Lu
as 81℄:

I (x, y, t) = I (x+ vx, y + vy, t+ 1) (5.1)
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al �ow 131The brightness 
onstan
y assumption requires that the grey value of a pixel doesnot 
hange as it undergoes motion. It is 
ustomary to a

ommodate for this sensitivityto noise by pre-blurring the image or equivalently by using weighted windows aroundea
h pixel. In the following, we will assume that the intensity of a moving point remains
onstant throughout time. Expanding the total di�erential into partial derivatives givesa relation between the spatial image gradient and the homogeneous velo
ity ve
tor,known as opti
al �ow 
onstraint :
Ix · vx + Iy · vy + It = 0 (5.2)as it has been formulated in the 
lassi
al algorithms of [Horn 81, Lu
as 81℄. I∗ denotepartial derivatives where Ix and Iy are the spatial derivatives of image brightness, and Itis the di�eren
e between the image sequen
es. It must be noted that this linearisation isonly valid under the assumption that the image 
hanges linearly along the displa
ementwhi
h, in general, is not the 
ase espe
ially for large displa
ements.Obviously, this single equation is not su�
ient to uniquely 
ompute the two un-knowns vx and vy. This issue is 
ommonly referred to as aperture problem. For non-vanishing image gradients it is only possible to determine the �ow 
omponent perpen-di
ular to the image gradient. It is also 
lear that Equation (5.2) is only well de�nedin areas of the image with high gradient and then it is the results from these areas thatmust then be spread into the other areas of the image. In motion estimation this istypi
ally resolved either by smoothing or by parameterising the motion.Besides prior information on the �ow magnitude, the work of Weiss and Adelson[Weiss 97℄ suggests that humans also use prior information about the smoothness ofopti
al �ow. In a non-rigid motion, although ea
h pixel of an image 
an move freely,the motion is assumed to be lo
ally 
oherent. The opti
al �ow �eld undergoes twofor
es, one that mat
hes the warped image with the original image and the other thatkeeps the opti
al �ow �eld smooth.Consequently, a se
ond assumption is needed that is 
apable to provide a uniquesolution of the �ow ve
tor. There are two popular possibilities: lo
al and global meth-ods. The �rst one was proposed by Lu
as and Kanade [Lu
as 81℄ and assumes that theopti
al �ow 
an be des
ribed by a parametri
 model in a lo
al neighbourhood, whi
his in the simplest 
ase the model of 
onstant �ow. This allows to lo
ally 
ompute



132 Region-based motion segmentation: the modelthe opti
al �ow for ea
h pixel ignoring the situation outside the lo
al neighbourhood.The other 
lass of te
hniques is based on the work of Horn and S
hun
k [Horn 81℄ andassumes the opti
al �ow �eld to be smooth. This indu
es a dependen
y of the �owve
tor at a pixel on the �ow at all other pixels. Re
ently, some 
ombined approa
heshave been proposed whi
h tried to over
ome the intrinsi
 problems to ea
h of the twomethods [Bruhn 05b℄.5.4.1 Relevant literatureThere are several motion estimation algorithms known in the literature. A 
ompletesurvey des
ribing the basi
 ideas behind the most important algorithms was presentedin [Beau
hemin 95℄, whereas the authors of [Barron 94℄ 
ompare quantitatively theperforman
e of various opti
al �ow te
hniques.Two seminal variational methods were proposed by Horn and S
hun
k [Horn 81℄and by Lu
as and Kanade [Lu
as 81℄. The Horn and S
hun
k opti
al �ow algorithm[Horn 81℄ uses a global regularisation between a data term 
onsisting of the motion
onstraint equation and a smoothness term 
onstraining the velo
ity to vary smoothlyeverywhere. Lu
as and Kanade [Lu
as 81℄ assumed the velo
ity is 
onstant in lo-
al neighbourhoods and formulate a least squares 
al
ulation of the velo
ity for ea
hneighbourhood. Both of these methods are based on a least-squares 
riterion for theopti
al �ow 
onstraint, and some global or lo
al smoothness assumption on the esti-mated �ow �eld. In pra
ti
e, �ow �elds are generally not smooth. The boundariesof moving obje
ts will 
orrespond to dis
ontinuities in the motion �eld. At these dis-
ontinuities, the smoothness assumption is strongly violated. Yet, one 
annot simplydrop the regularisation term, sin
e the problem of motion estimation is highly ill-posed.Ideally, one would like to enfor
e a regularity of the estimated motion �eld only in theareas 
orresponding to the di�erent moving obje
ts, allowing for dis
ontinuities a
rossthe boundaries of obje
ts. Yet this requires knowledge of the 
orre
t segmentation.Many resear
hers have addressed this 
oupling of segmentation and motion estima-tion. Rather than �rst estimating lo
al motion and subsequently segmenting or 
lus-tering regions with respe
t to the estimated motion [Wang 94℄ some resear
hers haveproposed to model motion dis
ontinuities impli
itly by non-quadrati
 robust estimators[Nagel 86, Bla
k 96, Mémin 98℄. Others ta
kled the problem of segmenting motion bytreating the problems of motion estimation in disjoint sets and optimization of the mo-
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al �ow 133tion boundaries separately [Odobez 98, Paragios 00, Farnebä
k 01℄. Some approa
hesare based on Markov random �eld (MRF) formulations and optimization s
hemessu
h as sto
hasti
 relaxation by Gibbs sampling [Konrad 92℄, deterministi
 relaxation[Bouthemy 93℄, graph 
uts [Shi 98℄, energy minimization via graph 
uts [Boykov 01b℄or expe
tation-maximization (EM) [Weiss 97℄. As pointed out in [Weiss 97℄, exa
t so-lutions to the EM algorithm are 
omputationally expensive and therefore suboptimalapproximations are employed.Ju et al. [Ju 96℄ proposed a "Skin and Bones" model to 
ompute opti
al �ow usingan a�ne �ow model with a smoothness 
onstraint on the �ow parameters to ensure
ontinuity of motion between pat
hes. They formulate the problem as an obje
tivefun
tion with a data term that enfor
es the a�ne �ow models within a pat
h anda prior term that enfor
es spatial smoothness between the estimated a�ne motionsand those of neighbouring pat
hes. Bla
k and Anandan [Bla
k 96℄ exploited lo
allyadaptive parametri
 motion models to drive the opti
al �ow estimation. Lai et al.[Lai 05℄ proposed a gradient-based regularisation method that in
ludes a 
ontour-basedmotion 
onstraint equation that enfor
ed only at zero-
rossing. Farnebä
k algorithm[Farnebä
k 01℄ has three distin
t 
omponents: estimation of spatio-temporal tensors,estimation of parametri
 motion models and simultaneous segmentation of the motion�eld. Mémin and Pérez [Mémin 98, Mémin 02℄ proposed a robust energy-based modelfor the in
remental estimation of opti
al �ow in a hierar
hi
al pie
e-wise parametri
minimization of an energy fun
tional in regular or adaptive meshes at ea
h hierar
hi
allevel from the 
oarsest to the �nest levels. To in
rease pre
ision as well as robust-ness against noise Bruhn et al. [Bruhn 05b℄ proposed a method that 
ombines lo
aland global methods, in parti
ular, those of Horn-S
hun
k and Lu
as-Kanade whi
hforms the 
ombined lo
al-global (CLG) method. The data term in the Horn-S
hun
kregularisation is now repla
ed by the least squares Lu
as-Kanade 
onstraint.Brox et al. [Brox 04℄ proposed a variational method that 
ombines a brightness
onstan
y assumption, a gradient 
onstan
y assumption and a dis
ontinuity-preservingspatio-temporal smoothness 
onstraint. In order to allow for large displa
ements, thiste
hnique implements a 
oarse-to-�ne warping strategy. The results obtained withthis method are among the best of all methods for opti
al �ow estimation. Re
ently,Papenberg et al. [Papenberg 06℄ added a few additional 
onstraints to this algorithmand got even better results.
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ular variational methods based on the early approa
hof Horn and S
hun
k [Horn 81℄ are among the best performing te
hniques for 
omput-ing the opti
al �ow [Brox 04, Bruhn 05a, Papenberg 06℄. Su
h methods determinethe desired displa
ement �eld as the minimiser of a suitable energy fun
tional, wherevariations1 from model assumptions are penalised. In general, this energy fun
tional
onsists of two terms: a data term that imposes temporal 
onstan
y on 
ertain imagefeatures, e.g. on the grey value of obje
ts, and a smoothness term that regularises theoften non-unique (lo
al) solution of the data term by an additional smoothness 
on-straint. While the data term represents the assumption that 
ertain image features donot 
hange over time and thus allow for a retrieval of 
orresponding obje
ts in subse-quent frames, the smoothness term stands for the assumption that neighbouring pixelsmost probably belong to the same obje
t and thus undergo a similar type of motion.Due to the smoothness 
onstraint whi
h propagates information from textured areasto nearby non-textured areas the resulting �ow �eld is dense i.e. there is an opti
al�ow estimate (ve
tor) available for ea
h pixel in the image.A variational approa
h formulates some model assumptions A1, ..., Am in terms ofan energy fun
tional [Brox 05℄:
E (e1 (x) , ..., en (x)) =

∫

Ω

(A1, ..., Am) dx (5.3)and tries to �nd those fun
tions e1, ..., en that minimize the energy, possibly by re-spe
ting additional 
onstraints.It is ne
essary to quantify the model assumptions by the so-
alled penaliser terms.Ea
h penaliser indu
es a high energy for those 
ases where the model assumptionis not ful�lled and a low energy otherwise. The theory of the 
al
ulus of variationsprovides a way how to minimize the energy fun
tional. It leads to the so-
alled Euler-Lagrange equations, whi
h have to be satis�ed in a minimum. The Euler-Lagrangeequations are partial di�erential equations. For su�
iently simple energy fun
tionals,these Euler-Lagrange equations lead to a linear system of equations, whi
h 
an besolved by well-founded and optimized numeri
al methods.1This is where the term variational method 
omes from.
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al �ow 135The 
ombined variational approa
h di�ers from usual variational approa
hes by theuse of a gradient 
onstan
y assumption. This assumption provides the method with the
apability to yield good estimation results even in the presen
e of small lo
al or globalvariations of illumination. Besides this, the 
ombination of non-linearised 
onstan
yassumptions and a 
oarse-to-�ne strategy yields a numeri
al s
heme that provides awell founded theory for the very su

essful warping methods.Given two su

essive images of a sequen
e I (x, y, t) and I (x, y, t+ 1), we aim toobtain the opti
al �ow ve
tor2 v := (vx, vy) whi
h gives the relative displa
ementbetween the pixels of the two images.Pixels in areas of homogeneous intensity are ambiguous as they 
an appear similarunder several di�erent motions (opti
al �ow 
onstraint). Pixels in areas of high in-tensity gradient are also troublesome as slight errors in the motion estimate 
an yieldpixel of a very di�erent intensity, even under the 
orre
t motion.Constan
y assumptions on dataEstimating motion requires a solution to what pixel in one frame 
orresponds to whatpixel in the other frame. In order to �nd these 
orresponden
es we need to de�ne someassumptions that are not a�e
ted by the displa
ement.
• Brightness 
onstan
y assumptionThe 
ommon assumption is that the grey value of the pixel does not 
hange asit undergoes motion:

I (x, y, t) = I (x+ vx, y + vy, t+ 1) (5.4)A �rst order Taylor series expansion leads this assumption to the well-knownopti
al �ow 
onstraint of Equation (5.2).However, this 
onstan
y assumption 
annot only deal with image sequen
es witheither lo
al or global 
hange in illumination. In this 
ase other assumptionsthat are invariant against brightness 
hanges must be applied. Invarian
e 
an beensured by 
onsidering spatial derivatives.2In this thesis we represent the opti
al �ow ve
tor v (x) := (vx, vy, 1)T by v := (vx, vy).
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• Gradient 
onstan
y assumptionA global 
hange in illumination both shifts and/or s
ales the grey values of animage sequen
e [Papenberg 06℄. Shifting the grey values will not a�e
t the gra-dient. Although s
aling the grey values 
hanges the length of the gradient ve
torit does not a�e
t its dire
tion. Thus, we assume that the spatial gradients of animage sequen
e 
an be 
onsidered as 
onstant during motion:

∇I (x, y, t) = ∇I (x+ vx, y + vy, t+ 1) (5.5)where ∇ = (∂x, ∂y) denotes spatial gradient. Although the gradient 
an slightly
hange due to 
hanges in the grey value too, it is mu
h less dependent on theillumination than on the brightness assumption.Finding the �ow �eld by minimizing the data term alone is an ill-posed problemsin
e the optimum solution, espe
ially in homogeneous areas, might be attained bymany dissimilar displa
ement �elds [Amiaz 07℄. This is the aperture problem: themotion of a homogeneous 
ontour is lo
ally ambiguous. In order to solve this problemsome regularisation is required. The most suitable regularisation assumption is pie
e-wise smoothness [Brox 04℄, that arises in the 
ommon 
ase of a s
ene that 
onsists ofsemi-rigid obje
ts.The data term ED (vx, vy) in
orporates the brightness 
onstan
y assumption, aswell as the gradient 
onstan
y assumption. While the �rst data term models theassumption that the grey-level of obje
ts is 
onstant and does not 
hange over time,the se
ond one a

ommodates for slight 
hanges in the illumination. This is a
hievedby assuming 
onstan
y of the spatial image gradient:
ED (vx, vy) =

∫

Ω

ψ
(
|I (x + v)− I (x)|2 + γ |∇I (x + v)−∇I (x)|2

)
dx (5.6)where Ω is the region of interest (the image) over whi
h the minimization is done. Theparameter γ relates the weight of the two 
onstan
y assumptions, and ψ (s2) =
√
s2 + ε2is a non-quadrati
 (
onvex) penaliser applied to both the data and the smoothnessterm whi
h represents a smooth approximation of the L1 norm, L1 (s) = |s|. Usingthe L1 norm rather than the 
ommon L2 norm redu
es the in�uen
e of outliers andmakes estimation robust. Due to the small positive 
onstant ε, ψ (s2) is still 
onvex



5.4 Opti
al �ow 137whi
h o�ers advantages in the minimization pro
ess. The in
orporation of the 
onstant
ε makes the approximation di�erentiable at s = 0; the value of ε sets the level ofapproximation whi
h we 
hoose to be 0.001.Applying a non-quadrati
 fun
tion to the data term addresses problems at theboundaries of the image sequen
e, where o

lusions o

ur and therefore outliers in thedata 
ompromise the 
orre
t estimation of the �ow �eld.Smoothness assumptionThe smoothness assumption [Horn 81, Weiss 97, Brox 04℄ is motivated by the obser-vation that it is reasonable to introdu
e a 
ertain dependen
y between neighbouringpixels in order to deal with outliers 
aused by noise, o

lusions or other lo
al violationsof the 
onstan
y assumption. This assumption states that disparity varies smoothlyalmost everywhere (ex
ept at depth boundaries). That means we 
an expe
t that theopti
al �ow map is pie
ewise smooth and it follows some spatial 
oheren
y. This isa
hieved by penalising the total variation of the �ow �eld. Smoothness is assumedby almost every 
orresponden
e algorithm. This assumption fails if there are thin�ne-stru
tured shapes (e.g. bran
hes of a tree, hairs) in the s
ene.Horn and S
hun
k proposed in their model the following smoothness (homogeneous)term [Horn 81℄:

ESHS
(vx, vy) =

∫

Ω

|∇vx|2 + |∇vy|2dx (5.7)However, su
h a smoothness assumption does not respe
t dis
ontinuities in the �ow�eld. In order to be able to 
apture also lo
ally non-smooth motion it is ne
essary toallow outliers in the smoothness assumption. This 
an be a
hieved by the non-quadrati
penaliser ψ also used in the data term. Thus, the smoothness term ES (vx, vy) be
omes:
ES (vx, vy) =

∫

Ω

ψ
(
|∇vx|2 + |∇vy|2

)
dx (5.8)The smoothness term gives a penalty to adja
ent segments whi
h have di�erentmotion parameters.Xiao et al. [Xiao 06℄ proposed an adaptive bilateral �lter to regularize the �ow
omputation whi
h is able to a
hieve the smoothly varied opti
al �ow �eld with highlydesirable motion dis
ontinuities. This approa
h 
ombines information from regions
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ount o

lusions. The methodprodu
es very similar results with the Brox et al. approa
h [Brox 04℄.Energy fun
tionalApplying non-quadrati
 penaliser fun
tions to both the data and the smoothness termand also integrating the gradient 
onstan
y assumption, results in the opti
al �owmodel des
ribed by the following energy fun
tional:
E (vx, vy) = ED (vx, vy) + αES (vx, vy) (5.9)where α is some positive regularisation parameter whi
h balan
es the data term Edwith the smoothness term Es: Larger values for α result in a stronger penalisation oflarge �ow gradients and lead to smoother �ow �elds.The minimization of E (vx, vy) is an iterative pro
ess, with external and internaliterations [Amiaz 07℄. The external iterations are with respe
t to s
ale. The internaliterations are used to linearise the Euler�Lagrange equations and solve the resultinglinear set of equations [Brox 04℄. Linearisation via �xed-point iterations is used bothin the external and internal loops. The linear equations are solved using su

essiveover relaxation. We employ the te
hnique proposed by Brox et al. [Brox 04℄ whi
his 
urrently one of the most a

urate opti
al �ow estimation method available. Thereader is referred to Thomas Brox's PhD thesis [Brox 05℄ for a solution to minimizethis fun
tional.5.4.3 Multis
ale approa
hIn the 
ase of displa
ements that are larger than one pixel per frame, the 
ost fun
tionin a variational formulation must be expe
ted to be multi-modal and the minimizationalgorithm 
ould easily be trapped in a lo
al minimum [Brox 04℄. A good approxima-tion for smoothing the energy fun
tional is to smooth the underlying images. As thesmoothing of the images removes small details that are responsible for lo
al minima, we
an expe
t that the energy fun
tional 
ontaining the smoothed images has 
onsiderablyless lo
al minima.Instead of 
ostly smoothing operations on the originally sized images it is alsopossible to downsample the images in a pyramid framework. The multis
ale 
oarse-to-
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al �ow 139�ne approa
h is used by most a
tual algorithms for opti
al �ow estimation in order tosupport large motion and to improve a

ura
y [Brox 04, Bruhn 05b, Amiaz 07℄. Thisremoves small details the same way as a smoothing operation on the original image.Additionally, it leads to a mu
h more e�
ient multis
ale implementation. Thus, thispro
edure is 
hosen here. Figure 5.1 shows the multis
ale warping s
heme used in theopti
al �ow estimation.

Figure 5.1: Coarse-to-�ne opti
al �ow estimation.This approa
h relies on estimating the �ow in a full pyramid of images, startingwith the smallest possible image at 
oarsest s
ale and the upper levels are warpedrepresentations of the images based on the �ow estimated at pre
eding s
ales. In the
ontext of large displa
ements, the problem is 
ompensated by the already 
omputedmotion from all 
oarser levels before the resolution is re�ned. What remains to be solvedat ea
h resolution level is the motion in
rement d (vx, vy) for the di�eren
e problem.Su
h pro
edure allows to keep the displa
ements at ea
h resolution level small, so thatlinearised 
onstan
y assumptions remain reasonable approximations. This ensures thatthe small motion assumption of Equation (5.2) remains valid.Warping denotes the distortion of the image whi
h is required for the 
ompensationof the already 
omputed motion. In general, it was argued that it makes sense to embedopti
al �ow approa
hes for small displa
ements into a 
oarse-to-�ne framework, sin
elarge displa
ements be
ome smaller at 
oarser levels and thus allow for an a

urate



140 Region-based motion segmentation: the modelestimation with linearised model assumptions. Ea
h level in the pyramid 
an 
ausethe initialization at a �ner s
ale to be too 
lose to a lo
al minimum just appearingat that s
ale. Brox et al. [Brox 04℄ suggested to redu
e this risk by making smallersteps. They proposed a downsampling fa
tor η ∈ (0, 1) between su

essive resolutionlevels in the pyramid, typi
ally3 η ∈ [0.80, 0.95] whi
h allows smooth �ow proje
tionsbetween adja
ent image levels in the pyramid. Though this high fa
tor in
reases the
omputational 
ost it allows highly a

urate opti
al �ow 
omputations.5.4.4 Motion estimation analysisThe used opti
al �ow estimation method has several positive properties that are im-portant to our motion segmentation task:
• Due to non-linearised 
onstan
y assumptions the method 
an deal with largerdispla
ements than most other te
hniques. This ensures a good estimation qualityeven when the obje
t 
hanges its lo
ation rapidly.
• It provides dense and smooth �ow �elds with subpixel a

ura
y due to the mul-tis
ale approa
h.
• The method is robust with respe
t to noise as shown in [Brox 04℄.
• By the introdu
tion of the gradient 
onstan
y assumption it is fairly robust withregard to illumination 
hanges that appear in most real-world image sequen
es.

Figure 5.2: Flow 
olour 
ode.

For a qualitative evaluation and to a better visual-ization of the 
omputed �ow �elds, we used a 
olourRGB representation shown in Figure 5.2. While the
olour itself indi
ates the dire
tion of the displa
e-ments, the brightness expresses their magnitude. Fig-ure 5.3 shows how the individual model assumptionsin�uen
e the quality of the 
omputed opti
al �ow. Weused a real-world sequen
e (the Dan
ing sequen
e),where a person dan
es in front of the 
amera. Be-fore we applied the di�erent numeri
al s
hemes we pre-pro
essed the sequen
e by 
onvolution with a Gaussian kernel of standard deviation
σ = 1.0. Starting from the 
lassi
al lo
al 
onstraints approa
h (with no regularisation)3This redu
tion fa
tor is larger than the 
ommonly used 0.5.
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al �ow 141of Lu
as and Kanade [Lu
as 81℄, ea
h extension of the opti
al �ow model implies asigni�
ant improvement in the result.

(a) (b)

(
) (d)Figure 5.3: (a) One frame of Dan
ing sequen
e. (b) Computed �ow �eld using only lo
al
onstraints [Lu
as 81℄. (
) Computed �ow �eld using homogeneous propagation of [Horn 81℄.(d) Computed �ow �eld using a non-quadrati
 regularisation term [Brox 04℄.In a �rst step the introdu
tion of the homogeneous propagation term of Horn andS
hunk allows the model to have spatial 
oheren
y in the �ow map by propagating the�ow to homogeneous regions. However, this smoothness 
onstraint does not respe
tdis
ontinuities in the �ow �eld produ
ing over-smoothing on the �ow. In the se
ondstep the in
orporation of a non-quadrati
 smoothness term allows the model to 
apturethe motion dis
ontinuities more a

urately. The non-quadrati
 regularisation termallows the propagation of information without 
rossing image and �ow dis
ontinuities.In order to get a visual impression of the quality of the estimation4 the EttlingerTor tra�
 sequen
e5 is used. Figure 5.4 shows both the 
omputed �ow �eld between4We used the implementation of Brox et al.'s algorithm whi
h was available to us by 
ourtesy ofThomas Brox. We would like to thank him for providing opti
al �ow software.5Available at http://i2iwww.ira.uka.de/image_sequen
es/.



142 Region-based motion segmentation: the modelframe 5 and 6 and its magnitude and orientation plot. As proposed in Barron etal. [Barron 94℄ we pre-pro
essed ea
h image sequen
e by 
onvolution with a Gaussiankernel of standard deviation referred to as parameter σ.

(a) (b)Figure 5.4: (a) Computed �ow �eld between frame 5 and frame 6 of the Ettlinger Tor tra�
sequen
e. (b) Magnitude and orientation of the �ow �eld with σ = 0.6, α = 40 and γ = 20.Although the sequen
e su�ers from interla
ing artefa
ts the opti
al �ow estimationalgorithm gives very realisti
 results where the �ow boundaries are relatively sharp.This is a dire
t 
onsequen
e of using non-quadrati
 smoothing fun
tions.5.5 Building the region-based motion graphStudies in motion analysis have shown that motion-based segmentation would bene�tfrom in
luding not only motion but also the intensity 
ue, parti
ularly to retrieve regionboundaries a

urately [Dufaux 95, Weiss 96, Galun 05℄. Hen
e, the knowledge of thespatial partition 
an improve the reliability of the motion-based segmentation.We would like to identify prominent groups that follow the same motion stru
ture.In order to do so, it is ne
essary to 
ompute a measure of a�nity between ea
h region.Taking our 
ues from the Gestalt s
hool, we 
onsider brightness similarity, intervening
ontours and 
ommon fate. These sour
es of information should measure the likelihoodthat two regions Ri and Rj represent di�erent parts of the same moving obje
t. Su
hs
heme requires the 
onstru
tion of a stru
ture exploiting the motion information whi
hrepresents the relationships among partitions and between su

essive image partitions.
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tion fo
uses on this stage 
onsisting in the introdu
tion of a region-basedmotion graph representation. To this end a region-based 
ontextual information has tobe formalized and exploited. Figure 5.5 gives an overview of the s
heme to 
onstru
tthe region-based motion graph.

Figure 5.5: Diagram of the region-based motion graph 
onstru
tion.A spatial partition of the �rst frame of the image sequen
e is �rst required bysome over-segmentation pro
ess (e.g. watershed). A region-based spatial graph is thenderived from the spatial image partition (Se
tion 4.5). A 2D motion model is estimatedwithin ea
h region, and the optimal motion label 
on�guration is sought for using anenergy minimization approa
h, so that region undergoing similar (respe
tive di�erent)motion are given the same (respe
tive di�erent) labels.We aim at assigning a motion ve
tor to every node in the graph, with a view topartitioning this graph into node subsets, 
orresponding to groupings of regions of
oherent motion. The prede�ned regions should be so that all pixels within a spatialatomi
 region were assigned the same motion label. It is generally true that motionboundaries 
oin
ide with intensity segment boundaries but not vi
e versa; i.e., intensitysegments are almost always a subset of motion segments. Therefore, we 
an �rstperform an intensity segmentation to obtain a set of 
andidate motion segments. Then,those segments whi
h have the same motion 
an be merged to obtain the �nal motionsegmentation map.Given the initial spatial partition Ri, i = 1, ..., q, 
ontaining q mi
ro regions, aregular graph is derived from its topology. We denote it by Θ, the nodes Vi of whi
h
orrespond to the regions Ri of the spatial partition. Let links Ei,j join in Γ the nodes
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iated with regions i and j, in the spatial partition, with a weight W (i, j) givenby spatial and motion similarity measures between the regions.
Θ = {{V1, ..., Vq} , {E (1, 1) , ..., E (q, q)} , {W (1, 1) , ...,W (q, q)}} (5.10)We atta
h three features to ea
h region: the 
entroid lo
ation, the mean intensity,and the opti
al �ow ve
tor estimated between subsequent pairs of images. For themotion information 
hara
teristi
 segment Ri is assumed as uniquely assigned a seg-mentation label LRi

. Ea
h atomi
 region has a single motion ve
tor that illustrates itsmotion, estimated using the te
hnique des
ribed below in Se
tion 5.5.1.The de�nition of the region similarity whi
h involves not only motion informationbut also spatial 
hara
teristi
s is a 
hallenging issue. In parti
ular, the spatial informa-tion provides important hints about obje
t boundaries. All the available informationshould be put to work in order to robustly de�ne the obje
ts present in the s
ene.We propose a region similarity measure that exploits both spatial similarity ws (i, j)and motion similarity wm (i, j):
W (i, j) = ϕ · wm (i, j) + (1− ϕ) · ws (i, j) (5.11)where ϕ is a regularisation term that re�e
ts the importan
e of ea
h measure. Spatialsimilarity measure is obtained using the te
hnique des
ribed in Se
tion 4.7, and motionsimilarity measure is des
ribed below in Se
tion 5.5.2. At this phase the role of ws isonly to be a re�nement measure. Therefore, in our experiments ϕ was set to 0.95.5.5.1 Region motion ve
torThe proposed method applies spatial pre-segmentation to the �rst image. Using atomi
regions impli
itly resolves the problems identi�ed earlier whi
h requires smoothing ofthe opti
al �ow �eld sin
e the spatial (stati
) segmentation pro
ess will group togetherneighbouring pixels of similar intensity, so that all the pixels in a area of smoothintensity grouped in the same region will be labelled with the same motion. We therebypresume two basi
 assumptions: i) it is assumed that all pixels inside a region ofhomogeneous intensity follow the same motion model, and ii) motion dis
ontinuities
oin
ide with the boundaries of those regions. To ensure that our assumptions are met,we apply a strong over-segmentation method to the image.



5.5 Building the region-based motion graph 145Our �rst goal is to asso
iate a unique opti
al �ow ve
tor to ea
h atomi
 region.While the atomi
 region motion ve
tor is 
omputed from the opti
al �ows, it is ne
-essary to 
onsider the real situation that some of the opti
al �ows might have been
ontaminated with noises, 
ausing the 
omputation of the region motion ve
tor deviatefrom its genuine motion ve
tor. For ea
h opti
al �ow, its 
ontribution to the deviationdepends both on its magnitude and on its dire
tion. Thus, another goal is to dete
tand ex
lude those opti
al �ows whi
h tend to 
ause large errors to the 
omputation ofthe region motion ve
tor. We a
hieve these goals by obtaining the dominant motion ofthe atomi
 regions region from the mode of ea
h opti
al �ow 
omponent in the region.5.5.2 Motion similarity measureFor region-based motion segmentation, we assign a unique motion ve
tor to ea
h region.To re�e
t human per
eptual 
hara
teristi
s for motion similarity measure, we adoptthe distan
e metri
 proposed by Yoshida [Yoshida 02℄. The idea here is to representa motion ve
tor v = (vx, vy) in a (Ux, Uy) plane (Figure 5.6) with radius ρ and theargument θ given by:
ρ (v) = log

(
1 + β

(
v2

x + v2
y

)1/2
) (5.12)

θ (v) = tan−1
(
vy/vx

) (5.13)The parameter β is a positive parameter in
luded to re�e
t the variation in thesimilarity judgement of motion from person to person.The motion information of ea
h region are 
omputed in referen
e to di�erent points -the 
entroids of the regions. We de�ne a motion distan
e dm (i, j) expressing the degreeof similarity between the motion �elds of two regions Ri and Rj in referen
e to the
entroid of Ri. From Figure 5.6, dm (i, j) 
an be expressed as:
dm (i, j) =

√
(∆2Ux + ∆2Uy)

∆Ux = ρi cos θi − ρj cos θj

∆Uy = ρi sin θi − ρj sin θj

(5.14)
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Figure 5.6: Representation of motion ve
tors in the (Ux, Uy) plane.where ρi, ρj , θi and θj are 
al
ulated by Equations (5.12) and (5.13). In fa
t, thismotion distan
e expresses how well the motion model of region Rj 
an also �t themotion of region Ri.As the distan
e measures have their own range it is desirable to normalize theirvalues. The parameter σm in Equation (5.15) is used to normalize the distan
e measureto a range [0, 1].
wm (i, j) = exp

(
−dm (i, j)2/

σ2
m

) (5.15)5.6 Motion segmentation algorithmIn this se
tion, we aim to integrate spatial segmentation and motion information forhigh quality motion segmentation. If it is true that for syntheti
 sequen
es �ow �eldvalues 
an be 
omputed exa
tly, that is not the typi
al s
enario, where �ow �eld isestimated from a sequen
e of images. Then, our approa
h should be robust againstina

ura
ies in the motion information.Starting from a pre-segmentation of the referen
e frame, the proposed te
hniquedetermines the motion obje
ts 
onstituting the s
ene at hand. To that end, the over-segmented regions are merged a

ording to their mutual spatial and temporal similarity.By treating regions as the elementary unit for image pro
essing, we 
an redu
e the
omputational 
omplexity without a 
orresponding loss of a

ura
y. The informationabout spatial and temporal similarity between regions is represented by a region-basedmotion graph. A spe
tral-based 
lustering algorithm is used to dete
t 
lusters of similarmotion regions and to a
hieve the motion segmentation.



5.6 Motion segmentation algorithm 147We assume that a region of uniform motion (rigid motion) will be 
omposed of oneor more atomi
 regions ea
h of whi
h possessing uniform intensity. Consequently, themotion boundaries will be a subset of the intensity boundaries determined at this stage.We refer to this assumption as segmentation assumption. Our 
hoi
e of this assumptionis supported by the following fa
t: the atomi
 regions resulting from the spatial pre-segmentation are usually small enough to justify the assumption of pie
ewise 
onstantintensity and motion.

Figure 5.7: Blo
k diagram of the proposed hybrid motion segmentation method.The pro
edure of the motion segmentation algorithm is presented in the diagramof Figure 5.7 and illustrated in Figure 5.8. It 
an be summarized as follows:Step 1: Spatial pre-segmentation: images of sequen
e are partitioned into homo-geneous atomi
 regions based on their brightness properties using the segmenta-tion algorithms introdu
ed in Se
tion 4.5Step 2: Motion estimation: estimate the dense opti
al �ow �eld with the varia-tional s
heme des
ribed in Se
tion 5.4.2.Step 3: Dominant motion extra
tion: extra
t the highly reliable opti
al �ows forea
h atomi
 region. It sele
ts from the dense �ow �eld the dominant motionve
tor a

ording to the dire
tions and magnitudes of the opti
al �ows. This stepeliminates the in�uen
e of noise and outliers.Step 5: Region-based motion graph: build the region-based motion graph wherethe nodes 
orrespond to regions.Step 6: Graph partitioning: multi
lass spe
tral based graph partitioning using thenormalized 
ut approa
h des
ribed in Se
tion 4.6.
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(a) (b)

(
) (d) (e)

(f) (g) (h)Figure 5.8: Illustration of the proposed motion segmentation algorithm. (a)-(b) Frame 5and 6 of the Ettlinger Tor sequen
e (grey-s
ale). (
) Absolute di�eren
e between the frames.(d) Atomi
 regions. (e) Computed dense opti
al �ow. (f) Region-based ve
tor �eld s
aled bya fa
tor of 2. (g) Motion segmentation. (h) "Di�eren
e" between (e) and (g).



5.7 Summary 149The input is represented by two 
onse
utive frames of the Ettlinger Tor sequen
e(frames 5 and 6). The sequen
e 
onsists of 50 frames of size 512 × 512 and depi
ts avariety of moving 
ars (up to 6 pixels per frame). Thereby �ve groups of 
ars 
an beformed a

ording to their velo
ity and dire
tion: 1) a bus and a 
ar in the foregroundare moving fast to the right; 2) in the middle area three 
ars are moving in a similardire
tion of group 1 but slower; 3) two 
ars on the left are moving to the left; 4) in theupper middle area three 
ars are moving slowly to the left; 5) on the upper right areaa 
ar is moving up.In the �rst step, an initial segmentation of the frames is a
hieved with watershed-based segmentation. The result is a �ne partition of the image into regions withintensity homogeneity where region sizes are kept small (in this 
ase we suppress thepre-�ooding step). Motion estimation between the frames is obtained with the vari-ational method des
ribed in Se
tion 5.4.2 and depi
ted in Figure 5.8.e) a

ording to
olour 
ode proposed in Figure 5.2. In the following, a dominant motion ve
tor isasso
iated with ea
h region produ
ed in step 1. Figure 5.8.f) shows a representationof the resultant �ow ve
tors s
aled by a fa
tor of 2. Finally, Figure 5.8.g) presents theresult of the motion segmentation where di�erent kind of motions are represented bydi�erent 
olours6 in a

ordan
e with the �ve groups upper referen
ed.It is important to understand why the area under the bus was labelled as belongingto group 2 and not to group 1. This area has been originated in the motion estimationpro
ess as a 
onsequen
e of the brightness similarity between the bottom of the bus andthe ground. In other words, sin
e the smoothness term expands the opti
al �ow alongareas of homogeneous intensity it has also expanded the bus motion to the ground.However, the opti
al �ow of the ground has a lower magnitude whi
h makes it moresimilar to the motion of the 
ars in group 2 than to the motion of the bus. This showsthe a

ura
y of the motion segmentation algorithm.As it was expe
ted the result from the motion segmentation is very similar with themotion estimation result. Figure 5.8.h) shows the re�nement produ
ed by the region-based motion segmentation. It is possible to see that it removes the "halo" originatedby the smoothness term used in the motion estimation pro
ess allowing to obtain amore a

urate segmentation. Even more, the segmentation e�e
tively separates thegroups of 
ars a

ording to their type of motion.6These 
olours have nothing to do with the 
olours in Figure 5.2.



150 Region-based motion segmentation: the model5.7 SummaryA method for multiple motion segmentation was presented, relying on a 
ombinedregion-based segmentation s
heme. A region-based motion graph was built on the par-tition obtained in a spatial pre-segmentation stage. The derivation of a motion-basedpartition of the images was a
hieved through a graph labelling pro
ess in a spe
tral-based 
lustering approa
h. To a
hieve this aim an appropriate similarity fun
tion(energy fun
tion) was de�ned. Links weights now denote a similarity measure in termsof both spatial (intensity and gradient) and temporal (�ow �elds) features. To 
om-pute the �ow �eld we use a high a

ura
y opti
al �ow method based on a variationalapproa
h. The region-based graph-labelling prin
iple provides advantages over 
las-si
al merging methods whi
h by operating a graph redu
tion imply irreversibility ofmerging. Moreover, spe
tral-based approa
h avoids 
riti
al dependen
y in the order inwhi
h regions are merged. The proposed approa
h su

essfully redu
es 
omputational
ost, while enfor
ing spatial 
ontinuity of the segmentation map without invoking 
ostlyMarkov random �eld models.The algorithm takes advantage of spatial information to over
ome inherent problemsof 
onventional opti
al �ow algorithms, whi
h are the handling of untextured regionsand the estimation of 
orre
t �ow ve
tors near motion dis
ontinuities. The assignmentof motion to regions allows the elimination of opti
al �ow errors originated by noise.To partitioning ea
h image into a set of homogeneous regions, we used the watershedtransform implementation proposed in Chapter 4. By treating regions as an elemen-tary unit for further pro
essing, we redu
ed the 
omputational 
omplexities withouta 
orresponding loss of a

ura
y. Ea
h frame is 
onverted into a region-based motiongraph and the graph is partitioned into per
eptually signi�
ant groups by means ofthe normalized 
uts algorithm. The weights on links of the region-based motion graphare de�ned by the motion similarity whi
h is 
omputed by using a per
eptual measure.By simultaneously making use of both stati
 
ues and dynami
 
ues we are able to�nd 
oherent groups within a variety of video sequen
es. The experiments presentedin Chapter 6 show that the proposed method provides satisfa
tory results in motionsegmentation from image sequen
es.



CHAPTER 6
Image and motion segmentation:experimental results

In order to test the performan
e of the proposed image segmentation frame-work we use a number of images from the Berkeley dataset. The resultsare evaluated and 
ompared with those obtained with the state-of-the-artmethods des
ribed in [Deng 01, Comani
iu 02, Cour 05℄. Additionally, theresults from the des
ribed motion segmentation algorithm are tested usingseveral ben
hmark test sequen
es and therefore allowing a 
omparison withother algorithms. Due to the la
k of motion segmentation ground truth weonly show visual results for our algorithm.6.1 Hybrid spatial segmentation: resultsFor spatial segmentation we mainly used images from the Berkeley SegmentationDataset [Martin 01℄. This database 
omprises a ground truth of 300 hand-segmentedimages by a minimum of 5 subje
ts, to 
ompare the segmentation outputs. We iden-tify ea
h image with the identi�
ation number presented in [Martin 01℄. To expandthe �eld of appli
ation of our algorithm some other images are also used, in
ludingmedi
al images. The results are shown in Appendix A. Due to the absen
e of groundtruth to su
h images we present only the qualitative results of the segmentations.Although some optimisation 
ould be made, in our experiments we use the samethreshold values for every images. Thus, in the gradient magnitude 
omputation we use
ρo = 8, ρs = 1 and ρe = 3. The smoothing bilateral �lter was applied with σr = 30 and151
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σs = 4. The �ooding level is 0.0125 times the gradient magnitude standard deviation.The standard deviation of the similarity measures proposed in Equations (4.32) and(4.33) are σic = 0.02 and σI = 0.02 times the maximum intensity value of the image.6.1.1 EvaluationThe evaluation measure proposed in Chapter 3 requires a 
alibration image to set upthe weighted fun
tions wp and wn as de�ned in Equations (3.16) and (3.17). We use the
alibration image represented in Figure 6.1 to whi
h 
orrespond the threshold values
αp = 80 and αn = 20.

Figure 6.1: Calibration image used to set up the parameters of sw.Figure 6.2 depi
ts the experimental results on image segmentation of a set of naturals
ene images taken from the Berkeley Dataset. Left 
olumn shows the original imagewith the 
orresponding Berkeley identi�
ation number. Right 
olumn presents thesegmentation results where ea
h segment is labelled with a di�erent 
olour. To showthe a

ura
y of the segmentation results the labelled segments are superimposed onthe original image. The number of segments is putted under ea
h segmented image.One problem usually asso
iated with normalized 
uts approa
h is the partition ofhomogeneous regions. Due to the suppression of spatial distan
e in similarity measureand to the use of the �ooding level in the 
omputation of watershed atomi
 regionsthis problem is greatly redu
ed in our approa
h.Table 6.1 and Table 6.2 show the segmentation evaluation in terms of weightedmeasure sw and F-measure from a set of randomly 
hosen images from Berkeley dataset.The bottom row shows the evaluation results obtained when 
onsidering the 
alibrationimage as being the referen
e image.
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3096 5 segs
24063 10 segs
245051 40 segs
286092 30 segs
296059 12 segsFigure 6.2: Experimental segmentation results over images from the Berkeley dataset.



154 Image and motion segmentation: experimental resultsTable 6.1: Evaluation of the images in Figure 6.2 in terms of weighted measure sw andF-measure. Measure 3096 24063 245051 286092 296059
sw 0.99 0.82 0.74 0.78 0.68F 0.84 0.80 0.67 0.71 0.72
swcal

0.01 0.00 0.33 0.19 0.00Although in 
omplex images su
h as images 245051 and 286092, the segmentationsare not yet the ideal ones, they exhibit promising results.Table 6.2: Evaluation of the images in Figure 6.3 in terms of weighted measure sw andF-measure.Measure 37073 41004 42049 65019 90076 118035 143090 241004
sw 0.57 0.77 0.90 0.67 0.94 0.79 0.79 0.80F 0.65 0.75 0.89 0.80 0.85 0.74 0.71 0.81
swcal

0.00 0.12 0.11 0.15 0.00 0.09 0.02 0.02
Comparison with other segmentation methodsWe have 
ompared our method (WNCUT) with three state-of-the-art segmentationalgorithms: (i) mean shift (EDISON) [Comani
iu 02℄, (ii) a multis
ale graph basedsegmentation method (MNCUT) [Cour 05℄, and (iii) JSEG [Deng 01℄. For this 
om-parison we use the set of natural images shown in Figure 6.3. To provide a numeri
alevaluation measure and thus allow 
omparisons, the experiments for the evaluationwere 
ondu
ted on the manual segmentations of the Berkeley Segmentation Dataset[Martin 01℄. The task is 
ast as a boundary dete
tion problem, with results presentedin terms of Pre
ision (P) and Re
all (R) measures.The algorithm provides a binary boundary map whi
h is s
ored against ea
h oneof the hand-segmented results of Berkeley Dataset, produ
ing a (R,P, F ) value. The�nal s
ore is given by the average of those 
omparisons.
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37073 41004
42049 65019
90076 118035
143090 241004Figure 6.3: Set of tested images taken from the Berkeley dataset. Ea
h image is identi�edwith the Id number used in the dataset.Mean shift methods [Fukunaga 75, Comani
iu 02℄ have gained popularity for imagesegmentation due to their la
k of relian
e on a priori knowledge of the number ofexpe
ted segments. Mean shift is an iterative pro
edure to �nd 
lusters in the jointspatial and 
olour spa
es. Given an image, the algorithm is initialized with a largenumber of hypothesized 
luster 
entres randomly 
hosen from the data. Then ea
h
luster 
entre is moved to the mean of the data lying inside the multi-dimensionalellipsoid 
entred on the 
luster 
entre. The ve
tor de�ned by the old and the new
luster is 
alled the mean shift ve
tor. The mean shift ve
tor is 
omputed iterativelyuntil the 
luster 
entres do not 
hange their positions. Note that during this pro
ess
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lusters may get merged.As des
ribed in [Comani
iu 02℄, the mean shift based segmentation algorithm takesas input parameters a feature bandwidth hr, a spatial bandwidth hs and a minimumregion (in pixels) M . It uses the adaptive spe
i�
ation of the two bandwidths a
-
ording to the data statisti
s in the image and 
olour domains to de�ne a kernel inthe joint spatial-range domain to �lter image pixels and a 
lustering method to re-trieve segmented regions. The two bandwidth parameters are 
riti
al in 
ontrolling thes
ale of the segmentation result. Too large values result in loss of important details,or under-segmentation; while too small values result in meaningless boundaries andex
essive number of regions, or over-segmentation. In this 
omparison we tested theimages with a set of values for ea
h parameter, hs = {7, 11, 15}, hr = {7, 11, 15} and
M = {200, 300, 400}. These values were empiri
ally found, after 
arrying out severaltests with di�erent images. The parameters were adjusted to ea
h image in order toobtain the highest F-measure.Christoudias et al. [Christoudias 02℄ presented an algorithm using mean shift seg-mentation that addresses dire
tly to the image 
lustering. In this approa
h, a regionadja
en
y graph is 
reated to hierar
hi
ally 
luster the modes. Also, edge informationfrom an edge dete
tor is 
ombined with the 
olour information to better guide the
lustering. This is the method used in the publi
ly available EDISON system, also de-s
ribed in [Christoudias 02℄. The EDISON system is the implementation we use hereas the mean shift segmentation system.Deng and Manjunath [Deng 01℄ proposed the JSEG method for multis
ale segmen-tation of 
olour and texture, based on 
olour quantization and region growing. Theiralgorithm also 
onsists of two stages: 
olour quantization and spatial segmentation.Colour quantization maps ea
h pixel into a 
lass label, whi
h is used in the se
ondstage to minimize a homogeneity measure of 
olour-texture patterns. Spatial segmen-tation is based on seeded region growing and region merging. JSEG segmentationalgorithm takes as input parameters a 
olour quantization threshold qr, the number ofs
ales ns and a region merge threshold m. We leave for automati
 determination of qrand ns by the original software. For ea
h image we 
hange the region merge thresholdin a range of 0.0−0.8 and as in EDISON approa
h found the segmentation result withthe highest F-measure.We think that it is also important to 
ontrast our method with another su

essful



6.1 Hybrid spatial segmentation: results 157graph partitioning algorithm. In [Cour 05℄, Cour et al. presented a multis
ale spe
tralimage segmentation algorithm (MNCUT) whi
h works on multiple s
ales of the imagein parallel, without iteration, to 
apture both 
oarse and �ne level details.The quantitative evaluation results are summarized in Figure 6.4 for the set of testedimages. To a better visualisation of the 
omparative results we de
ided to representthese results in a graphi
 �gure. A table with the values of F-measure of Figure 6.4is presented in Appendix A. Taking into 
onsideration that the methods 
an produ
eresults with di�erent number of regions, we have taken as a region 
ount referen
enumber the average number of regions from the human segmentations available forea
h image. To understand the level of variability in the segmentation results, theerrors among the results from the manual segmentation were also 
omputed.

Figure 6.4: Results of F-measure evaluation for the 
omparison between methods.The resulting segmentation after the appli
ation of the examined algorithms isshown in Figure 6.5. Sin
e the F-measure is a boundary-based measure the segmen-tation results are presented as boundaries over the original images. The proposedapproa
h produ
es segmentations of high quality. For all images in Figure 6.5 the setof segments is reasonably 
ompa
t. The proposed method produ
e better results thanthe other methods for every images.This new approa
h over
omes some limitations usually asso
iated with spe
tral
lustering approa
hes. As we 
an see from the segmentation result of image 118035,
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(a) (b) (
) (d)Figure 6.5: Segmentation results: (a) proposed method (WNCUT), (b) Mean shift (EDI-SON) [Comani
iu 02℄, (
) JSEG [Deng 01℄, and (d) the multis
ale segmentation MNCUT[Cour 05℄.



6.1 Hybrid spatial segmentation: results 159larger homogeneous regions are not partitioned into separated regions.Compared with the other methods, the proposed approa
h has overall less over-segmentation and a very good boundary lo
ation. It produ
es an overall s
ore of
F = 0.77, against F = 0.72 for EDISON, and F = 0.66 for JSEG and MNCUT. Notethat due to the variability of segmentations among humans, the overall s
ore of manualsegmentations is F = 0.88.Although EDISON and JSEG produ
e results with high value of pre
ision, the
orrespondent re
all value is in general low. For example, with hs = 11, hr = 4 and
M = 100, EDISON evaluation for image 41004 gives R = 0.79, P = 0.27 and F = 0.40.This is due to the over-segmentation produ
ed by these methods.A

ording to these results, we 
an 
on
lude that our method generally providesresults with a F-measure better than other state-of-the-art methods.6.1.2 Robustness to noiseLarger over segmentation at the �rst stage will result in a graph that in
rease the
omputational 
ost, sin
e the eigensystem 
omplexity depends on the number of atomi
regions being 
lustered. The dominant parameter 
ontrolling this stage is the �oodinglevel threshold applied to the gradient image whi
h we empiri
ally set to 0.025 timesthe mean image gradient. This fa
tor determines the degree of over segmentation andthus the number of nodes of the graph (Figure 6.6).The �ooding level 
an be a fun
tion of lo
al image 
hara
teristi
s, su
h as gradientmagnitude, intensity or varian
e. Su
h fun
tion may additionally depend on one ormore parameters. Figure 6.6 
ompares the watershed segmentation 
omputed withoutand with this modi�
ation.To analyse the behaviour of the algorithm in presen
e of noise, the images were
orrupted with four levels of Gaussian additive noise with standard deviations σ =5, 10, 20, 30. All the tests were done without 
hanging the parameter values of themethods. The e�e
t of the pre-pro
essing step in redu
ing the noise, with a redu
tionon the number of irrelevant regions in the output of the watershed algorithm, 
an beobserved in Table 6.3 and in Figure 6.7.Our method turned out to be extremely robust to arti�
ially added Gaussian noise.We may noti
e that segmentation results are not very a�e
ted till σ = 20, and it
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(a) (b)
(
) (d)Figure 6.6: E�e
ts of pre-pro
essing in watershed transform. (a) Original image with addedGaussian noise with σ = 10 (154 401 pixels). (b) Gradient magnitude image. (
) Regions inthe "raw" watershed (6 104 segs). (d) Regions in the pre-pro
essed image (2 223 segs).produ
es a good segmentation even for added Gaussian noise with an amplitude of

σ = 30. This amount of noise is greater than would be expe
ted in a normal realimage.6.2 Motion segmentation: resultsThe motion segmentation algorithm des
ribed in Chapter 5 was tested using severalben
hmark test sequen
es: Tennis, Salesman and Flower Garden with Car. Thesethree are among the sequen
es widely used by authors for testing video segmentationand 
oding appli
ations.It is di�
ult to a

ess, in quantitative terms, the a

ura
y of a real world motionsegmentation. Some authors have presented "ground truth" data to some sequen
es[Chung 07℄. However, these referen
e images are not extra
ted in a motion-basedpro
ess. They are obtained using some iterative image segmentation method like theones presented in Chapter 2. Therefore, the results presented here are only qualitative.Figure 6.8 shows the segmentation result with the Tennis sequen
e. In this part



6.2 Motion segmentation: results 161Table 6.3: Results of quantitative evaluation in terms of F-measure for original image andfor added Gaussian noise with σ = 5, 10, 20, 30.
σ 37073 41004 42049 65019 90076 118035 143090 2410040 0.65 0.75 0.89 0.80 0.85 0.74 0.71 0.815 0.64 0.72 0.87 0.71 0.83 0.73 0.68 0.8010 0.63 0.71 0.81 0.69 0.82 0.72 0.67 0.7720 0.60 0.68 0.77 0.68 0.81 0.72 0.64 0.7530 0.53 0.64 0.71 0.67 0.78 0.71 0.58 0.64of the sequen
e, the player boun
es the ball on his bat as he prepares to serve. Theupper arm is almost stationary, and the lower arm naturally obeys a motion part-waybetween that of the upper arm and the bat, so an un
ertain labelling is somewhatjusti�ed. The motion of the ball is, of 
ourse, a genuine fourth independent motion.The ball's displa
ement between frames is quite large - about 20 pixels.This example illustrates an important dilemma in motion segmentation. Lookingonly at the a
tual motions the forearm is essentially pivoting at the elbow so thatthere is large motion at the bat and smaller motions on the arm, whilst the motionof the upper part of the arm is so small that it 
ould very plausibly be 
lassi�ed asthe same as the ba
kground (Figure 6.8.f)). This is a general problem where motionsin an image (typi
ally due to rotations) be
ome indistinguishable from the motions ofnearby regions. In this 
ase there is always going to be some ambiguity about wherethe division between the motion 
lasses should be when 
onsidered solely on the basisof the motion.Figure 6.8.g) shows the resulting segmentation from the Tennis sequen
e wheremost of the arm is 
orre
tly 
lassi�ed. One ex
eption is the bottom of the ball, whi
h isin
orre
tly 
lassi�ed in the region in whi
h the �ow �eld is propagated to the adja
entthree atomi
 regions under the ball. This is essentially due to the large motion ofthe ball (Figure 6.8.
)) whi
h 
auses o

lusions that a�e
t the a

ura
y of motionestimation. Even more, the region under the ball has di�use brightness that a�e
tsalso the spatial similarity.Figure 6.9 shows the segmentation result with the Salesman sequen
e. Here we
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(a) 0.64 (b) 0.63 (
) 0.60 (d) 0.53
(e) 0.72 (f) 0.71 (g) 0.67 (h) 0.64
(i) 0.83 (j) 0.82 (k) 0.81 (l) 0.78
(m) 0.73 (n) 0.72 (o) 0.72 (p) 0.71Figure 6.7: Performan
e of the proposed approa
h on noisy images. Results with addedGaussian noise with σ, from left to right, equal to 5, 10, 20, 30. The values below the imagesare the F-measures.observe multiple lo
al motions of the arm (due to movement of the shirt).The Salesman sequen
e does not possess any global motion, but the motion of thenon-rigid obje
t (salesman) is signi�
ant in this sequen
e, espe
ially in respe
t to thearm movements. It 
an be seen in Figure 6.9.g) that our proposed algorithm yieldssatisfa
tory multiple motion segmentation. Regions su
h as the arm of the Salesmanand his hand, whi
h moves with motion involving rotation, are 
orre
tly segmented.Also the shirt, that is divided in two by the arm, is 
orre
tly merged.Figure 6.11 shows the segmentation result with the Flower Garden with Car se-quen
e. This example is part of the well-known Flower Garden sequen
e. The se-quen
e was shot by a 
amera pla
ed on a driving 
ar, and the image motion is relatedto distan
e from the 
amera. Thus the tree, whi
h is 
losest to the 
amera moves
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(a) (b)

(
) (d)

(e) (f)

(g) (h)Figure 6.8: Tennis sequen
e. (a)-(b) Frames 8 and 9 (grey-s
ale). (
) Absolute di�eren
ebetween the frames. (d) Atomi
 regions. (e) Computed dense opti
al �ow. (f) Region-basedve
tor �eld s
aled by a fa
tor of 2. (g) Motion segmentation. (h) "Di�eren
e" between (e)and (g).
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(a) (b)

(
) (d)

(e) (f)

(g) (h)Figure 6.9: Salesman sequen
e. (a)-(b) Frames 14 and 15 (grey-s
ale). (
) Absolutedi�eren
e between the frames. (d) Atomi
 regions. (e) Computed dense opti
al �ow. (f)Region-based ve
tor �eld s
aled by a fa
tor of 2. (g) Motion segmentation. (h) "Di�eren
e"between (e) and (g).



6.2 Motion segmentation: results 165fastest.In this experiment a moving 
ar was in
luded in the s
ene. The inter-frame dif-feren
e dete
ts motion at every image pixels. Flower Garden sequen
e 
ontains manydepth dis
ontinuities, not only at the boundaries of the tree but also in the ba
kground.In this sequen
e, the 
amera 
aptures a �ower garden with a tree in the 
entre. Also,the �ower bed gradually slopes toward the horizon showing the sky and far obje
ts.Semanti
ally, this sequen
e has �ve layers: the tree, the 
ar, the �ower bed, the houseand the sky.We should note that this sequen
e has been re
orded in interla
ing mode and thusrequires the handling of typi
al interla
ing artefa
ts. These stripe artefa
ts that resultfrom an alternating update of even and odd lines are typi
al for real-world appli
ations.These 
ould be redu
ed during the 
onvolution with the Gaussian kernel. Figure 6.10shows the e�e
t of interla
ing artefa
ts redu
tion.

(a) (b)Figure 6.10: Interla
ing artefa
ts. (a) Detail from frame 5 of the Flower Garden sequen
e.(b) image 
onvolved with Gaussian kernel with σ = 1.0.Although the tree divides the �ower bed the algorithm merges the two parts inone only segment. This happens also in the house layer. Note that in the area that
ontains the tree's bran
hes, only one segment is 
hosen sin
e the sky area has nobrightness variation. Figure 6.11.e) shows the estimated opti
al �ow with di�erent
olours represent di�erent dire
tions. From this �gure it looks like as the bottom ofthe �ower bed, the tree and the sky have the same motion information. However, thesegmentation algorithm making use of the intensity information, 
orre
tly divides theseparts.Figure 6.11.h) shows the resulting tree segment. The region-based approa
h extra
ts
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(a) (b)

(
) (d)

(e) (f)

(g) (h)Figure 6.11: Flower Garden with Car sequen
e. (a)-(b) Frames 5 and 6 (grey-s
ale).(
) Absolute di�eren
e between the frames. (d) Atomi
 regions. (e) Computed dense opti
al�ow. (f) Region-based ve
tor �eld s
aled by a fa
tor of 2. (g) Motion segmentation. (h) Treesegment.



6.4 Summary 167the tree's edges a

urately along major part of the trunk, even in similar textured areaof the �ower bed, but less well in other areas. The �ne detail of the small bran
hes
annot be well represented by image regions, and these are segmented poorly.6.3 Comparative resultsAs demonstrated by the results shown in this 
hapter, motion segmentation is a di�
ulttask. It is also di�
ult to assess, in quantitative terms, the a

ura
y of a segmentation.It is therefore instru
tive to 
ompare the results generated by this region-based systemwith work published by other authors over re
ent years; this gives an indi
ation ofthe relative su

ess of the region-based approa
h. Again, with no a

epted quantita-tive measure of segmentation performan
e, a qualitative 
omparison is made betweenresults.This se
tion presents a 
omparison with a number of authors who have analysed theFlower Garden sequen
e. In this 
omparison we analyse the a

ura
y of the resultingtree segment. The results are extra
ted from the published papers. Although ea
hauthor displays their results di�erently it is not di�
ult to 
ompare them.Wang and Adelson [Wang 94℄ presented results from this sequen
e in their paperintrodu
ing the layered representation. Comparisons with Ayer and Sawhney [Ayer 95℄and Weiss and Adelson [Weiss 96℄ are also presented in Figure 6.12. Both of theseauthors' results show some outlying pixels or regions whi
h are absent in our approa
h,whi
h gives the system presented in this dissertation a more pleasing appearan
e.Figure 6.12.d) shows the result of the edge-based motion segmentation s
heme fromSmith [Smith 01℄.The segmentation of the tree in the Wang and Adelson estimate it to be too wide,while the edge-based approa
h misses a few se
tions. Ayer and Sawhney's is a betteroutline, but there is more noise in the ba
kground. Although the tree segment of Weissand Adelson is similar with our result, it is not so "
lean".6.4 SummaryThis 
hapter has evaluated analyti
ally and empiri
ally the segmentation methodsproposed in Chapter 4 and Chapter 5. We have experimentally shown that the pro-
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(a) (b)
(
) (d)Figure 6.12: Comparative results with the Flower Garden sequen
e. Results presentedby (a) Wang and Adelson in [Wang 94℄, (b) Ayer and Sawhney in [Ayer 95℄, (
) Weiss andAdelson in [Weiss 96℄ and (d) Smith in [Smith 01℄.posed approa
hes provide an e�e
tive region-based segmentation method for a
hievinghigh quality segmentation. It has been shown that good segmentation results 
an bea
hieved when using a 
ombined approa
h between morphologi
al and graph-basedmethods. We 
ompared this new approa
h against other state-of-the-art segmentationte
hniques [Deng 01, Comani
iu 02, Cour 05℄. Qualitative results for real-world se-quen
es demonstrate the 
apa
ity of our approa
h to segment obje
ts based on spatialand motion 
ues. A 
omparison with some of the best known motion segmentationmethods is also made for the Flower Garden sequen
e.



CHAPTER 7
Con
lusion

This thesis is fo
used on the problems of image and motion segmentation using tworegion-based methods.One of the key ideas presented in this thesis is the simpli�
ation of the entrygraph for the normalized 
ut (NCut) algorithm. A pre-segmentation pro
ess allowsthe 
onstru
tion of a region-based graph whi
h makes the N
ut algorithm tra
table tolarge images. This graph has a smaller size than the pixel-based graph, but still withmeaningful data. The initial segmentation is not a simple "pre-pro
essing" step su
h asmaking some assumptions on the sparsity of 
ertain matri
es [Shi 00℄, or using bottom-up region merging to redu
e input size. By using the watershed transform we provide aready-made matrix of relevant data as input to the NCut algorithm. We demonstratethe reliability of our algorithm with qualitative and quantitative experimental data.Major reasons for the su

ess of our algorithm over other similar methods are: theuse of edge preserving smoothing �lter; the use of intervening 
ontours in the similaritymeasure; the ex
lusion of the spatial distan
e in the pairwise similarity measure; theregion-based similarity graph; and the multi
lass spe
tral-based approa
h. Even more,the use of watershed based regions instead of single pixels as graph nodes largelyde
reases the 
omputational 
ost.This region-based method also enfor
es spatial smoothness of the resulting motionsegmentation map without using 
ostly Markov random �eld models. We observe thatwe 
an tolerate over-segmentation in the spatial region formation step, sin
e these re-gions will be merged later using motion ve
tor and intensity mat
hing. In 
ontrastwith the 
lassi
al motion segmentation methods that segment sequen
es only as fore-ground/ba
kground obje
ts, our method e�e
tively separates the moving areas a

ord-ing to their motion. Experimental results demonstrate the robustness of the proposed169



170 Con
lusionmethod, whi
h 
an also be viewed as integration of motion and intensity segmentation.Our basi
 assumptions for motion segmentation approa
h are that motion infor-mation varies smoothly inside a region of homogeneous intensity, while �ow �eld dis-
ontinuities are lo
ated at the borders of those regions. The purpose of applying thissegmentation assumption is to improve the performan
e of our algorithm in untexturedregions and in the proximity of �ow �eld boundaries.There are two important advantages to estimating the velo
ity over a whole re-gion rather than pixel by pixel. The �rst advantage is that the e�e
ts of noise andina

ura
ies in the velo
ity ve
tor estimation typi
ally are redu
ed signi�
antly. These
ond advantage is that even if the aperture problem is presented in some part of theregion, information obtained from other parts 
an help to �ll in the missing velo
ity
omponent. A disadvantage with velo
ity estimation over a whole region is that it isassumed that the true velo
ity �eld is at least reasonably 
onsistent with the 
hosenmotion model. A problem here is that even if we know, e.g. from the geometry of thes
ene, that the velo
ity �eld should be pat
h-wise a�ne, we still need to obtain regionsnot 
overing pat
hes with di�erent motion parameters. There are many possible solu-tions to this problem, in
luding grey level segmentation and the ideal 
ase of a prioriknowledge of suitable regions.7.1 ContributionsThere have been three main themes pursued through out this thesis. The �rst two areimage segmentation and 
orrespondingly evaluation, and the third is motion segmen-tation. This se
tion summarizes the 
ontributions of this work.Our 
ontribution in Chapter 2 is a review of the re
ent 
ontributions in the area ofimage segmentation with emphasis on the 
ooperative segmentation methods. We alsoproposed a new 
ategorization of image segmentation algorithms.In Chapter 3, we introdu
e a new evaluation metri
 for image segmentation. Mostof the 
urrently used evaluation metri
s measure in one way or another the quantity offalse and positive pixels in the segmentation result making no per
eptual di�erentiationamong them. Our region-based measure takes into a

ount not only the a

ura
y of thesegments boundary lo
alization regardless to the number of regions in ea
h partition.From the 
omparison of the proposed metri
 with some of the best known evaluation



7.2 Open topi
s and future resear
h 171measures in the literature we have shown that our method is tolerant to re�nementand at the same time strongly penalizes segmentation errors. This 
omply with theway humans per
eive visual information.In Chapter 4, we develop a new hybrid segmentation te
hnique for still imageswhi
h 
ombines edge and region-based information with spe
tral te
hniques throughthe morphologi
al algorithm of watersheds. A non-linear smoothing (bilateral �lter) isused to redu
e over-segmentation in the watershed algorithm while preserving the lo-
ation of the image boundaries. The purpose of the pre-pro
essing step is to redu
e thespatial resolution without losing important image information. An initial partitioningof the image into primitive regions is set by applying a rainfalling watershed simulationon the image gradient magnitude. This step presents a new approa
h to over
ome theproblems with �at regions. This initial partition is the input to a 
omputationally e�-
ient region segmentation pro
ess (multi
lass normalized 
ut algorithm) that produ
esthe �nal segmentation. The method's a

ura
y and robustness were demonstratedthrough a series of experiments involving several real images. Our experimental resultswere also 
ompared with other published results, and the 
omparison indi
ated thatthe proposed method produ
ed results that fall into the most a

urate 
ategory.The third problem that we address in this thesis is the estimation and segmentationof motion. In Chapter 5, we apply the proposed framework to motion segmentation.Motion estimation is obtained with the variational method proposed by Brox et al.[Brox 04℄. This method relies on a pie
ewise smooth assumption using a gradient
onstan
y regularisation whi
h yields robustness against illumination 
hanges betweenthe 
orresponding images. We also develop the theory linking the motion labelling ofpixels with that of motion labelling of regions. The major advantages of this region-based motion segmentation algorithm are twofold. First, it is likely to redu
e the e�e
tof leverage pixels by en
ouraging �ow �eld maps to have spatially 
oherent support.Opti
al �ow ve
tors inside a region are 
onstrained to follow a unique dominant ve
tor.This allows the assignment of smooth opti
al �ow �eld in regions of poor texture.Se
ondly, opti
al �ow dis
ontinuities are enfor
ed to 
oin
ide with region borders. Thisis advantageous, sin
e we believe that motion segmentation boundaries 
an be morea

urately identi�ed by the use of stati
 
ues than using motion information only.The performan
e of this method was demonstrated in Chapter 6 through a seriesof experiments involving several of the most 
urrently used image sequen
es.



172 Con
lusion7.2 Open topi
s and future resear
hThe work presented in this thesis provides a new e�e
tive framework for image and mo-tion segmentation whi
h has been illustrated on various experiments. The approa
hespresented open several extension opportunities and a number of areas of interestingfuture work that are still allowed to go through for further exploration.The motion segmentation assumption is not guaranteed to hold truth. This isa limitation of our approa
h and our 
urrent solution is to apply a stronger over-segmentation. However, sin
e this does not 
ompletely over
ome this problem, ouralgorithm 
ould take bene�t for example from an operation that allows splitting seg-ments. It would be interesting to develop a spe
ial purpose intensity segmentationmethod as well that avoids produ
ing regions whi
h overlap a depth dis
ontinuity.Our image segmentation evaluation measure needs a 
alibration image to set up thethresholds. Further investigation on the 
hoi
e of universal thresholds is needed. Thesegmentation algorithms' parameters are also 
hosen empiri
ally. In a more advan
edimplementation parameter estimation 
ould be automated (e.g. based on the expe
tedlevel of image noise or opti
al �ow �eld variation).Image segmentation and motion estimation are 
onsidered to be separate problems.In further resear
h we are planning to set up an image segmentation system thatexploits temporal relationships and a motion estimation system that exploits region-based image segmentation. These should improve the quality of image segmentationas well as of motion estimation.An expli
it treatment of the o

lusions and, more spe
i�
ally, of o

lusions in theprevious frame 
ould be bene�
ial. This implies the identi�
ation of segments thathave just appeared in the s
ene and the relaxation of the assumption of the temporal
ontinuity of the label map in su
h 
ases.The algorithm presented here 
omputes a motion segmentation map between anytwo frames of a sequen
e. It is also possible to extend it to temporally integrate thesemaps to obtain more stable motion boundaries a
ross su

essive frames.In order to improve the quality of results, we intend to apply the algorithms tospe
i�
 areas, e.g. Medi
al Imaging where some preliminary experiments proved toa
hieve good results (see Appendix A).



APPENDIX A
Additional experimental results

This 
hapter presents additional experimental results of the region-based image seg-mentation algorithm des
ribed in Chapter 4.A.1 Additional quantitative resultsTable A.1 shows the quantitative evaluation results of the 
omparison of WNCUTmethod with the state-of-the-art methods. The same results are presented in a graphi
representation in Figure 6.4.Table A.1: Results of quantitative evaluation in terms of F-measure for the 
omparisonbetween the proposed method (WNCUT), Mean shift (EDISON), JSEG and the multis
alesegmentation MNCUT. The last row shows the evaluation among hand-segmented results.Method 37073 41004 42049 65019 90076 118035 143090 241004WNCUT 0.65 0.75 0.89 0.80 0.85 0.74 0.71 0.81EDISON 0.62 0.64 0.85 0.75 0.73 0.70 0.62 0.72JSEG 0.61 0.55 0.64 0.67 0.66 0.71 0.49 0.78MNCUT 0.58 0.60 0.75 0.78 0.64 0.70 0.33 0.69Humans 0.75 0.89 0.92 0.96 0.91 0.85 0.85 0.95
173



174 Additional experimental resultsA.2 Additional qualitative resultsTo a better visualisation of the results they are superimposed on the original images.As in the experiments of Chapter 6 the parameters were set to σic = 0.02 and σI = 0.02.Figure A.1 presents the results of the segmentation over 
omplex real images. Moreresults, not so 
omplex, are shown in Figure A.2 and in Figure A.3.

Ettlinger Tor 30 segs

Street 30 segsFigure A.1: Experimental segmentation results over 
omplex real images.Figure A.4 shows the segmentation results over medi
al images. It is per
eptible,for example, in results of images (
), (d) and (e), the a

ura
y of the method as itfollow the 
orre
t lung boundaries even if they are very 
omplex.
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Claire 6 segs

Peter 6 segs

JP 15 segsFigure A.2: Experimental segmentation results over images showing humans.
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42044 8 segs

172032 20 segs

207056 12 segsFigure A.3: Experimental segmentation results over real images.
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(a) 7 segs

(b) 7 segs

(
) 7 segs
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(d) 7 segs

(e) 7 segs

(f) 7 segsFigure A.4: Experimental segmentation results over medi
al images with k = 7.
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