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Resumo

Este trabalho estuda métodos baseados em regioes para a segmentacao de imagens e de
sequéncias de video. Apresentam-se metodologias precisas para a segmentacao de im-
agem e demonstra-se como é que podem ser integradas em algoritmos para a resolugao
de alguns dos problemas associados a segmentacao do movimento. A representacao
baseada em regioes oferece uma forma de realizar um primeiro nivel de abstraccao e de
reduzir o nimero de elementos a processar relativamente a representacao classica pizel
a pizel.

A segmentacao do movimento é uma técnica fundamental para a analise e com-
preensao de sequéncias de imagens reais. A segmentacao do movimento "descreve" a
sequéncia através de um conjunto de regioes compostas por pontos que apresentam
um movimento coerente entre si. Esta descricao é essencial para a identificacao dos
objectos presentes na cena de modo a permitir uma manipulacao eficaz de sequéncias
de video.

Nesta tese é apresentada uma técnica hibrida baseada na combinacao de informacao
espacial e de informacao do movimento para a segmentacao dos objectos presentes numa
sequéncia de imagens de acordo com o seu movimento. O problema é formulado como
um caso de particao de um grafo onde cada n6 corresponde a uma pequena regiao
composta por pontos que apresentam o mesmo movimento. Esta é uma representagao
flexivel de alto-nivel que individualiza os objectos com movimento proprio. Partindo
de uma sobre-segmentacao da imagem, os objectos sao formados pelo agrupamento de
regioes vizinhas com base na sua similaridade espacial e temporal, tendo em atengao
a informacao espacial e de movimento, com énfase na segunda. A segmentacao final é
obtida recorrendo a um método espectral para particao de grafos.

A fase inicial para a segmentacao de objectos de acordo com o seu movimento visa a

redugao do ruido da imagem sem destruir a estrutura topolégica dos objectos, atraveés



de um filtro anisotrépico bilateral. Uma particao inicial em pequenas regioes uniformes
é obtida através da transformada de watershed. O vector de movimento associado a
cada regiao é determinado por um algoritmo variacional de calculo de fluxo éptico.
De seguida, é construido um grafo de regioes dinamicas pela combinacao normalizada
de medidas de similaridade entre regioes onde sao considerados, a intensidade média
de cada regiao, a amplitude do gradiente entre regides e a informacao do movimento
associado a regiao. A medida de similaridade de movimento entre regioes é baseado
no sistema de visao humano. Finalmente, é aplicado um método espectral para obter
a particao do grafo e consequente identificacao de cada regiao de acordo com o seu
movimento.

O método de segmentacao do movimento é baseado num de segmentacao de ima-
gens estaticas também concebido e desenvolvido pelo autor da dissertacao. Trata-se
também de uma metodologia baseada na utilizacao de pequenas regioes que assenta
na construcao de um grafo de similaridades entre regides tendo por base a informagao
da intensidade e da amplitude do gradiente entre regices. Esta técnica produz segmen-
tacoes mais simples e mais compactas e comparativamente vantajosa relativamente a
outras técnicas. De modo a avaliar os resultados da segmentacao ¢ proposta uma nova
métrica que tem em atencao o modo como os humanos visualizam os resultados.

A combinacao de informacao estatica e do movimento numa técnica baseada em
regioes permite obter resultados de segmentagao visualmente significativos. Sao apre-
sentados resultados experimentais do desempenho da técnica proposta tanto para a
segmentacao do movimento em sequéncias de imagens, com e sem movimento da ca-
mara, bem como para a segmentacao de imagens estaticas, sendo, neste caso, efectuada

uma comparacao com os resultados obtidos por outras técnicas.

Palavras chave: Segmentagao de imagem, estimativa do movimento, segmentacao

do movimento, avaliacao da segmentacao, transformada de watershed.
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Abstract

This work discusses region-based representations for image and video sequence seg-
mentation. It presents effective image segmentation techniques and demonstrates how
these techniques may be integrated into algorithms that solve some of the motion seg-
mentation problems. The region-based representation offers a way to perform a first
level of abstraction and to reduce the number of elements to process with respect to
the classical pixel-based representation.

Motion segmentation is a fundamental technique for the analysis and the under-
standing of image sequences of real scenes. Motion segmentation ’describes’ the se-
quence as sets of pixels moving coherently across one sequence with associated motions.
This description is essential to the identification of the objects in the scene and to a
more efficient manipulation of video sequences.

This thesis presents a hybrid framework based on the combination of spatial and
motion information for the segmentation of moving objects in image sequences accord-
ingly with their motion. We formulate the problem as graph labelling over a region
moving graph where nodes correspond coherently to moving atomic regions. This is
a flexible high-level representation which individualizes moving independent objects.
Starting from an over-segmentation of the image, the objects are formed by merging
neighbouring regions together based on their mutual spatial and temporal similarity,
taking spatial and motion information into account with the emphasis being on the
second. Final segmentation is obtained by a spectral-based graph cuts approach.

The initial phase for the moving object segmentation aims to reduce image noise
without destroying the topological structure of the objects by anisotropic bilateral
filtering. An initial spatial partition into a set of homogeneous regions is obtained by
the watershed transform. Motion vector of each region is estimated by a variational

approach. Next a region moving graph is constructed by a combination of normalized
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similarity between regions where mean intensity of the regions, gradient magnitude
between regions, and motion information of the regions are considered. The motion
similarity measure among regions is based on human perceptual characteristics. Finally,
a spectral-based graph cut approach clusters and labels each moving region.

The motion segmentation approach is based on a static image segmentation method
proposed by the author of this dissertation. The main idea is to use atomic regions
to guide a segmentation using the intensity and the gradient information through a
similarity graph-based approach. This method produces simpler segmentations, less
over-segmented and compares favourably with the state-of-the-art methods. To eval-
uate the segmentation results a new evaluation metric is proposed, which takes into
attention the way humans perceive visual information.

By incorporating spatial and motion information simultaneously in a region-based
framework, we can visually obtain meaningful segmentation results. Experimental
results of the proposed technique performance are given for different image sequences
with or without camera motion and for still images. In the last case a comparison with

the state-of-the-art approaches is made.

Keywords: image segmentation, motion estimation, motion segmentation, seg-

mentation evaluation, watershed transform.
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Résumé

Ce travail étudie des méthodes basées sur des régions pour la segmentation d’images et
de séquences de vidéo. On présente des méthodologies précises pour la segmentation
d’image et on démontre comment elles peuvent étre intégrées dans des algorithmes
pour la résolution de certains problémes associés a la segmentation du mouvement.
La représentation basée sur des régions offre une forme de réaliser un premier niveau
d’abstraction et de réduire le nombre d’éléments a traiter en comparaison avec la
représentation classique pizel par pizel.

La segmentation du mouvement est une technique fondamentale pour ’analyse et la
compréhension de séquences d’images réelles. La segmentation du mouvement "décrit"
la séquence a travers d'un ensemble de régions composées de points qui présentent un
mouvement cohérent entre eux. Cette description est essentielle pour I'identification des
objets présents dans la scéne afin de permettre une manipulation efficace de séquences
de vidéo.

Dans cette thése on présente une technique hybride basée sur la combinaison d’infor-
mations spatiales et du mouvement pour la segmentation des objets présents dans
une séquence d’images conformément & son mouvement. Le probléme est formulé
comme un cas de partition d’'un graphe ou chaque nceud correspond a une petite
région composée par des points qui présentent le méme mouvement. Celle-ci est une
représentation flexible de haut niveau qui individualise les objets avec mouvement
propre. En partant d’une sur-segmentation de 'image, les objets sont formés par le
regroupement de régions voisines basé sur leurs similitude spatiale et temporel, tenant
en compte les informations spatiales et surtout du mouvement. La segmentation finale
est obtenue en faisant appel & une méthode spectrale pour partition de graphes.

La phase initiale pour la segmentation d’objets conformément & son mouvement

vise la réduction du bruit de I'image sans détruire la structure topologique des objets,



a travers un filtre anisotrope bilatéral. Une séparation initiale de petites régions uni-
formes est obtenue & travers la transformée de watershed. Le vecteur de mouvement
associé a chaque région est déterminé par un algorithme de calcul de flux optique basé
sur le systéme de vision humain. Apreés, on construit un graphe de régions dynamiques
utilisant la combinaison normalisée de mesures de similitude entre des régions ou sont
considérés l'intensité moyenne de chaque région, 'amplitude du gradient entre régions
et les informations du mouvement associé a la région. Finalement, on applique une
méthode spectrale pour obtenir la séparation du graphe et la conséquente identification
de chaque région conformément & son mouvement.

La méthode de segmentation du mouvement est basée sur une méthode de seg-
mentation d’images statiques aussi concu et développé par 'auteur de cette thése. 1l
s’agit aussi d'une méthodologie basée sur 'utilisation de petites régions, préalablement
obtenues, basées sur la construction d’'un graphe de similitudes entre régions tenant en
compte les informations de I'intensité et de 'amplitude du gradient entre des régions.
Cette technique produit des segmentations plus simples et plus compactes et compa-
rativement avantageuses a 1’égard d’autres techniques. Afin d’évaluer les résultats de
la segmentation on propose une nouvelle métrique qui tient en compte la facon de
visualiser les résultats par les étre humains.

La combinaison d’informations statiques et du mouvement dans une technique basée
sur des régions permet d’obtenir des résultats de segmentation visuellement significatifs.
On présente des résultats expérimentaux sur la performance de la technique proposée
dans le cas de la segmentation du mouvement dans des séquences d’images, avec et sans
mouvement de la chambre, ainsi que pour le cas de la segmentation d’images statiques,
étant, dans ce cas aussi, effectué une comparaison avec les résultats obtenus par autres

techniques.

Mots-clés: segmentation de 'image, estimation du mouvement, segmentation du

mouvement, évaluation de la segmentation, transformée watershed.
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CHAPTER 1

Introduction

Among all the human perceptual mechanisms, vision is undoubtedly the most impor-
tant. The effortlessly way that we often look, interpret and ultimately act upon what
we see belies the complexity of visual perception. The comparatively young science
of vision research is aimed at the understanding of the general issue of seeing. The
automation of the task by the use of image capture equipment in place of our eyes,
computers and algorithms in place of the not yet understood visual system, constitutes
what is termed computer vision. The Human Visual System (HVS) is an important
model for any work in vision because it is, clearly, both efficient and general purpose,
which are also the goals of any computer vision system.

Human often take for granted the solution of apparently simple computer vision
problems like the segmentation and the recognition of objects, or the detection and
the interpretation of motion. We solve these tasks so automatically that it can be
surprising how difficult it is to instruct a computer to solve the same tasks, given just
a series of two-dimensional arrays of pixel values.

When humans look at a scene, the visual system is able to decompose and identify
objects in a complex scene in one instant. It is, essentially, the process of subdividing
an image into basic parts and extracting these parts of interest which are the objects.
In a conventional sense, image segmentation is the partitioning of an image into co-
herent regions, in a manner consistent with human perception of the content, where
parts within a region are similar according to some uniformity property and dissimilar
between neighbouring regions. The development of MPEG-4 and MPEG-7 standards
which allow the object-based image coding and content-based image description and

retrieval, reinforced the interest in image segmentation algorithms.
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Image segmentation and perceptual grouping have traditionally relied on differ-
ent image cues. Segmentation is often based mostly on pixel appearance, being it by
brightness, colour or some measure of texture similarity (though the issue of cue inte-
gration for segmentation has received a reasonable amount of attention, see [Malik 01]);
whereas perceptual grouping usually relies on the information provided by image edges
and on grouping principles that exploit the regularities among edges that belong to
object contours.

The information provided by image segmentation and perceptual grouping is also
complementary. Segmentation results indicate what regions in the image look homo-
geneous under a chosen similarity measure, without considering boundary regularity;
while grouping results indicate which edges in the image form regular groups that are
likely to correspond to salient boundaries. It is reasonable to expect that combining
the results produced by segmentation and grouping should lead to a better segmenta-
tion. Motion information may be used to link adjacent but visually dissimilar regions
or to divide surfaces not easily separable by static criteria alone. Often, ambiguous
object boundaries in a single image frame are easily resolved when dynamic effects are
evaluated based on a sequence of frames.

For image segmentation, evaluation and, where possible, validation against other
methods are crucial. In some cases we have been able to compare our results against
state-of-the-art techniques from other researchers. Still, in most cases the ground
truth will remain concealed such that evaluation must be conducted with due care and
attention, even if the so-called ’gold standards’ are available.

Motion segmentation is another important research field with many commercial
applications including surveillance, navigation, robotics, and image coding and com-
pression. As a result, the field has received a great deal of attention and there are a
wide variety of motion segmentation techniques which are often specialised for particu-
lar problems. The relative performance of these techniques, in terms of both accuracy
and of computational requirements, is often found to be data dependent and no single
technique is known to outperform all others for all applications under all conditions.

Motion segmentation is usually defined as grouping of pixels of similar intensity
that are associated with smooth and uniform motion information. However, this is a
problem that is loosely defined and ambiguous in certain ways. Though the definition

of motion segmentation says that regions with coherent motion are to be grouped, the
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resulting segments may not correspond to meaningful object regions in the image. To
alleviate this issue the motion segmentation problem is placed at two levels namely
low level and high level. Low level motion segmentation tries to group pixels with
homogeneous motion vectors without taking no other information apart from intensity
or image gradient. High level motion segmentation divides the image into regions that
exhibit coherent motion and it also uses other image cues to produce image segments
that correspond to projections of real objects.

This thesis intends to present efficient and effective image segmentation techniques
and to demonstrate how these techniques may be integrated into algorithms that solve
motion segmentation problems. Region based representations offer a way to perform
a first level of abstraction and reduce the number of elements to process with respect
to the classical pixel based segmentation. Morphological watershed transform and
spectral-based graph cut methods will play a central role.

We can think of a video as a sequence of images so the basic unit on which the
video segmentation algorithms operate is actually an image or a frame. The differ-
ence is that video segmentation must consider a larger feature space because they have
moving objects. Informally we can say that video segmentation is essentially a segmen-
tation problem, similar to the image segmentation problem with pixel motion being an
important dimension of the feature space.

In image segmentation, the pixels of an image need to be partitioned into regions
corresponding to the different intensity patterns existent in the image. In motion
segmentation, the pixels of a pair (or a set of images) need to be partitioned into
regions based on a coherent motion criterion. A moving scene is thereby recorded by
a single camera and the initial task is to find a dense field of displacement vectors
that transform one frame into a subsequent one. The most popular motion estimation
method is the optical flow approach. Horn and Schunck [Horn 81| defined optical flow
as follows: The optical flow is a velocity field in the image that transforms one image
into the next image in a sequence. As such it is not uniquely determined.

Motion estimation and segmentation are important sources of information for many
applications in multimedia and video analysis. Motion estimation is concerned with
the estimate of the motion parameters of a moving object while motion segmentation
attempts to identify the boundary of these objects. Both of these problems are directly

related and a number of methods have been presented. The tasks of motion estimation
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and segmentation are highly ill-posed!.

It has been acknowledge by many authors that it is very difficult to determine
the motion of pixels in areas of smooth intensity and that the motion in these areas
must invariably be found by extrapolating from nearby features. These smooth areas
of the image can be determined prior to any motion analysis by performing an initial
segmentation based purely on intensity (or other spatial cues) to combine these smooth
areas into individual atomic regions. The motion of these regions, rather than pixels,
is then determined and these regions clustered together according to their motions.

In this work we propose a hybrid spatial and temporal technique that tries to
overcome those problems by the combination of the spatial information with the mo-
tion information. Based on the assumption that motion discontinuities go along with
discontinuities in the intensity image, we take benefit from the spatial segmentation
information in three ways. First, the motion values inside each segment are constrained
to follow the same motion model, which allows the assignment of smooth flow values
in regions of poor texture. Secondly, we believe that motion boundaries can be accu-
rately identified by the use of static cues, such as the partition of the reference frame
into regions of homogeneous intensity. Thirdly, occluded regions can be assigned to
meaningful flow values that are propagated using the segmentation information.

By its very nature, the problem of defining the objects composing a moving scene
is an ill-posed problem. There is a strong interdependence between the estimation
of the spatial support of an object and of its motion characteristics. On one hand,
estimation of the motion information of the object depends on the region of support
of the object. Therefore, an accurate segmentation of the object is needed in order to
estimate the motion accurately. On the other hand, a moving object is characterized
by coherent motion characteristics over its entire region of support (assuming that only
rigid motion is permitted). Thus, an accurate estimation of the motion is required in
order to obtain an accurate segmentation of the object. Furthermore, accurate object
definition involves not only motion information, but also spatial characteristics. In
particular, the spatial information provides important cues about object boundaries.
However, the best strategy for combining these two types of information remains an

open issue.

LA problem is called well-posed (in the sense of Hadamard), if it has a unique solution that depends
continuously on the data. If one of these conditions is violated, it is called ll-posed.
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1.1 Motivation

Motion segmentation is useful since in many real world examples the moving objects are
precisely the interesting objects. For example when crossing the road it is the moving
cars that are of primary importance; stationary cars are uninteresting background
despite the fact that both moving and stationary cars are the same physical objects.
Indeed, in many applications knowing that "something" is moving in a particular way
is much more important than knowing semantically what it is.

The segmentation of images based on spatial or temporal (motion) information are
key problems in computer vision. Motion information allows to distinguish stationary
from moving objects and thus to detect and avoid obstacles. This makes it particularly
useful for tasks where vehicles have to be guided safely through an unknown environ-
ment. Another field of application that is more related to image processing than to
computer vision is the compression of video sequences where the basic idea is to de-
compose a sequence of images into a small set of key frames and encode the differences
to the remaining frames as flow fields. Extending this idea to an even more compact
representation based on object shapes and single displacement vectors describing their
motion, one obtains the specification of the current MPEG-7 compression standard
[Chang 01].

The goal of this thesis is to provide segmentation methods that are robust, fast and
flexible enough to meet the requirements of the majority of the natural image analysis
settings. Further, the methods are intended to serve as a basis for motion segmentation
schemes.

The best known to assign segment labels to each pixel in an image is the normalized
cuts algorithm developed by Shi and Malik [Shi 00]. This algorithm creates a weighted
graph in which each pixel is connected to every other and the weights represent the
similarity between them. A cut of the graph is a set of links whose removal divides the
pixels into two groups. A minimum cut is the cut whose total links weights are the
smallest, which is biased towards separating small regions from the remainder of the
image. Normalized cuts corrects this bias by dividing the cut value by associativity
factors that penalize small partitions.

Many methods have been proposed to perform the task of image segmentation with

the cooperative methods among the most promising ones (see Chapter 2). This class of
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approaches is based on the combination, integration or iteration between methods. It
is known that the resulting segmented image from a watershed approach while accurate
tends to over-segmenting the original image. In this research a region merging method
using a graph based technique will be applied as a post image processing to overcome
such problem. By applying these two methods in a combined manner, it is expected
that a better image segmentation will be obtained.

Our idea is motivated by the observation that graph-cut algorithms have some
drawbacks due to the use of pixel-based graphs. We think that combining watershed
pre-segmentation with normalized cut approaches can lead to a faster and better seg-
mentation. Moreover, using accurate uniform regions as the basis to any segmentation
algorithm has to increase computational speed and allows to obtain smoother results
on segmentation.

Recently, region-based algorithms have become popular in the motion and image
segmentation community. Although quite different from each other, all methods of this
category take benefit of the segmentation information to increase their robustness in
traditionally challenging areas of motion segmentation. This is well reflected by the
good experimental results of those techniques.

We identify the advantages of region-based motion segmentation as follows:

e Probably the most obvious advantage is that region-based motion segmentation
techniques constrain the flow field inside a region to follow a single model. In other
words, smoothness within a segment is explicitly enforced. This is advantageous,
since it allows the assignment of smooth flow field values in regions of poor

texture.

e Often, flow field boundaries can often be more accurately identified by the use of
static cues. Each object (or region) has also a compact boundary.

e The robustness in areas affected by occlusion is improved. In theory, matching
might even succeed for a segment that is partially occluded, since it is still possible
to match the segment’s non-occluded pixels. However, this does not mean that
occlusions can be ignored. Note that since a single flow field model is assigned
to the complete segment, those parts that are also affected by occlusion are
automatically filled.

e The number of segments is usually significantly smaller than the number of pixels.

This gives rise to potentially much faster motion segmentation algorithms.
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Nevertheless, using the region-based assumption also involves some disadvantages:

1.2

The most severe problem associated with region-based approaches is that the
segmentation assumption is, in general, not guaranteed to hold true. More pre-
cisely, the success of such methods depends on the ability of the segmentation
algorithm to accurately delineate the objects outlines. It is therefore safer to
apply over-segmentation.

The flow field model can be inappropriate to represent the “real” displacement
of a segment. This is, of course, rather a problem of using a model and not
specifically bound to the segmentation aspect. However, choosing an appropriate
model is a difficult task by itself. While simple models may oversimplify the real
displacement, complex models may over fit the data and show undesired effects

due to image noise.

Contributions

The main emphasis in this thesis is in the presentation of a hybrid framework that

produces accurate segmentation results in still images and in motion segmentation. To

achieve those purposes some contributions are made during this thesis:

The development of a new evaluation metric for image segmentation where ad-
ditions from different errors are weighted accordingly to their visual relevance.
The presentation of an improved watershed approach, the definition of a new
structure for a region-based similarity graph and the application of multiclass
normalized cuts approach to group atomic regions which produces accurate image
segmentation.

The definition of a similarity measure which overcomes some of the common
problems associated with normalized cuts approach such as the partition of ho-
mogeneous regions.

The incorporation of spatial and motion information simultaneously in a region-
based framework to segment an image sequence. This method effectively allows
the partition of the frames into multiple areas according to their different motions.
The integration of the recently proposed motion estimation scheme developed by

Brox et al. [Brox 04] in the region-based motion segmentation framework.
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1.3 Thesis overview

This thesis is implicitly divided in two parts: the first part deals with theoretical and
practical approaches towards image segmentation and that provides a suitable basis
for the chapter of motion segmentation. The second part of this thesis focuses on the
segmentation of moving objects. Thus, the remainder of this thesis is organized as
follows.

In Chapter 2 a review of the commonly used image segmentation methods is given,
with emphasis on the existing cooperative methods. The advantages and the disad-
vantages that exist within each method are described.

Chapter 3 introduces a segmentation evaluation measure which takes into account
the way humans perceive visual information.

Chapter 4 presents the major contribution of this thesis - the use of atomic regions
as nuclear features for image segmentation. An investigation on image segmentation
approaches which produce an over-segmentation result will be given with the suggestion
of a combined framework between watershed transform and spectral-based graph cut
method for image segmentation. The resulting atomic regions are then encoded in
a region-based graph where nodes correspond to regions. Afterwards, a multiclass
spectral-based graph-cut method is used to cluster these regions in segments.

Chapter 5 takes the spatial atomic regions and a variational motion estimation
method and combines them into a complete algorithm producing a reliable motion
segmentation framework. The chapter begins with a review for motion estimation and
segmentation. Afterwards, optical flow and its associated problems are discussed, with
the description on the variational optical flow method. Finally, the complete framework
for motion segmentation is presented.

Chapter 6 presents the experimental results of the proposed approaches to image
segmentation and to motion segmentation. It includes a comparison of the proposed
image segmentation method with the state-of-the-art image segmentation methods.

Finally, Chapter 7 presents a summary of the techniques developed in this work
and draws conclusions from them. We then highlight some of the weaknesses of the
algorithms and indicate some of the possible directions for further research.

Appendix A contains an extension of the experimental results.



CHAPTER 2

Survey on recent image segmentation

methods

This chapter' reviews some of the recent contributions in the area of image
segmentation with emphasis on the cooperative segmentation methods. It

also presents a new categorization of image segmentation algorithms.

2.1 Introduction

There are many methodologies to approach the image segmentation problem that are
traditionally organized into two main categories: 1) the region-based, and 2) boundary-
based approaches. Other categorizations are possible as the ones we will survey in this
chapter. In these approaches similarity or dissimilarity concepts are involved for mea-
suring the homogeneity within a region or for evaluating the location of the boundaries.
Each of the approaches presents its own advantages and drawbacks, they can be used
isolated or combined in any convenient manner to explore the complementary prop-
erties of each method, or they can be unsupervised without any user intervention or
interactive as often required by medical imaging applications [Olabarriaga 01].

Many issues still remain opened in the image segmentation problem, as the many
different approaches, the different applications areas where image segmentation is
mandatory and the evaluation of the performance of an image segmentation algorithm.
We will also look at this problem from a different level, trying to identify those contri-

butions where the integration, fusion, combination, cooperation or interaction are the

! The following survey on image segmentation is based largely on [Campilho 07].

9
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major keywords for approaching the segmentation issue. This means that we will also
review the methods based on the use of different and complementary methodologies
that anyhow explore the advantages and disadvantages of a particular method in order
to improve the overall segmentation performance.

We just give a brief overview of two earlier surveys, the [Haralick 85| paper and
[Pal 93|. In [Haralick 85| the authors describe the main ideas of the image segmenta-
tion methods that are grouped into five major classes: (1) measurement space guided
spatial clustering (further divided into thresholding and measurement space clustering);
(2) region growing (divided into: single linkage, hybrid linkage, and centroid linkage
schemes); (3) hybrid linkage combination techniques; (4) spatial clustering, and (5)
split-and-merge. This typology reflects the approach to image segmentation as a clus-
tering process, and the interaction between the grouping within the spatial domain
(the segmentation itself) and the grouping in the measurement space (the clustering
process). In Pal and Pal [Pal 93] the authors reviewed some image segmentation meth-
ods (distributed by 178 papers) by covering fuzzy and non-fuzzy techniques including
colour image segmentation and neural network based approaches. The authors com-
pare some of the methods and also provide some comments on quantitative evaluation
of segmentation results.

Specialized surveys in a specific image segmentation topic can be found in [Davis 75|
for edge detection, [Zucker 76] for region-based segmentation methods, [Sahoo 88,
Sezgin 04| for thresholding techniques, [Reed 93| for texture and feature extraction
methods, [Hoffman 87, Hoover 96] for range images, [Cheng 01, Lucchese 01] for colour
images, and [Archip 02| reviews the use of neural networks for image processing in gen-
eral and image segmentation in particular.

There has been a remarkable growth in the number of algorithms that segment
colour images in the last decade [Cheng 01, Lucchese 01] and references on them. Most
of the times, these are extensions of techniques originally devised for grey-level images.
Thus, colour image segmentation algorithms exploit the well established background
laid down in grey-level segmentation field. In other cases, they are ad hoc techniques
specialized on the particular nature of colour information and on the physics driving
the interaction between light and coloured materials.

Related surveys of interest in close fields of image segmentation can be found in

the following papers: [Duncan 00] for medical image analysis and |Zitova 03| for image
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registration methods. Other important surveys or reviews can be found in [Jain 99]
for data clustering, [Jain 00| for statistical pattern recognition, [Antani 02] for the use
of pattern recognition methods for abstraction, indexing and retrieval of images and
video, [Shum 03] for image data compression and [Petersen 02| for image processing
with neural networks.

The cooperation is useful when some sort of complementary properties are explored
among the individual methods. For instance, it is common to combine edges with
region-based approaches, as the first method presents good localization characteristics
but it is sensitive to noise usually resulting in several edge gaps, while the region-
based methods have poor accuracy on boundaries, although producing natural closed
contours, and they are more insensitive to noise. Or, to overcome the over-segmentation
result from a watershed approach we need the use of other post-processing methods.
The human-computer cooperation is important when we need to accurately define the
regions in a demanding image segmentation task or mandatory when we deal with
crucial identification of regions in a medical image analysis segmentation problem.

In this formal context, the easiest form of cooperation appears at feature level as it is
possible to conceive several levels of cooperation among the decision making processes
using different sets of features. Other forms occur on the different ways of partitioning
an image. There are different methods of partitioning that can cooperate. All of these
forms of cooperation will be surveyed in a later section.

In our study, according to the work domain of each algorithm, we broadly clas-
sify the segmentation methods into three categories, namely image domain, feature
domain, and methods that use a combination of these (cooperative methods). Feature
domain is further divided into two main classes: thresholding and clustering methods.
Image domain is split into boundary-based and region-based methods. According to
the used framework, cooperative methods are classified as sequential, parallel, hybrid
and interactive. Based on the above discussions, we adopt the classification of image
segmentation as shown in Figure 2.1.

The desirable characteristics that a good image segmentation should exhibit were
clearly stated in [Haralick 85|: “Regions of an image segmentation should be uniform
and homogeneous with respect to some characteristics such as grey tone or texture.
Region interiors should be simple and without many small holes. Adjacent regions of a

segmentation should have significantly different values with respect to the characteristic
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Figure 2.1: An overview of image segmentation approaches.

on which they are uniform. Boundaries of each segment should be simple, not ragged,

and must be spatially accurate”.

A more precise definition of segmentation accounting for the

principal requirements

listed above is given in [Pal 93] in the following way: “Segmentation is a process of

partitioning the image into some non-intersecting regions such

that each region is ho-

mogeneous and the union of two adjacent regions is not homogeneous”.

Formally the segmentation process is the partition of an i

mage [ into k disjoint

homogeneous regions (the segments) Ry, R, ..., Ri, obeying the following conditions:

1. I=,R; fori=1,2,...k
2. RRNR; =0 fori#j
3. P(R;) =TRUE foralli

4. P(R;UR;) = FALSE, fori# j and R;, R; are adjacent

where the logical predicate P (R) is the homogeneity property function of region R.

This homogeneity function characterizes the uniformity of the region in terms of colour,
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texture, shape or other features that enable the discrimination of a segment from the
other segments. The consequence of the first condition is the complete spatial coverage
of the image by all the detected non-overlapping regions. The non-overlapping is
guaranteed by condition 2 which ensures that a pixel can be assigned to only one group.
The pixel homogeneity within a region is implicit in condition 3, whilst condition 4 is
an indication that two neighbouring regions must be different (in terms of the measured
property).

Adjacency relationships between regions are not really taken into account in this
definition, at the exception of the fourth condition which specifies that two adjacent
regions cannot be similar. In order to compensate this lack, some authors suggest to
use region adjacency graphs [Sanfeliu 02, Makrogiannis 05| or region similarity graphs
[Monteiro 07].

As a result of the segmentation process we have a labelled image, corresponding at
each region R; (i =1,2,...,k) a label L,, (m =1,2,..., M). In general the number of
regions, k, is equal to the number of labels, M, but they can also be different in some

cases, with the restriction of neighbouring regions that must have different labels.

2.2 Image domain

In the literature of segmentation of grey-level images, many techniques have been
suggested that try to satisfy both feature-space homogeneity and spatial compactness
at the same time [Pal 93]. These approaches consider the connectivity of individual
image pixels and then assign them to regions. According to the strategy preferred
for spatial grouping, these algorithms are usually divided into boundary-based and
region-based techniques.

The main advantages of the boundary-based methods for image segmentation rely
on the accuracy of the location of the boundaries. Though as they are usually based on
intensity gradient operators they are highly sensitive to noise and to small variations
of the edges and they may produce incomplete and open edges with many gaps which
will demand more powerful and time-consuming edge-linking tools. In many situations,
as the analysis of outdoor scenes, the regions borders cannot be based on intensity or
colour features only. Other texture features may be needed and eventually consider

the combination of different cues, to completely describe scenes with a reasonable
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complexity. Other advanced methods involving optimization methodologies, try to
integrate several dimensions of the segmentation problem in order to obtain closed
boundaries. However, they usually depend on the initialization and may be locked in
a local minimum.

Region growing works well only if the initial seeds are representative of the regions
of interest. The choice of the homogeneity and stopping criteria is crucial to the success
of these methods and depends on the nature of the input image. These problems are
overcome in the watershed algorithm which uses only an edge map as input and hence
can be used to segment a variety of images. The algorithm produces the segmentation
result without any user intervention. It is suitable for distributed implementation and

it can produce significant system optimization.

2.2.1 Boundary-based methods

Boundary-based methods aim to segment an image from the edges of each region by
locating the pixels where the intensity changes when compared to the pixels of its
surroundings.

The basic approach for determining region boundaries is to detect the edges, by
using an edge enhancement method, followed by thresholding the gradient magnitude.
Here we consider a boundary as a contour in the image plane that corresponds to the
separation between objects or surfaces in the world plane. An edge is an abrupt change
in some feature in the image plane, as brightness, texture or colour. Edge detectors can
be simple such as the Sobel or Roberts operators, or more complex such as the Canny
approach. The output of most existing edge detectors can only provide candidates for
the region boundaries, because the obtained edges are normally discontinuous or over-
detected. Edge detection is usually followed by edge linking and boundary detection

methods to obtain meaningful boundaries.

Edge-based

Edge detection aims to segment an image by finding the edges of each region by lo-
cating the pixels in the image where the intensity values change dramatically. These
discontinuities are usually found by running a mask through the image. By using dif-

ferent values for the coefficients in the mask, different forms of edges could be sought
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[Gonzalez 92|. It may also be necessary to perform some edge linking as the edges
obtained by applying various masks to the image may not give complete boundaries.

The edge location is commonly computed from the local discontinuities in a local
property as brightness [Canny 86|, colour [Ruzon 01], texture [Will 00], or a combina-
tion of these local image cues [Martin 04]. In principle the edge detection operator can
be applied simultaneously all over the image. One technique is high-emphasis spatial
frequency filtering. Since high spatial frequencies are associated with sharp changes in
intensity, one can enhance or extract edges by performing high-pass filtering using the
Fourier operator.

The edge-based segmentation methods will respond to edge brightness or colour
even if it does not correspond to a boundary as it happens in textured regions. Fur-
thermore they are not able to detect boundaries between texture regions. On the other
hand, texture based approaches may not detect brightness edges. These facts lead
Martin et al. [Martin 04] to develop a method where all these features were combined.
The approach of this paper is to look at each pixel for local discontinuities of these
features at several orientations and scales, being the free parameters in each one of the
features calibrated on the training data set. Malik et al. [Malik 01] also explored simul-
taneously brightness and texture as cues of contour, which are used as the primitives
in a graph theoretical framework of normalized cuts for image segmentation.

Heath et al. [Heath 97| presented a study of five edge detection operators (Canny,
Nalwa, Iverson, Bergholm, and Rothwell). The results show that significantly better
performances are obtained when the algorithm parameters are adapted to each image
than when one set of fixed parameters are used. The analysis of the relative perfor-
mance of the algorithms resulted in a ranking of the algorithms as (Canny, Nalwa) <
Bergholm for fixed parameters and as (Iverson, Nalwa) < (Rothwell, Bergholm, Canny)
for adapted parameters. The performance increases from left to right and the parenthe-
ses group algorithms whose difference in performance was not statistically significant.
The Canny algorithm had the highest performance when the parameters were adapted
for each image, but the lowest performance when the parameters were fixed. They
concluded that the choice of the edge detection algorithm depends on its application.

In the ideal case, the edge operator should find points lying only on the boundaries
between regions. The main weaknesses of these methods are its sensitivity to image

noise (as it is amplified by the gradient computation) and the generation of many
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gaps between edge elements. To reduce the noise influence some authors proposed to
firstly smooth the image by a low-pass filter. However, this will penalize the location
properties of the edge detector. Resulting regions may not be connected hence edges
need to be joined. To obtain a closed contour around the region other approaches for
edge following and edge linking are needed to fill in the gaps. The Hough transform
[[llingworth 88| can be used for boundary detection if the shape can be parameterized
(e.g. as a line, a circle or an ellipsis).

A boundary detection scheme based on “edge flow” is proposed in [Ma 00]. This
approach utilizes a predictive coding model to identify the direction of change in colour
and texture at each image location at a given scale, and constructs an edge flow vector.
By propagating the edge flow vectors the boundaries can be detected at image locations

which encounter two opposite directions of flow in the stable state.

Deformable models

Active contours constitute a general technique of matching a deformable model onto
an image by means of energy minimization. Since their introduction by Kass et al.
in [Kass 88], deformable models have been used in many applications of image seg-
mentation [Caselles 97, Davison 00, McInerney 00, Paragios 02, Han 03, Brox 06b)].
Particularly, numerous algorithms based on the theory of deformable models have
been proposed for the purpose of medical image segmentation [McInerney 96, Duta 98,
Niessen 98, Paragios 03, Xu 04]. See [Xu 00] for a review on deformable models.

Various names such as snakes, active contours or surfaces, balloons and deformable
contours or surfaces have been used in the literature to refer to deformable models
[Xu 00].

Depending on the implementation there are essentially two types of deformable
models: parametric deformable models [Kass 88, McInerney 95, Davison 00| and geo-
metric deformable models [Caselles 97, Han 03|. Parametric deformable models repre-
sent curves and surfaces explicitly in their parametric forms during deformation. This
representation allows direct interaction with the model and can lead to a compact rep-
resentation for fast real-time implementation. Adaptation of the model topology such
as splitting or merging parts during the deformation, can be difficult using paramet-
ric models. On the other hand geometric deformable models can handle topological

changes naturally. These models, based on the theory of curve evolution [Sapiro 93]
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and the level set method [Caselles 97|, represent curves and surfaces implicitly as a
level set of a higher-dimensional scalar function. They offer many advantages over
parametric approaches. In addition to their straightforward implementation level sets
do not require any parametrization of the evolving contour. Their parameterisations
are computed only after complete deformation, thereby allowing topological adaptivity
to be easily accommodated. Self-intersections, which are costly to prevent in paramet-
ric deformable models, are naturally avoided and topological changes are automated.
Many fundamental properties of the active contours, such as the normal or the curva-
ture, are also easily computed from the level set function. The ability to automatically
change topology is often presented as an advantage of the level set method over explicit
deformable models. Despite, in biomedical image segmentation, where the topology of
the target shape is prescribed by anatomical knowledge, this behaviour is not desirable.
Despite this fundamental difference, the underlying principles of both methods are very
similar [Xu 00].

Kass et al. [Kass 88] introduced a global minimum energy contour called snakes or
active contours. Given an initial approximation to a desired contour, a snake locates the
closest minimum energy contour by iteratively minimizing an energy functional which
combines internal forces to keep the active contour smooth, external forces to attract
the snake to image features, and constraint forces which help to define the overall
shape of the contour. A snake may be thought of as an elastic curve that, through
minimization of an energy functional, deforms and adjusts its initial shape on the basis
of additional image information to provide a continuous boundary [Davison 00].

The classic implementation of snakes by Kass et al. [Kass 88| allowed the problem
to be reduced to a matrix form. However, this puts constraints on the energy functions.
Davison et al. [Davison 00| proposed a less complicated form of the energy functions,
and energy minimization is carried out by adjusting individual vertices on the snakes.
This allows a larger range of energy functions, and the addition of internal energy
functions like area and symmetry terms without complicating the minimization process
as would be the case with the classic implementation.

The snakes approach had a large impact in the segmentation community. Yet,

Cremers et al. [Cremers 07] identified several drawbacks on these approaches:

e The implementation of contour evolutions based on an explicit parameterisa-

tion requires a delicate re-parameterisation process to avoid self-intersection and
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overlap of control or marker points.

e The explicit representation by default does not allow the evolving contour to un-
dergo topological changes so that the segmentation of several objects or multiply-

connected objects is not straight-forward.

e The segmentation obtained by a local optimization method is bound to depend
on the initialization. The snake algorithm is known to be quite sensitive to the
initialization. For many realistic images, the segmentation algorithm tends to get
stuck in undesired local minimum, in particular, in the presence of noise.

e The snakes approach lacks a meaningful probabilistic interpretation. Extensions
to other segmentation criteria such as colour, texture or motion are not straight-

forward.

The snake method is known to solve boundary refinement problems by locating the
object boundary from an initial plan. Though it should be stressed that the objective
of these algorithms is generally to segment not a whole image but individual objects
from an image.

Xu and Prince [Xu 98] presented a new class of external forces for active contour
models that addresses some of the problems listed above. These fields, which they
call gradient vector flow (GVF) fields, are dense vector fields derived from images by
minimizing a certain energy functional in a variational framework. The minimization
is achieved by solving a pair of decoupled linear partial differential equations that
diffuses the gradient vectors of a grey-level or binary edge map computed from the
image. They call the active contour that uses the GVF field as its external force a
GVF snake. Particular advantages of the GVF snake over a traditional snake are its

insensitivity to initialization and its ability to move into boundary concavities.

2.2.2 Region-based methods

Region-based techniques including region growing, region splitting, region merging and
their combination attempt to group pixels into homogeneous regions. These techniques
aim at partitioning the image domain by progressively fitting statistical models to the
intensity, colour, texture or motion in each set of regions. These techniques rely on
the assumption that adjacent pixels in the same region have similar visual features.

In contrast to edge-based schemes, region-based methods tend to be less sensitive to
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noise. Obviously, the performance of these approaches largely depends on the selected
homogeneity criterion.

In the region growing approach, a seed region is first selected then expanded to
include all homogeneous neighbours, and this process is repeated until all pixels in the
image are labelled. In the region splitting approach the initial seed region is simply the
whole image. If the seed region is not homogeneous it can be divided into four square
sub-regions, which become new seed-regions. This process is repeated until all sub-
regions are homogeneous. The region merging approach is often combined with region
growing or region splitting to merge the similar regions for making a homogeneous
region as large as possible.

Given the seeds, the seed region growing algorithm tries to find an accurate seg-
mentation of images into regions with the property that each connected component of
a region meets exactly one of the seeds. Moreover, high-level knowledge of the image

components can be exploited through the choice of seeds.

Region growing

Region growing algorithms [Zucker 76, Adams 94, Sanfeliu 02, Fan 05, Grady 06] typi-
cally start from a pre-selected seed pixel, then progressively agglomerate points around
it satisfying one or several homogeneity criteria such as intensity, colour or texture.
These criteria can be defined according to local, regional and global relationships. The
growth process stops when no more points can be added to the region. A common
post-processing approach consists of a merging phase that eliminates small regions or
neighbouring regions with similar attributes, generating broader regions accordingly.
Fan et al. [Fan 05] presented a recent comparative study on seed region growing algo-
rithms.

This strategy needs an initial set of seeds to work, as well as a general homogeneity
criterion to join neighbouring regions. Though it is difficult to specify homogeneity
because the concept of homogeneity is often vague and fuzzy and it is not translated
easily into a computable criterion. Region-growing can be considered as a sequen-
tial clustering or classification process. Thus, the results may depend on the order
according to which image points are processed. The main advantage offered by this
kind of techniques is that regions obtained are certainly spatially connected and rather

compact.
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These methods are known to be sensitive to the seed choice process together with
the way segment statistics are computed, which is done to guess whether two adjacent
regions might join or not [Sanfeliu 02]. The application of a region growing process
can lead to different types of errors [Pavlidis 90]: a) region boundaries are not close to
edges; b) the boundaries are close but they are not coincident with the edges; ¢) there
are edges not corresponding to boundaries.

Adams et al. [Adams 94| proposed the seeded region growing (SRG) where the
initially defined seed pixels (by user interaction or by some pre-processing stage) control
the growing process by measuring the dissimilarity between adjacent pixels. Given the
set of seeds, each step of SRG tries to find an accurate segmentation into regions with
the property that each connected component of a region meets exactly one of the seeds.
These initial seeds are further replaced by the centroids of the generated homogeneous
regions, and by incorporating the additional pixels step by step. An advantage of SRG
is that the high-level knowledge of the image components can be exploited through the
choice of seeds [Fan 05]. However, a poor starting estimate of region seeds or bad pixel
sorting may result in an incorrect segmentation.

Hojjatoleslami and Kittler [Hojjatoleslami 98| presented a region growing approach
by pixel aggregation which uses similarity and discontinuity measures. A unique feature
of the proposed approach is that in each step at most one candidate pixel exhibits the
required properties to join the region. They argue that this makes the direction of
the growing process more predictable. The procedure offers a framework in which
any suitable measurement can be applied to define a required characteristic of the
segmented region.

Deng and Manjunath [Deng 01| proposed the JSEG algorithm, a colour quanti-
zation technique to smooth the image colours into several representative classes (J-
images). The J-values measure the distances between different classes over the dis-
tances between the members within each class. For the case of an image consisting
of several homogeneous regions, the colour classes are more separated from each other
and the value of J is large. The scheme has the ability to segment colour textured
images without attempting to estimate a specific model for a texture region. Instead,
it tests for the homogeneity of a given colour-texture pattern. The basic idea of the
algorithm is to separate the segmentation process into two independent stages, colour

quantization and spatial segmentation. In the first stage colours in the image are quan-
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tized to several representative classes that can be used to differentiate regions in the
image. This quantization is performed in the colour space without considering the
spatial distribution of the colours. Then, the image pixel values are replaced by their
corresponding colour class labels, thus forming a class-map of the image. In the second
stage, a region growing method is then performed directly on this class-map without
considering the corresponding pixel colour similarity.

Grady |Grady 06] proposed a method for performing multi-label, interactive image
segmentation. Given a small number of pixels with user-defined labels (seeds), the
algorithm operates by assigning each unseeded pixel to the label of the seed point that
a random walker starting from that pixel would be most likely to reach first, given that
it is biased to avoid crossing object boundaries (i.e., intensity gradients).

Most of region growing methods have an inherent dependence on the order in which
the pixels and regions are examined. This weakness implies that a desired segmented re-
sult is sensitive to the selection of the initial growing pixels. Wan and Higgins [Wan 03]
defined a set of theoretical criteria for a subclass of region growing algorithms that are
insensitive to the selection of the initial seeds. This class of algorithms referred to as
symmetric region growing algorithms, leads to a single-pass region growing algorithm
applicable to any image dimension.

Mehnert and Jackway [Mehnert 97| have confirmed that a different order of pro-
cessing pixels leads to different final segmentation results. They also noticed two types
of order dependencies. The first type is called inherent order dependencies, while the
second is called implementation order dependencies. They also presented an algorithm
that improves the seeded region-growing algorithm by making it independent of the
pixel order of processing and making it more parallel. Parallel processing ensured that

the pixels with the same priority were processed in the same manner simultaneously.

Region splitting and merging

These methods start with an initial inhomogeneous partition of the image and then
keep splitting until reaching homogeneous partitions as proposed in a starting paper
[Horowitz 76|, describing the split-and-merge techniques. In this approach an image
is initially subdivided into a set of disjoint regions and then merged and/or split until
each region satisfies some conditions indicating that it is one segment. A data structure

used to implement this procedure is the quadtree representation. In the first step, the
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whole image is considered as one region. If this region does not satisfy a homogeneity
criterion the region is split into four quadrants (subregions) and each quadrant is tested
in the same way; this process is recursively repeated until every square region created
in this way contains homogeneous pixels. After the splitting phase, there are usually
many small and fragmented regions which have to be somehow connected in a merging
phase. Therefore, in a next step all adjacent regions with similar attributes may be
merged following other (or the same) criteria. The region adjacency graph (RAG) is
the data structure commonly adopted in this phase. The process ends when no more
splitting or merging is possible.

Gevers |Gevers 02| described a split-and-merge method based on Delaunay trian-
gulation. This tessellation grid is adaptive in the sense that it is data dependent
by measuring region and edge properties. A recent paper inspired in the same split-
and-merge basic principle is presented in [Chung 05]. Here the authors proposed a
quadrilateral-based segmentation framework, where the splitting phase is computed on

a gradient image, which is followed by a merging process.

Watershed transform

Watershed transform is an important paradigm for image segmentation, and it is a
main step in several hybrid image segmentation frameworks (see Section 2.4). Al-
though watershed is usually considered as a region-based approach, De Smet et al.
[De Smet 99| pointed out that the watershed transform has proven to be a powerful
basic segmentation tool that can hold the attributed properties of both edge detection
and region growing techniques which makes it a cooperative approach.

The main drawback of watershed transform for image segmentation is the over seg-
mentation introduced by creating a large number of small regions. To overcome this
problem pre-processing or post-processing phases are considered by several authors.
The pre-processing phase has a main goal to regularize image intensities variations by
image denoising, using anisotropic filters (as used in Weickert [Weickert 01] or special
application oriented image heuristic enhancement steps [Adiga 01| or edge preserving
noise filters [Haris 98|. It is also common the introduction of a post-processing phase
after applying the watershed transform for merging the less significant regions in or-
der to obtain larger regions with a better correspondence to objects. Other authors,

as Haris et al. [Haris 98] and Adiga et al. [Adiga 01| used both a pre-processing
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and post-processing steps. Nevertheless the performance of a watershed-based image
segmentation method depends largely on the algorithm used to compute the gradient.

The main advantages of the watershed transform are:

e it produces coherent regions where boundaries are always guaranteed to be con-
nected and closed. Unlike traditional edge detectors which most often form dis-
connected boundaries that need post-processing to produce closed regions, water-
shed transforms produce closed contours and give good performance at junctions
and places where the object boundaries are diffuse. This means that all of the
boundary pixels for a single object can be trivially extracted without complex
tracking or edge-linking, thereby avoiding one of the pitfalls of many edge detec-
tion methods;

e the boundaries of the resulting regions always correspond to contours which ap-
pear in the image as obvious contours of objects. This is in contrast to split-and-
merge methods where the first splitting is often a simple regular sectioning of the
image leading sometimes to unstable results;

e gradient watershed regions can be used to interactively construct the image region

associated with an object of interest;

e the union of all the regions form the entire image region.

One of two different algorithms are generally used to implement watershed seg-
mentation, namely immersion and rainfalling simulation. Each of these can be used
to detect the segments in the image either directly or using morphological operators.
As watershed is a method largely used in this thesis, we briefly review some of these
approaches as follows.

Since the early 1990s, there has been a considerable amount of scientific work
on the watershed transform that was originally proposed by Beucher and Lantuéjoul
[Beucher 79] as an image processing tool. An excellent and recommended overview on
definitions, algorithms, and parallelisation strategies was published by Roerdink and
Meijster [Roerdink 01].

A major breakthrough in the implementation of the watershed was made by Vincent
and Soille [Vincent 91| with the introduction of the first queue based implementation
of the watershed transform. Basically, the algorithm consists of two steps: a sorting

step and a flooding step. The sorting step first computes the frequency distribution of
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each image grey level. The cumulative frequency is then computed so that each pixel
can be assigned to a unique cell in a sorted array. In the flooding step the catchment
basins are recursively grown by using a FIFO (First In First Out) ordered queue for
the computation of the geodesic influence zones. The queue based flooding is indeed
quite fast but remains computationally intensive. This is due to the fact, that each
update step of the catchment basins requires a full scan of the image. Since updating
is performed recursively for each of the grey-levels in the image, the total number of
scans can be quite large.

Two problems arise when applying the above watershed method to an image. The
first problem is the occurrence of flat regions, i. e. regions of constant grey value,
as discussed in numerous publications [Gauch 99, Stoev 00, Roerdink 01]. The second
problem, which is partly linked to the flat region problem, is the dependency of the
watershed location on both the used algorithm and the grid connectivity [Roerdink 01].

Moga and Gabbouj [Moga 97| described a parallel approach for computing the
watershed transformation, based on rainfalling simulation within a grey-scale image.
The first step transforms the original image into a lower complete image. In this lower
complete image the pixels belonging to a non-minimum flat region are labelled with the
geodesic distance to the flat region’s nearest lower pixel. In doing so, a second ordering
relation for the pixels in a non-minimum flat region is introduced in the resulting
image. Afterwards a raindrop starts at each pixel and its path towards the line with
the steepest descent is followed until a regional minimum is reached. The set of all
pixels attracted on the way to a particular regional minimum defines the catchment
basin for this minimum.

Stoev and Strasser [Stoev 00| presented a sequential approach where every pixel p
is compared with the adjacent pixels and if possible the path of the steepest descent
is followed and p is pushed on a stack S. containing the pixels on the current path.
Otherwise, if a flat region is reached, the whole flat region is processed in order to
determine the nearest outdoor. If there are outdoors, the inner pixels are assigned to
the appropriate outdoors. Every time a regional minimum is reached, which is either
a flat region without outdoors or an isolated minimum, the pixels pushed on the stack
S, are traversed and marked with the label of the reached minimum.

Weikcert [Weickert 01] introduced a pre-processing step before applying the water-

sheds. Tt includes a regularization step using two partial differential equations based
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methods (a non-linear isotropic diffusion filter and a convex quadratic variational image
restoration method) followed by watershed and a simple region merging process.

Gauch [Gauch 99| avoided flat region problems by working with Gaussian smoothed
floating point images. This removes all regions with uniform intensity. However, this
approach has several problems: if the neighbours of an edge decrease in intensity rapidly
on the left and gradually on the right the detected location of the edge will be to the
right of the correct position; in a lot of smoothed images which have few intensity
minima, the tops of some ridge like structures may be missed.

Grau et al. [Grau 04] identified the two common drawbacks for watershed based
image segmentation, over segmentation and sensitivity to noise, together with two par-
ticular inconvenient in medical image segmentation: poor detection of significant areas
of low contrast, and poor detection of thin structures. To overcome these drawbacks
the authors defined an improved version of the classical watershed transform, enabling
the use of prior knowledge of the objects that can be adapted depending on the ap-
plication, namely using the information available from a statistical anatomical atlas

registration, through the use of markers.

2.3 Feature domain

A number of approaches to segmentation are based on finding compact clusters in some
feature space [Comaniciu 02, Felzenszwalb 04]. In this technique, a vector of local prop-
erties ('features’) is computed at each pixel and then mapped into the feature space.
Features such as intensity, texture or motion are the commonly studied parameters.
Significant features will be shared by numerous pixels, and thus form a dense region in
feature space. The feature space is then clustered, and each pixel is labelled with the
cluster that contains its feature vector. Clusters in feature space can then be used for
image segmentation, typically by fitting a parametric model to each cluster and then
labelling the pixels whose feature vectors lie in the cluster with the parameters. The
common techniques include histogram thresholding, clustering and graphs.

These approaches generally assume that the image is piecewise constant because
searching for pixels that are all close together in some feature space implicitly requires
that the pixels are alike (e.g., similar colour). Comaniciu and Meer [Comaniciu 02]

used a technique where feature space clustering first transforms the data by smoothing
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it in a way that preserves boundaries between regions. This smoothing operation has
the overall effect of bringing points in closer clusters together. The method then finds
clusters by dilating each point with a hypersphere of some fixed radius, and finding
connected components of the dilated points.

Segmentation algorithms which exclusively operate in some feature spaces return
segments that are expected to be homogeneous with respect to the characteristics
represented in those space. However, there is no guarantee that these segments also
show spatial compactness, which is a desirable property in segmentation applications
beside homogeneity. For instance, histogram thresholding accounts in no way for the
spatial locations of pixels; the description they provide is global and it does not exploit
the important fact that points of the same object are usually spatially close due to
surface coherence. On the other hand, if pixels are clustered exclusively on the basis
of their spatial relationships, the final result is likely to be with regions spatially well
connected but with no guarantee that these regions will also be homogeneous in a

certain feature space.

2.3.1 Thresholding methods

Thresholding techniques are based on the assumption that adjacent pixels whose value
(grey level, colour value, texture) lies within a certain range belong to the same class
[Fan 01]. These methods achieved reasonable performance when the input is character-
ized without noise and with small number of regions. This explains why these methods
are mainly used in text segmentation [Solihin 99, Kim 02]. For a review of thresholding
techniques readers are referred to the survey papers [Sahoo 88, Pal 93, Sezgin 04].

Histograms have been extensively used in image analysis mainly for two reasons:
they provide a compact representation of large amounts of data, and it is often possible
to infer global properties of the data from the behaviour of their histogram [Delon 07].
The histogram of intensities of an image made of different regions shall exhibit several
peaks, each one ideally corresponding to a different region. Finding suitable threshold
values that could find valleys between peaks in the histogram and produce a segmenta-
tion of the grey level image into objects and background is the core of the thresholding
operation.

The traditional thresholding approach is basically a one-stage thresholding ap-
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proach where an image is separated into two classes of pixels: the object pixels and the
background pixels. Global thresholding techniques attempt to find a single threshold
value that best separates the two classes of pixels in an image. In local or adaptive
thresholding the threshold values are determined locally, e.g. pixel by pixel or region
by region. Then, a specified region can have ’single threshold’ that is changed from
region to region according to the threshold candidate selection for the given area.

Among the algorithms proposed for histogram segmentation we can distinguish be-
tween parametric and non-parametric approaches. In the first ones [Papamarkos 94,
Wang 04a| the histogram is considered to be a probability density function of a Gaus-
sian and the segmentation problem is reformulated as a parameter estimation followed
by pixel classification. If the number of objects is known optimization algorithms can
estimate efficiently the parameters of these distributions. The main drawback of these
approaches is that histograms obtained from real images cannot always be modelled as
mixtures of Gaussians, for example luminance histograms of natural images.

Non-parametric approaches do not use any assumption on the underlying data
density and they divide the histogram into several segments by minimizing some energy
criterion. Among them we have methods that analyse the histogram of the whole image
[Cheriet 98, Solihin 99, Kim 02|, and methods based on the histogram of edge pixels
[Wang 03a.

An early review of thresholding methods was reported in the highly cited paper of
[Sahoo 88|. Sahoo et al. surveyed segmentation algorithms based on thresholding and
attempted to evaluate the performance of some thresholding techniques using unifor-
mity and shape measures. They categorized global thresholding techniques into two
classes: point-dependent techniques (grey-level histogram based) and region-dependent
techniques (modified histogram or co-occurrence based). Discussion on probabilistic
relaxation and several methods of multi-thresholding techniques was also given.

More recently, Sezgin and Sakur paper [Sezgin 04| presented an exhaustive sur-
vey of forty (40) image thresholding methods both global and local. They conduct a
quantitative performance evaluation and conclude that local methods perform better.
Nevertheless this evaluation took into consideration only text document images that
were degraded with noise and blur.

Cheriet et al. [Cheriet 98| presented a general recursive approach for image segmen-

tation by extending Otsu’s method [Otsu 79|. This approach has been implemented
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in the area of document images. This approach segments the brightest homogeneous
object from a given image at each recursion, leaving the darkest homogeneous object.
Li et al. [Li 97] suggested that the use of two dimensional histograms of an image is
more useful to find thresholds for segmentation rather than just using grey level infor-
mation in one dimension. In 2D histograms, the information on pixels as well as the
local grey level average of their neighbourhood is used.

Kim et al. [Kim 02] proposed a locally adaptive thresholding algorithm where a
text document image is regarded as a 3D terrain and its local property is characterized
by a water flow model [Beucher 79]. The water flow model locally detects the valleys
corresponding to regions that are lower than neighbouring regions. The deep valleys are
filled with dropped water whereas the smooth plain regions keep up dry. The final step
in this method concerns the application of a global thresholding on a difference image
between the original terrain and the water-filled terrain. A shortcoming of this method
is the selection of two critical parameters, namely, the amount of rainfall and the mask
size which is done on an experimental basis. Besides, the final binarization results
are obtained by applying a global thresholding method to the amount of filled water.
Thus, objects in a poor contrast background are often removed as the corresponding
valleys are only filled with a little water.

Other authors proposed thresholding techniques which select threshold from his-
togram of edge pixels. In [Wang 84| edge pixels are first classified on the basis of their
neighbourhood as being relatively dark or relatively light. Then two grey level his-
tograms are obtained respectively for these two sets of edge pixels. The threshold is
selected as one of the highest peaks of the two histograms. By recursively using the
procedure, multiple thresholds can be obtained. In [Wang 03a] for each given object,
its threshold is deduced from the histogram of the discrete sampling points of boundary.

The poor performance of histogram thresholding based methods in real images
can be attributed to the fact that, generally, the profiles of the histograms are rather
jagged giving rise to spurious peaks that complicate the selection of suitable threshold
values. This is due to objects with non-uniform colour, intensity gradients caused
by illumination or variations in surface reflectance, texture, noise, and backgrounds
that are not uniformly coloured; to overcome this problem, some smoothing filters
are usually adopted. Moreover, it is often the case that even if suitable thresholds

can be found, the resulting segmentation is inaccurate because of overlap in grey-level
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intensities between different elements of the image, which leads to disconnected regions
with the same label. In complex images it also becomes difficult to separate different
peaks in the histogram and to determine how many thresholds are required. Another
weakness of thresholding segmentation methods is that they neglect all of the spatial
information of the image and do not cope well with noise or blurring at boundaries

[Adams 94].

2.3.2 Clustering methods

Clustering techniques appeared earlier in the literature and were used in numerous
applications [Jain 99|. Following the selection of image features usually based on in-
tensity, colour or texture, clustering operates on the feature space in order to capture
the global characteristics of the image. Ignoring spatial information and using a spe-
cific distance measure, the feature samples are handled as vectors and the objective is
to group them into compact but well-separated clusters. After the clustering process
is completed the data samples are mapped onto the image plane typically by fitting
a parametric model to each cluster and then labelling the pixels according to each
parametric model to produce the final regions [Makrogiannis 05].

Turi [Turi 01] classified clustering algorithms as hierarchical or partitional. Hier-
archical techniques involve the clusters themselves being classified into groups, where
the process is repeated at different levels [Shi 00, Boykov 01b, Barbu 05|. Partitional
techniques form clusters by optimizing a clustering criterion, where the classes are
mutually exclusive, thus forming a partition of the data [Pham 02, Chen 04, Cai 07].

A characteristic of the hierarchical clustering techniques is that once a sample is
assigned to a particular cluster it cannot be changed. Therefore if the sample is in-
correctly assigned to a particular cluster at an early stage there is no way to correct
the error. This is where the partitional clustering techniques such as hard or fuzzy
clustering have an advantage over the hierarchical clustering techniques, as partitional
techniques allow a data point to be reassigned to a different cluster if it improves the
clustering.

Partitional clustering techniques present, however, some disadvantages: if the same
data is input in a different order it may produce different clusters. Pixels from non-

adjacent regions of the image can be grouped together, if there is an overlap in their
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feature space values which produces several noisy areas and incomplete region borders
in the segmentation results.

The partitional form of clustering where a class label is assigned to each data value
identifying its class is referred to by some authors as hard clustering [Jain 99|. In
recent years fuzzy clustering approaches have been developed where a fractional degree
of membership for each cluster is assigned to each data value [Udupa 96].

For the case of natural images, the data-clustering problem is quite complex and the
literature of clustering algorithms is very rich. [Jain 99, Turi 01] presented excellent
reviews on clustering methods. The method known as K-means and its fuzzy coun-
terpart fuzzy C-means are some of the most common techniques in the segmentation
field. Based on the assumptions that the number of clusters is known a priori and the
cluster shape is approximately spherical, these algorithms converge to the final cluster
centres. The main difference between hard K-means and fuzzy C-means is that fuzzy

partition allows the pixels to partially belong to different clusters.

Hard clustering

Currently K-means is among the most popular clustering algorithms due to its sim-
plicity and efficiency in unsupervised classification. It starts with a random initial
partition and keeps reassigning the features to clusters based on the similarity between
the feature and the cluster centres until a convergence criterion is met. A major prob-
lem with this algorithm is that it is sensitive to the selection of the initial partition and
may converge to a local minimum of the criterion function value if the initial partition
is not properly chosen.

In [Pappas 92|, Pappas indicated two problems with K-means algorithm which are:
use of no spatial constraints and it assumes that each cluster is characterized by a
constant intensity. In order to overcome these problems Pappas introduced a general-
ization of the K-means clustering algorithm and applied this procedure on grey-level
images. This approach aims to separate the pixels in the image into clusters based
not only on their intensity but also on their relative spatial location. This algorithm
considers the segmentation of grey-level images as a maximum a posteriori probability
(MAP) estimation problem.

The advantages of K-means are that it is a very simple method and it is based on

intuition about the nature of a cluster, so the intra-cluster error should be as small as
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possible [Turi 01]. K-means clustering has although some weaknesses: the number of
clusters must be known a priori; if the same data is inputted in a different order it may
produce different clusters; it is sensitive to initial conditions. We never know which
feature contributes more to the grouping process since it assumes that each attribute
has the same weight; weakness of arithmetic mean is not robust to outliers. Very far
data from the centroid may pull the centroid away from the real one. The final clusters
have circular shape because K-means is based on centroid distances.

Work by Turi [Turi 01| described a method of automatic determination of the op-
timal number of clusters in K-means clustering. It proposes a validity measure using
the ratio of intra-cluster and inter-cluster measures incorporated with a Gaussian mul-
tiplier. The optimal number of clusters is found by minimizing the validity measure.

The mean-shift algorithm is a non-parametric statistical method that finds peaks
(local maxima) of the histogram without estimating the underlying density function.
It has been used for the first time by Fukunaga and Hostetler in [Fukunaga 75| with
the goal of proposing an intuitive estimation of the gradient probability density of a set
of points; later it has been used extensively for image segmentation [Comaniciu 02].

This method is designed to locate the centroids of clusters with high local density
in the feature space. To satisfy this objective, mean-shift uses a simple mechanism by
shifting iteratively every pixel to the mean of its neighbouring pixels. A segmentation
of an image I into a set of k£ disjoint regions where each region R; is described by its
contour I'; and its model parameters ©;, R, = (I';,0;) : i = 1,..., k, with the latter
involving the estimation of a mean vector and a covariance matrix ©; = {p;, %;}.

The algorithm starts with a set of initial guesses for cluster centres, and then repeats
the following two steps iteratively: a) Compute a weighted mean of the points within
a small window centred at the current centroid location, using weights based on the
distance between each point and the current centroid; b) Update the centroid location
to be the newly estimated weighted mean (by this operation the centroid location is
shifted to the mean of the local distribution). Each data point becomes associated
with a point of convergence which represents the local mode of the density in the d-
dimensional space. Convergence points sufficiently close in the joint domain are fused
to obtain the homogeneous regions in the image. This procedure is repeated until a
convergence condition is satisfied.

The mean-shift algorithm produces segmentations that correspond well to human
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perception. However, this algorithm is quite sensitive to its parameters and it tends
to detect too many peaks in histograms coming from real noisy data which results in
evident over-segmentation. Some criterion is, therefore, needed to decide which peaks

from the detected ones correspond to true modes.

Fuzzy clustering

In the last years there has been considerable interest in the use of fuzzy segmentation
methods, which are able to retain more information from the original image than
hard segmentation methods. Fuzzy clustering theory was first introduced by Zadeh
[Zadeh 65] to generalise the conventional cluster theory. Based on the definition of a
fuzzy event [Zadeh 65| grey level image can be seen as a fuzzy event modelled by a
probability space.

Fuzzy C-means (FCM) is one of the most well-known methodologies in clustering
analysis [Bezdek 93, Udupa 96|. The reason for its success is due to the introduction of
fuzziness for the belongingness of each image pixels. Unlike hard clustering methods like
K-means which force pixels to belong exclusively to one class during their operation and
in their output, FCM methods allow pixels to belong to multiple classes with varying
degrees of membership. The degree is decided by a membership function which depends
on how compatible the member is to the properties of the cluster. The FCM algorithm
classifies the image by grouping similar data points in the feature space into clusters.
This clustering is achieved by iteratively minimizing a cost function that is dependent
on the distance of the pixels to the cluster centres in the feature domain.

In most situations FCM uses the common Euclidean distance which supposes that
each feature has equal importance in FCM. This assumption seriously affects the per-
formance of FCM since in most real world problems features are not considered to be
equally important. In [Wang 04b|, Wang et al. proposed a new robust metric, which
is distinguished from the Euclidean distance, to improve the robustness of FCM. The
feature-weight learning FCM technique [Yeung 02, Wang 04b| assigns various weights
to different features to improve the performance of clustering. The spatial function
can be estimated at each iteration and incorporated into the membership function
which makes the new FCM technique less sensitive to noise. Another drawbacks of
FCM include its computational complexity and the fact that it not consider spatial

information in image context, which makes it very sensitive to noise and other imag-
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ing artefacts. Recently, many researchers have incorporated local spatial information
into the original FCM algorithm to improve the performance of image segmentation
[Pham 02, Chen 04, Cai 07].

Pham [Pham 02| modified the FCM function by including a spatial penalty on the
membership functions. The penalty term leads to an iterative algorithm, which is very
similar to the original FCM and allows the estimation of spatially smooth membership
functions. Ahmed et al. [Ahmed 02| proposed the FCM S algorithm to compensate
for the intensity inhomogeneity and to allow the labelling of a pixel to be influenced
by the labels in its immediate neighbourhood.

In order to reduce the computational load of FCM _S Chen and Zhang [Chen 04]
proposed two variants, FCM S1 and FCM S2, which simplified the neighbourhood
term of the objective function. The essence of FCM _S1 is to make both the original
image and the corresponding mean-filtered image have the same prototypes or segmen-
tation result with aiming to guarantee the grey homogeneity. However, this variant is
unsuitable for the images corrupted by impulse noise such as salt and pepper noise. In
order to overcome that problem Chen and Zhang proposed the FCM S2 in which the
median filtered image replaces the mean filtered one.

As pointed out by Cai et al. [Cai 07] these approaches still have the following
disadvantages: 1) although the introduction of local spatial information to the corre-
sponding objective functions enhances their robustness to noise to some extent, they
still lack enough robustness to noise and outliers, especially in absence of prior knowl-
edge of the noise; 2) in their objective functions, there is a crucial parameter « used to
control the effect of the neighbours term and to balance between robustness to noise
and effectiveness of preserving the details of the image, and generally its selection has
to be made by experience; and 3) the time of segmenting an image is heavily dependent
on the image size.

Szilagyi et al. [Szilagyi 03] proposed the enhanced FCM (EnFCM) method to
accelerate the image segmentation process. In this approach a linearly-weighted sum
image is in advance formed from both original image and its local neighbour average
grey image, and then clustering of the summed image is performed on the basis of the
grey level histogram instead of pixels in the image. Consequently, the time complexity
of EnFCM is drastically reduced.

To speed up even more the segmentation process, Cai et al. in their recent paper
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[Cai 07] proposed the Fast Generalized Fuzzy C-means (FGFCM) algorithm for fast
and robust image segmentation. They replace the parameter «, that is shared by
EnFCM, FCM_S and its two variants, by a locality factor S;; where the i-th pixel
is the centre of the local window (for example, 3 x 3) and j-th pixels are the set of
the neighbours falling into a window around the ¢-th pixel. This factor incorporates
simultaneously both the local spatial relationship and the local grey-level relationship
and its value varies from pixel to pixel for the image within the local window, i.e.,
spatially and grey dependent. Thus, S;; can be adaptively determined by local spatial
and grey-level information rather than artificially or empirically selected like ov. In the
second step the fast segmentation method [Szilagyi 03] is performed on the grey-level
histogram of the generated image.

Krishnapuram and Keller [Krishnapuram 93| proposed a possibilistic clustering al-
gorithm in which the membership values for a given feature pixel across all clusters
was not constrained to add to one. Barni et al. [Barni 96] have shown on several series
of examples that the classical possibilistic C-means algorithm gives rise to identical
clusters. Such a problem is essentially due to the missing of an inter-class distance.
Khrisnapuram and Keller [Krishnapuram 96| have proposed to consider an iterative
version of the algorithm. If a class is found, pixels of cluster data having values greater
than an appropriate cut are removed from the image partition. Processing is iterated
again until the achievement of inconsistent clusters. However, it caused clustering
being stuck in one or two clusters.

Zhang and Chen |D. Zhang 04| proposed a spatially constrained kernelized FCM
(SKFCM) which uses a different penalty term containing spatial neighbourhood infor-
mation in the objective function and simultaneously the similarity measurement in the

FCM was replaced by a kernel-induced distance.

Model clustering

A feature vector is labelled with a probability distribution over clusters instead of a
single cluster. A number of techniques for doing spatially coherent clustering have been
developed in a Bayesian framework. Marroquin et al. [Marroquin 03| referred to such
methods as segmentation/model estimation methods.

Statistical approaches, especially parametric ones, labels pixels according to prob-

ability values, which are determined based on the intensity distribution of the image.
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With a suitable assumption about the distribution, statistical approaches attempt to
solve the problem of estimating the associated class label, given only the intensity for
each pixel [Zhang 01b|. This formulation of the segmentation problem leads naturally
to a hierarchical model [Barker 98|.

Markov Random Fields (MRF) have been and are increasingly being used to model
a prior belief about the continuity of image features such as region labels, textures,
edges, or motion. An MRF can be used to model the discrete label field containing
the individual pixel classification. The methodology of using MRF models to the
problem of segmentation has emerged later and has created a lot of interest [Won 92,
Panjwani 95, Barker 98, Sarkar 00]. The MRF forms a probabilistic model for a set
of variables that interact on a lattice structure. The distribution for a single variable
at a particular site is conditioned on the configuration of a predefined neighbourhood
surrounding that site. This effectively defines the Markov property of the process: the
process is Markov not in the causal or even the bilateral sense, but with respect to this
particular neighbourhood structure [Barker 98|.

Difficulties associated with MRFs are the proper selection of the parameters con-
trolling the strength of spatial interactions and they require computationally intensive
algorithms [Held 97|. These methods work well in supervised mode, wherein the num-
ber of regions and their associated parameters are known or can be estimated before-
hand. A solution to this problem consists in iterating an estimation /segmentation cycle
[Won 92]. Given a candidate number of regions and an initial random set of region
parameters, a first segmentation is computed. Region parameters are then recomputed
using the current segmentation. This cycle is repeated, with different candidate region
numbers, several times until convergence. The number that optimizes a model fitting
criterion is retained as the true number of regions [Won 92].

To perform semi-unsupervised segmentation, where the number of classes is as-
sumed to be known a priori, a method of concurrently estimating the underlying image
and any associated model parameters is required. Alternatively, the problem may
be viewed as one of parameter estimation from incomplete data. The Expectation-
Maximization (EM) algorithm was first proposed by Dempster et al. [Dempster 77|
as an iterative maximal-likelihood procedure for parameter estimation from missing or
incomplete data.

The EM clustering provides a framework for incorporating our knowledge about a
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domain. K-means and the hierarchical algorithms make fairly rigid assumptions about
the data. For example, clusters in K-means are assumed to be spheres. EM clus-
tering offers more flexibility. The clustering model can be adapted to what we know
about the underlying distribution of the data. The methodology has been extensively
applied to the problem of image segmentation [Belongie 98, Zhang 01b, Carson 02,
Robles-Kelly 02|. The EM algorithm is an iterative process where each iteration con-
sists of two steps. The first of these (E-step) finds an expression for the expected value
of the log likelihood over the hidden data, given the previous parameter estimate. The
second step (M-step) maximises this expectation over the parameter space.

Note that like thresholding and clustering algorithms, EM does not directly in-
corporate spatial modelling and it can therefore be sensitive to noise and intensity
inhomogeneities. Recently, a diffused expectation—-maximization (DEM) algorithm has
been proposed for grey-level images [Boccignone 04|, in which a diffusion step provides
spatial constraint satisfaction.

Minimum Description Length (MDL) principle suggests that the optimal model is
one which minimizes the sum of the coding length of the data given the model and
the coding length of the model itself, that is, the best fitted model is the one that
produces the shortest code length of the data. These two lengths formally correspond
to likelihood and prior probability in the Bayesian framework, respectively. Therefore,
minimizing description length is equivalent to maximizing a posterior probability. MDL
has been effectively applied to image segmentation by a number of authors [Pateux 00,
Galland 03]. The advantage of applying MDL to merge regions is that decisions are

made adaptively by taking into account local region statistics.

Hierarchical clustering (Graph-based)

Hierarchical clustering techniques are based on the use of a proximity matrix indicating
the similarity between every pair of data points to be clustered [Turi 01]. The final
result is a “dendogram representing the nested grouping of patterns and similarity levels
at which grouping change” [Jain 99]. One of the drawbacks of hierarchical algorithms
is the time complexity. The memory space complexity is also a problem due to the
similarity matrix needing to be stored.

An interesting category of hierarchical clustering algorithms is originated from

graph theory. These methods generally present interesting results and a complete
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analysis and a comparison of the different methods of graph cuts are proposed in
[Soundararajan 03].

Graph cut algorithms use the Gestalt principles of perceptual grouping to form
the image regions. These algorithms try to divide the initial graph into subgraphs
that correspond to image regions. Though several partitioning techniques exist they
all use the same underlying representation of the image: a graph G = (V, E, W) with
vertices (nodes) v € V' corresponding to image elements (which may be pixels, feature
descriptors, atomic regions, or others), links? ¢ € E C V x V and an associated
weighted matrix W. The link between two vertices v; and v;, is denoted by e;;. The
weight of a link w; ; is proportional to the similarity between the nodes v; and v; and
it is usually referred to as the affinity between elements ¢ and j in the image.

A graph theory based on image segmentation consists of two main steps: 1) the
graph creation and 2) the graph partitioning. These algorithms are usually applied on
the pixel-based graph, where the nodes correspond to the pixels and the links to their
connections. The weights associated to an edge express the (dis)similarity of the pair
of nodes it connects. The similarity value can use any number of image cues including
grey level intensity, colour, texture, and other image statistics. It is also common to
add a distance term that ensures that the graph is sparse by linking together only
those nodes that correspond to elements in the image that are near each other. Once
the graph is built, the segmentation process consists on determining which subsets of
nodes and links correspond to homogeneous regions in the image. The key principle
here is that nodes that belong to the same region or cluster should be joined by links
with large weights if a similarity measure is used, while nodes that are joined by weak
links are likely to belong to different regions.

A popular criterion for such partitions is based on extremal cuts through the graph.
In computer vision, the idea of segmenting images by way of optimally partitioning a
graph into k£ subgraphs so that the maximum inter-subgraph cut is minimized was
introduced by Wu and Leahy [Wu 93]. The algorithm works recursively by splitting a

segment in two regions A, B by a minimum cut:

cut (A, B) = Z w; (2.1)

i€A,jeB

2 Links are usually noted as edges though we decide to use links notation here to distinguish from
the image edges.
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MinCut (A, B) = min{cut (A, B)} (2.2)

until the whole graph is partitioned into k parts. Intuitively, the minimum cut cor-
responds to finding the subset of links of minimum weight that can be removed to
partition the image.

Although performing well in many situations Wu and Leahy pointed out a few
problems that result from the underlying principle behind min-cut. For example, since
the algorithm returns the smallest cut separating the clusters, the algorithm will often
return the cut that minimally separates the clusters even though they are strongly
linked to the rest of the graph. The problem is that it is often cheaper to cut a few
strong links than many weak ones. Finally, multiple “minima cuts” may exist in the
image that are quite different from each other. Therefore, a small amount of noise
(occurring even in a single pixel) could cause the segmentation to change drastically
[Grady 06].

Veskler [Veksler 00| introduced a new graph node ¢ and connect the pixels that
delimit the image to ¢ with links of appropriately chosen small weight. Given a pixel
p in the image, the minimum cost contour separating p from the image can be found
using the minimum cut that separates p from ¢. Results shown in the paper indicate
that the algorithm is indeed capable of finding interesting image regions without many
of the associated artefacts that occur in typical min-cut segmentation. It is important
to keep in mind that the images upon which the above algorithms work are usually
limited in size. This limitation is common to graph-theoretic algorithms and it is a
consequence of the amount of memory required to store the graphs associated with
large images and of the computational cost of partitioning such graphs.

Boykov et al. [Boykov 01b] presented an algorithm that relies on min-cut to perform
energy minimization efficiently. They address the problem of assigning labels to a set
of pixels so that the labelling is piecewise smooth and consistent with observed data.
They define a suitable energy functional and show that given an initial labelling min-
cut can be used to approximately minimize this functional with regard to two classes
of operations that work respectively on single labels and label pairs.

In [Wang 01], Wang and Siskind proposed a modification to the minimum cut cri-

terion to reduce the preference of minimum cut for small boundaries. They propose
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the use of minimum mean cut, defined as

cut (A, B)

MeanCut (A, B) = 7

(2.3)

where L is the length of the boundary dividing A and B. Like other min-cut based
algorithms, the minimum mean cut is used recursively to produce finer segmentations.
It is interesting to point out that this algorithm uses an additional step of region
merging, since the minimum mean cut may lead to some spurious cuts where no image
edge exists. [Wang 03b| generalized the minimum mean cut by using two edge weights
to connect pairs of nodes, the first weight comes from the similarity measure and
the second weight corresponds to a normalization term based on the segmentation
boundary length.

Dupuis and Vasseur [Dupuis 06] developed an approach for the computation of the
affinity matrix based on the combination of affinity matrices from various cues and
its integration in the segmentation process. A principal components analysis (PCA)
applied to the whole set of the normalized affinity matrices provided the uncorrelated
relevant cues and their respective weights for the final combination. They propose to
integrate the evaluation of the affinity matrix at each iteration of an agglomerative
algorithm in order to take into account the dynamics of the segmentation process.
Finally, they define a criterion of satisfaction based on the covariance matrix of the
affinity matrices, which determines the end of the iterations.

Introduced by Felzenszwalb and Huttenlocher [Felzenszwalb 04], the so-called effi-
cient graph-based image segmentation algorithm is another method using clustering in
feature space. This method works directly on the data points in feature space, without
first performing a filtering step, and uses a variation on single linkage clustering. The
key to the success of this method is adaptive thresholding. To perform traditional
single linkage clustering, a minimum spanning tree of the data points is first generated,
from which any edges with greater length than a given threshold are removed. In the
end of the process the components that remain connected become the clusters in the
segmentation.

The graph cuts segmentation algorithm has been extended in two different direc-
tions in order to address issues of speed. The first type of extension to the graph

cuts algorithm has focused on speed increases by coarsening the graph before ap-
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plying the graph cuts algorithm. This coarsening has been accomplished in many
ways: 1) by applying a standard multilevel approach and solving subsequent, smaller
graph cuts problems in a fixed band to produce the final, full-resolution segmentation
[Sharon 00, Yu 04] and 2) by applying some over-segmentation algorithm to the image
and treating each atomic region as a “super-node” in a coarse graph to which graph
cuts are applied [Callaghan 05].

Spectral analysis uses the data representation provided by the dominant eigenval-
ues and eigenvectors of a similarity matrix. There are many different algorithms that
use the spectral properties of the affinity matrix, they differ in the number of eigen-
vectors/eigenvalues used, as well as in the clustering procedure, but all use the data
representation provided by the dominant eigenvalues and eigenvectors of the affinity
matrix. We refer the reader to [Weiss 99, Ng 02| for a review.

Perona and Freeman [Perona 98| suggested a clustering algorithm (known as the
"factorization method’) based on treating as an indicator function the first largest eigen-
vector v; of the similarity matrix W. A threshold 7' is chosen, and each node 7 is
assigned to one part if vy, < T and to the other part otherwise. Perona and Free-
man motivated the approach by showing that for block diagonal affinity matrices, the
first eigenvector has non-zero in components corresponding to points in the dominant
cluster and zeros in components corresponding to points outside the dominant cluster.

In [Weiss 99|, Weiss discussed the relationships between four different spectral algo-
rithms [Perona 98, Shi 00, Scott 90, Costeira 95|, and proposed an interesting combina-
tion of the Shi and Malik algorithm [Shi 00] with Scott and Longuet-Higgins algorithm
[Scott 90]. In Ng et al. [Ng 02|, the normalized row vectors of the matrix formed by
the first £ weighted eigenvectors are used as the input to a K-means clusterer, and a
perturbational analysis was used to show that the results should be stable if the data
was already “nearly clustered”.

Shi and Malik [Shi 00] used a quite different eigenvector for solving clustering prob-
lems. Rather than examining the first eigenvector of W they look at generalized eigen-
vectors. Let D be the degree matrix of W: D, = Zj w; j. Define the generalized

eigenvector y as a solution to:

(D—-W)y = ADy (2.4)



2.3 Feature domain 41

and define the second generalized eigenvector, denoted by y», as the y corresponding
to the second smallest eigenvalue \. Shi and Malik suggested thresholding this second
generalized eigenvector of W in order to partition the nodes into two parts. They
motivated the approach by showing that the second generalized eigenvector is an ap-
proximate solution to a continuous version of a discrete problem in which the goal is

to minimize:
y' Dy '
subject to the constraint that y; € {1,—b} and y’D1 = 0, where 1 is a vector of
appropriate length consisting of unit entries and b is a positive real constant.

The significance of the discrete problem is that its solution can be shown to provide

the partition that minimizes the normalized cut (NCut) criterion for two regions.

_cut(A,B) cut (A, B)
NCut(4,B) = links (A, V) * Jinks (B,V) (2:6)

where links (A,V) = >4 icy w (4, ) is the total connection from nodes in A to all
nodes in the graph V and links (B, V) is similarly defined.

The great advantage of the normalized cut over previous minimum cut methods is
the normalization, which rescales the cut weight to remove trivial solutions associated
with the removal of one or very few nodes. As Shi and Malik noted, there is no guaran-
tee that the real solution will bear any relationship with the discrete one. Computing
the normalized cut exactly for a given graph is an NP-complete problem, however, Shi
and Malik showed that an approximate solution can be obtained from the eigenvector
with the second largest eigenvalue.

In spectral clustering, there is research showing that using more eigenvectors and
directly computing k-way partitioning is better [Yu 03]. Yu and Shi [Yu 03] studied
multi-way partitions in the context of normalized cuts and spectral clustering. Meila
and Shi [Meila 01] showed a connection between the eigenvectors and eigenvalues used
in normalized cuts and those of a Markov matrix obtained by normalizing the affinity
matrix W.

The original NCut formulation relies on the fact that the affinity matrix can be
made sparse, which allows the algorithm to handle larger images than would be pos-
sible otherwise and it also allows for the use of optimized eigensolvers that work on

such sparse matrices. However, this is not sufficient for large images. Belongie et
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al. [Belongie 02|, and Fowlkes et al. [Fowlkes 04] introduced a modification to the
NCut framework that makes it possible to segment large images, or image sequences
[Fowlkes 01]. The modification is based on the Nystrom method for approximating the
leading eigenvalues of a matrix using only a small number of randomly sampled image
pixels. These random samples are used to build a smaller (non-square) affinity matrix
whose leading eigenvectors can be computed at a much lower computational expense
than those of the affinity matrix for the full image. These eigenvectors are then used
to interpolate the complete solution to the NCut problem.

Sharon et al. [Sharon 00, Sharon 01] proposed a different approach for making
the NCuts practical on large images. Their method solves a coarser NCut problem
which includes region based statistics in the affinity measure, and then interpolates
the solution to finer levels of detail, providing a hierarchy of segmentations for a given

image.

2.4 Cooperative methods

Elementary segmentation techniques based on boundaries or regions often fail to pro-
duce accurate segmentation results on their own. To overcome this difficulty there has
been a trend towards algorithms that take advantage of the complementary nature of
both techniques. More elaborated image segmentation approaches based on the com-
bination, integration or iteration between methods, especially those of edge detection
and uniform region extraction have been proposed.

The cooperative schemes are useful when some sort of complementary properties are
explored among the individual methods. For instance, it is common to combine edge-
based with region-based approaches. As the first method presents good localization
characteristics but it is sensitive to noise usually resulting in several edge gaps, the
region-based methods have poor accuracy on boundaries, although producing natural
closed contours and they are more insensitive to noise. By using the complementary
nature of edge-based and region-based information, it is possible to reduce the problems
that arise in each individual method. The trend towards integrating several techniques
seems to be the best way to follow [Munoz 03]. By having a cooperative method it is
expected that it will cover a wider range of images on which the algorithm is able to

work for segmentation.
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Combining the outputs of image segmentation and edge detection to improve the
quality of the segmented image is an old idea. Mufioz et al. [Mufioz 03| in their
recent review on combining methods classified these proposals by the timing of the
integration between methods as: embedded integration, when the edge information is
extracted first, and this information is then used within the segmentation algorithm,
which is mainly based on regions; post-processing integration, where edge and region
information are extracted independently as a preliminary step, and an a posteriori
fusion process tries to exploit the dual information in order to modify, or refine, the
initial segmentation obtained by a single technique.

We append two new classes to this classification: the hybrid framework and the
interactive framework. Thus we distinguished the cooperative methods into four dif-
ferent types: the sequential [Beveridge 89, Gambotto 93, Fan 01], the parallel [Chu 93,
Zhu 96, Germond 00|, the hybrid [Haris 98, Kermad 02, Lezoray 03, Makrogiannis 05,
Callaghan 05, Duarte 06|, and interactive frameworks [Mortensen 99, Olabarriaga 01,
Blake 04, Rother 04, Farmer 05]. Sequential and parallel types correspond respectively
to embedded and post-processing classes of Munoz et al. classification. Hybrid frame-
work combines methods that are themselves cooperative approaches. The interactive
framework class includes the methods which, due to a high demand for accurate results,

usually adopt human intervention.

2.4.1 Sequential framework

The sequential framework usually consists of using previously extracted edge infor-
mation within a region segmentation algorithm. Although the method obtained in a
sequential framework is more robust than its individual components, the cooperation
between the modules is still rudimentary: each sub-task is performed sequentially and
its result is used to feed the following task.

Figure 2.2 illustrates the sequential framework. The decision to merge in region
growing algorithms is generally based only on the contrast between the current pixel
and the region. The edge map integration provides an additional criterion in such
decisions. The seeds are lunched in placements which are free of edges. Finding an
edge pixel means that the growing process has reached the boundary of the region and

therefore the pixel must not be aggregated.
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Figure 2.2: Scheme of sequential framework for image segmentation.

The work of Beveridge et al. [Beveridge 89| offered a good example of a procedure
that integrates both histogram analysis and region merging. In their paper an input
image is divided into sectors of fixed size and fixed location. An intensity histogram is
calculated for each sector and used to produce a local segmentation. For every sector,
information from its neighbours is used to detect clusters for which there may not
be enough local support due to the artificially induced partition of the image. After
the local segmentations are complete, the sector boundaries are removed by merging
together similar regions in neighbouring sectors. The results show that this algorithm
produces good segmentations in parts of the image that are reasonably homogeneous,
and over-segmented regions when there is texture, significant intensity gradients, or
objects with non-uniform brightness.

Gambotto [Gambotto 93| suggested using edge information to stop the region grow-
ing process. His proposal assumes that the gradient takes a high value over a large part
of the region boundary. The iterative growing process is thus continued until the max-
imum of the average gradient computed over the region boundary is detected. Yu and
Wang [Yu 99] used the edge information to determine the seeds for region growing but
applied a new algorithm. A so-called difference in strength (DIS) map is first created.
The pixel with the smallest DIS value among the unlabelled pixels is chosen as the seed
of a region. The region grows until no more neighbouring pixels can be joined to it.
Then, a new seed is chosen from the unlabelled pixels. The process continues until all
pixels in the image are labelled. The major problems of cooperative techniques that
are based on region growing are accuracy of the segmentation and efficiency in terms

of speed of region growing around the pixels.
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Fan et al. [Fan 01] developed an automatic colour image segmentation technique
by integrating colour-edge extraction and seeded region growing on the YUV colour
space. The colour-edges are first obtained by an isotropic colour-edge detector and the
centroids between the adjacent edge regions are taken as the initial seeds for region
growing. Moreover, the results of colour-edge extraction and SRG are integrated to
provide more accurate segmentation of images. The disadvantage is that their seeds
are over-generated.

Sclaroff and Liu [Sclaroff 01] proposed a method for deformable shape detection
and recognition based on over-segmentation and region merging guided by statistical
shape model and MDL principle. Luo and Khoshgoftaar [Luo 04| proposed an image
segmentation algorithm by combining mean shift clustering and minimum description
length (MDL) principle to complement their strengths and weaknesses. Their approach
is to apply mean shift clustering to generate an initial over-segmentation and then
merge regions based on MDL principle.

Pantofaru and Hebert [Pantofaru 05] presented a framework which consists of com-
paring the performance of mean shift [Comaniciu 02] and efficient graph-based cluster-
ing [Felzenszwalb 04], based on three important characteristics: correctness, stability
with respect to parameter choice, and stability with respect to image choice. They
propose a hybrid algorithm which first performs the first stage of mean shift-based seg-
mentation, mean shift filtering, and then applies the graph-based segmentation scheme,
as an attempt to create an algorithm which preserves the correctness of the mean
shift-based segmentation but it is more robust with respect to parameter and image
choice. They demonstrated that, although both the mean shift segmentation and hy-
brid segmentation algorithms can create realistic segmentations with a wide variety of

parameters, the hybrid algorithm has slightly improved stability.

2.4.2 Parallel framework

After the extraction of edge and region information obtained independently the par-
allel framework carry out a posteriori integration. Parallel framework is based on the
fusion of the results from single segmentation methods, attempting to combine the
map of regions and the map of edge outputs with the aim of providing an accurate and

meaningful segmentation.
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Figure 2.3 shows a diagram of this parallel approach. This framework considers
region-based segmentation as an approximation to segmentation which is then com-
bined with salient edge information to achieve a more accurate representation of the

boundary of the objects. Thus, edge information enables an initial result to be refined.

Input image
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Figure 2.3: Scheme of parallel framework for image segmentation.

Chu and Aggarwal [Chu 93| presented an optimization method that integrates mul-
tiple region segmentation maps and edge maps in parallel cooperation, where an arbi-
trary mixing of region and edge maps are allowed.

Zhu and Yuille [Zhu 96] proposed a region competition approach to unify the active
contour model, region growing, and Bayes for image segmentation. This approach
is derived by minimizing a generalized Bayes criterion using the variational principle
and combines aspects of active contour model and region growing. Their approach
alternates boundary estimation and region estimation steps. It requires the selection
of a number of seed regions for initialisation of the statistical measurements on which
the region estimation is based. It would be advantageous both to minimise dependence
on such initial conditions and for the region and boundary processing to be autonomous,
so that where necessary one could be used independently from the other.

Germond et al. [Germond 00| proposed to mix in a cooperative framework several
types of information and knowledge provided and used by complementary individual
systems like a multi-agent system, a deformable model or an edge detector, where a

cooperative segmentation performed by a set of region and edge agents constrained
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automatically and dynamically by both, the specific grey levels in the considered im-
age, statistical models of the brain structures and general knowledge about MRI brain
scans. Interactions between the individual systems follow three modes of cooperation:
integrative, augmentative and confrontational cooperation, combined during the three
steps of the segmentation process namely, the specialization of the seeded region grow-
ing agents, the fusion of heterogeneous information and the retroactivity over slices.

Kermad and Chehdi [Kermad 02| presented a system that integrates the informa-
tion resulting from two complementary segmentation methods: edge detection and
region extraction. This permits the correction and adjustment of the control parame-
ters of the methods used. The suggested cooperation approach introduces a mechanism
which checks the coherence of the results through a comparison of the two segmenta-
tions. From over-segmentation results both methods are iterated by loosening certain
constraints until they converge towards stable and coherent results. This coherence is
achieved by minimising a dissimilarity measure between the edges and the boundaries
of the regions.

Christoudias et al. [Christoudias 02| presented an algorithm where a region adja-
cency graph is created to hierarchically cluster the modes of the mean shift approach.
Also, edge information from an edge detector is combined with the colour information
to better guide the clustering.

Zhou et al. [Zhou 05] presented a method that combines the classical gradient vector
flow (GVF) algorithm [Xu 98| with mean shift. Due to the dependence on the gradient
vectors of an edge map, the classical GVF is sensitive to the shape irregularities, and
hence the snake cannot be ideally located on the concave boundaries. They propose
an improved representation of the internal energy force by reducing the Euclidean
distance between the guessed centroid and the estimated one of the snake. The mean
shift technique is used to constrain the spatial diffusion of the gradient so that it is

able to handle efficiently boundary concavities.

2.4.3 Hybrid framework

Figure 2.4 gives a possible structure of a hybrid framework. This example begins
by obtaining an edge map which is used in the watershed algorithm to obtain an

over-segmented result. This result is then compared with the result from the dual
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approach: each boundary is checked to find out if it is consistent in both results (edges
and regions). When this correspondence does not exist the boundary is removed. This
is achieved by using a region similarity graph where the similarity is proportional with
the intervening contours between the regions. This graph is segmented by some graph

cut method.
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Figure 2.4: Scheme of hybrid framework for image segmentation.

Haris et al. [Haris 98] proposed a hybrid image segmentation using watersheds
and fast region merging algorithm which combines edge and region-based techniques
through the morphological algorithm of watersheds. This is done by applying edge
preserving statistical noise filter to compute an estimate of the image gradient. The
image is then partitioned into primitive regions using the watershed transform on the
image gradient magnitude. The result of this is then used as an input to a bottom up
region merging process. The objective cost function, the so-called region dissimilarity
function, is a function of the square error of the piecewise constant approximation of
the observed image, and is defined over the space of the partitions. For region merging
the authors adopt a solution for fast region merging, the fast neighbour region merging
by creating a simplification of the region adjacency graph (RAG). This algorithm was
designed and implemented for 2D and 3D images and it produces very satisfactory
results in segmentation performance and execution.

Lezoray and Cardot [Lezoray 03| combined different types of methods to obtain

a segmentation of a colour image. They divided the segmentation process into three
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stages: colour clustering, region merging and watershed segmentation. In the first stage
2D histograms are used to obtain a rapid and coarse clustering of the colour image.
This clustering is fast, simple and unsupervised, although over-segmented. The second
stage proceeds to a region merging of adjacent regions until the stabilization of a cost
associated with the partitioning of the colour image. In the third stage, a segmentation
refinement is based on a morphological filtering and colour watershed.

Makrogiannis et al. [Makrogiannis 05| proposed a hybrid algorithm that combines
the concepts of multi-resolution fuzzy clustering and region-based graph segmentation
to produce the final regions. Watershed approach is applied to produce the initial over-
segmented image and a second stage, known as the merging stage, is used to form the
final regions. This stage consists of the dissimilarity calculation process and the merging
algorithm. The dissimilarity calculation is carried out using a multiscale generation
process in the feature space. A clustering approach based on non-parametric density
estimation, known as subtractive clustering, is used to determine the population and
location of the most prominent cluster centres at different resolutions. The fuzzy C-
means algorithm is subsequently employed to produce the membership vectors. The
dissimilarity at each resolution is inferred using standard fuzzy arithmetic operations.
The multiscale dissimilarity function takes into account the structure of clusters over
multiple scales to evaluate the degree of dissimilarity. The result of this operation is the
integration of the global cluster analysis results into the general region-based scheme.

Pan et al. [Pan 03| proposed a combination of mean shift with watershed algo-
rithm. First, mean shift procedure is used to find the highest density regions which
correspond to clusters centred on the modes (local maxima) of the underlying prob-
ability distribution in the feature space. The principal component of each significant
colour is extracted by mode. Secondly, homogeneous regions corresponding to the
modes are used as markers to label an image, then marker-controlled watershed trans-
form is applied to the image segmentation. The algorithm was applied to blood cells
segmentation.

O’Callaghan and Bull [Callaghan 05| proposed the combination of an initial seg-
mentation using watershed transform with spectral methods. The morphological wa-
tershed transform is applied to a gradient image which is a result of combination of a
texture gradient and modulated intensity gradient, trying to embed in a single image

all perceptual gradients. For texture representation the authors use sub-band median
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filters applied to the texture sub-band magnitude (the magnitude of the complex de-
tail coefficients computed from a wavelet complex transform). This method follows
an approach proposed by Hill et al. [Hill 03] which also integrates edge and texture
information. This sequence of operations results in a set of homogeneous texture re-
gions, although over segmented images. To further reduce the number of segments, the
primitive regions are represented in a graph and processed using spectral clustering,
using a weighted mean cut algorithm. The authors argued that weighting the cuts by
the length of the boundary makes the partition independent of the number and geo-
metric arrangements of the segments while taking into consideration the importance
of the boundary lengths. For building the similarity matrix, the authors followed a
non-parametric approach of Puzicha et al. [Puzicha 99| by measuring the similarity
between feature distributions. In this way rather than clustering single feature points
the spectral method cluster feature distributions. This morphological-spectral combi-
nation strategy leverage the over segmentation weakness of the watershed by providing
to the spectral approach small texture patches that can be characterized statistically.

In [Duarte 06], Duarte et al. proposed an approach that starts from an over-
segmented image which is obtained by applying a standard morphological watershed
transformation on the original image. Then, this over-segmented image is described
by a simplified undirected weighted graph, where each node represents one region and
weighted links measure the dissimilarity between pairs of regions according to their in-
tensities, spatial locations and original sizes. Finally, the resulting graph is iteratively
partitioned in a hierarchical fashion into two subgraphs, corresponding to the two most
significant components of the actual image, until a termination condition is met. They
use a histogram thresholding method to automatically determine the merging termi-
nation. This graph-partitioning task is solved by a normalized cut approach using a
hierarchical social meta heuristic.

Li and Zeng [Li 06] presented a strategy based on wavelet, morphology and com-
bination method. Firstly, the wavelet transforms and morphology are used to get rid
of the effect of the defocusing and get the sub-images that include the particles. Then
based on the characteristics of the sub-images, edge detection and adaptive thresholding
are employed adaptively. Finally, a simplified watershed algorithm for the overlapping

particles is used.
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2.4.4 Interactive framework

The intervention of a human operator is often needed to initialise the method, to check
the accuracy of the result produced automatically, or even to correct the segmentation
result manually. Interaction is usually adopted in applications with a high demand
for accurate results and where the volume of images is reasonable, allowing for human
manipulation. A major disadvantage of these methods is that they are only suitable
for foreground-background segmentation.

All the above-mentioned algorithms are automatic. A major advantage of this type
of segmentation algorithms is that they can extract boundaries from a large number
of images without occupying human time and effort. However, in an unconstrained
domain, for non-preconditioned images, the automatic segmentation is not always re-
liable. On the other hand, a simple user assistance in object recognition is often
sufficient to complement deficiencies and to complete the segmentation process. There
are many difficult segmentation tasks that require a detailed user assistance. This is of-
ten true in medical applications, where image segmentation is particularly difficult due
to restrictions imposed by image acquisition, pathology and biological variation. To
address these problems a variety of interactive segmentation methods were developed
[Olabarriaga 01, Rother 04].

Figure 2.5 gives an example of an interactive framework. In this example the user
draws a fat pen trail enclosing the object boundary, marked in blue. This defines the
trimap with foreground/background/unclassified labels. The automatic segmentation
algorithm produces a first segmentation result. Missing parts of the object can be added
efficiently by user refinement: the user roughly applies a foreground brush, marked in
red, and the automatic segmentation method adds the whole region.

Recently, researchers have managed to improve image cut-out by using region-based
methods, e.g., intelligent paint [Barrett 02|, sketch-based interaction [Tan 01|, interac-
tive graph cut image segmentation [Boykov 0la] and GrabCut [Rother 04]. Region-
based methods work by allowing the user to give loose hints as to which parts of the
image are foreground or background without enclosing regions or being pixel accurate.
These hints usually take the form of clicking or dragging on foreground or background
elements and are thus quick and easy to do. An underlying optimization algorithm

extracts the actual object boundary based on the user input hints.
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Figure 2.5: Scheme of interactive framework for image segmentation.

The interactive image segmentation algorithms [Boykov 0la, Blake 04, Rother 04]
aim to separate, with minimal user interaction, a foreground object from its background
so that, for practical purposes, it is available for pasting into a new context. Some stud-
ies [Ruzon 00, Wang 05] focus on inference of transparency in order to deal with mixed
pixels and transparent textures such as hair. Other studies [Boykov 0la, Blake 04]
concentrate on capturing the tendency for images of solid objects to be coherent, via
Markov Random Field prior. For a review on interactive approaches for image segmen-
tation see e.g. [Olabarriaga 01, Rother 04].

Rui et al. [Rui 96| proposed a segmentation algorithm based on clustering and
grouping in spatial-colour—texture space. The user defines where the object of inter-
est is and the algorithm groups regions into meaningful objects. Wang and Cohen
[Wang 05] combined the segmentation and matting® problem together and proposed
a unified optimization approach based on belief propagation [Yedidia 02]. They itera-
tively estimate the opacity value for every pixel in the image, based on a small sample
of foreground and background pixels marked by the user.

Boykov and Jolly [Boykov Ola| proposed a method for interactive segmentation

based on graph cuts. The user input is minimal, consisting of a few mouse-clicks indi-

3Matting approaches try to simplify the problem by photographing foreground objects against a
constant coloured background, which is called blue screen matting.
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cating some pixels which are inside the object of interest, and other are outside. An
energy function based on both boundary and region information is then minimized sub-
ject to these user-imposed constraints. The global minimum is found by using graph
cut techniques. With a relatively small amount of user input, the algorithm success-
fully segments a variety of objects from both medical and natural images. GrabCut
[Rother 04] extends the graph-cut by introducing iterative segmentation scheme, that
uses graph-cut for intermediate steps. The user draws a rectangle around the object
of interest - this gives the first approximation of the final object /background labelling.
Then, each iteration step gathers colour statistics according to the current segmenta-
tion, re-weights the image graph and applies graph-cut to compute new refined segmen-
tation. After the iterations stop the segmentation results can be refined by specifying
additional seeds, similar to the original graph-cut.

Intelligent Paint proposed by Barrett and Cheney [Barrett 02] is a region-based in-
teractive segmentation technique based on hierarchical image segmentation by tobog-
gan watershed [Liu 03]. The strategy it uses coordinates human-computer interaction
to extract regions of interest from backgrounds using paint strokes with a mouse.

Protiere and Sapiro [Protiere 07| proposed an interactive algorithm for soft segmen-
tation of natural images. The user first roughly scribbles (user-provided labels) different
regions of interest and from them the whole image is automatically segmented. This
soft, segmentation is obtained via fast, linear complexity computation of weighted dis-
tances to the user-provided scribbles. The adaptive weights are obtained from a series
of Gabor filters and are automatically computed according to the ability of each single
filter to discriminate between the selected regions of interest.

Boundary-based methods cut out the foreground by allowing the user to surround
its boundary with an evolving curve. The user traces along the object boundary and
the system optimizes the curve in a piecewise manner. Examples include intelligent
scissor [Barrett 98| and LiveWire [Falcao 00]. Besides being easier to manipulate rather
than just selecting pixels manually with a traditional selection tool, these techniques
still demand a large amount of attention from the user. There is never a perfect match
between the features used by the algorithms and the foreground image. As a result,
the user must control the curve carefully. If a mistake is made, the user has to “back
up” the curve and try again. The user is also required to enclose the entire boundary,

which can take some time for a complex high-resolution object [Li 04].
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The intelligent scissors segmentation tool described in [Barrett 98] allows objects
within images to be extracted quickly and accurately using simple gesture motions with
a mouse. When the gestured mouse position comes in proximity to an object edge, a
live-wire boundary “snaps” to, and wraps around the object of interest [Barrett 98]. It
formulates boundary finding as an unconstrained graph search in which the boundary
is represented as an optimal path within the graph. The live-wire tool allows the user
to interactively select an optimal boundary segment by immediately displaying the
minimum cost path from the current cursor position to a previously specified “seed”
point in the image.

Mortensen and Barret [Mortensen 99| proposed a region-based intelligent scissors
approach which uses toboggan watershed for image over-segmentation and then treats
homogeneous regions as graph nodes. After applying the toboggan segmentation, each
connected region is assigned with a different label. Next, a weighted graph is con-
structed by tracing the boundary of each region successively. Once the weighted graph
is constructed, the remaining algorithm is the same as the pixel-based approach. How-
ever, when compared with the pixel-based approach, the number of graph nodes created
by the region-based approach is lessened and hence the computational cost is greatly
reduced.

Suetake et al. [Suetake 07| argued that the intelligent scissors is too sensitive to
a noise and texture patterns in an image since it utilizes the gradient information
concerning the pixel intensities. They propose a new intelligent scissors based on
the concept of the separability in order to improve the object boundary extraction
performance. Rother et al. [Rother 04] evaluated the performance of some of the
described methods and have clearly shown that methods based on graph cuts allow
achieving better segmentation results with less user effort required when compared
with the other methods.

A generic approach for feature selection that is related with the interactive frame-
work uses the classification method as a subroutine, rather than as a postprocessor.
Farmer and Jain [Farmer 05] proposed a closed-loop framework called wrapper-based
segmentation that not only adapts the parameters of the segmentation algorithm, but
also actually direct the segmentation based on the underlying shape of the object of
interest. Figure 2.6 shows the closed-loop wrapper-based segmentation framework pre-

sented in [Farmer 05].
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Figure 2.6: Wrapper-based image segmentation.

They initially perform low-level segmentation to label the image as a set of non-
overlapping blobs. Then they use the wrapper framework to select the blobs that
comprise the final segmentation based on the classification performance of the wrapper.
The selection process involves grouping the set of homogeneous regions in the image
that together comprise the object of interest. The blob combination with the highest
probability of correct classification, based on their classification against a set of training

images, for a given class is considered the most likely combination.

2.5 Summary

In this chapter we have reviewed a lot of image segmentation proposals. Special em-
phasis has been placed on the strategy used to carry out the cooperative process which
integrate edge and region information and identified the various strategies and methods
used to fuse such information. A classification of cooperative segmentation techniques
has been proposed and we have described several algorithms, pointing out their specific
features.

Based on all the techniques discussed in this chapter, it is clear that image segmen-
tation procedure is a complex issue. Another conclusion is that image segmentation is
application dependant and some parameters have to be refined accordingly to the type
of image. The large amount of methods is an indication that the “final solution” is still

far to come.
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Actually, it is not feasible to determine the best approach to segmentation. There
are several reasons for this, being the two most important factors (1) the lack of
a generally accepted and clear methodology for evaluating segmentation algorithms
[Zhang 96|, and (2) the difficulty in implementing other people’s algorithms due to the
lack of necessary details [McCane 97]. Obviously, unless a given segmentation algo-
rithm is specifically implemented and tried out on the same set of images, it is very
difficult to evaluate from the published results how well it will work for those images.
Thus, we would like to emphasize the need for the image segmentation community to
create a central repository of algorithm implementations, data and evaluation mea-
sures so that researchers can quickly and effectively compare their algorithms with well

established methods. We will address this evaluation issue on the next chapter.



CHAPTER 3

Image segmentation evaluation

This chapter proposes a new approach for evaluation of segmentation based
on regions that takes into account not only the accuracy of the boundary lo-
calization of the created segments but also the under- and over-segmentation
effects, regardless to the number of regions in each partition. In addition it
takes into account the way humans perceive visual information. This new
metric can be applied both to provide a ranking among different segmenta-
tion algorithms automatically and to find an optimal set of input parameters

of a given algorithm.

3.1 Introduction

'The practical application of an image segmentation algorithm requires that we under-
stand how its performance varies in different operating conditions. Evaluating algo-
rithms let researchers know the strengths and weaknesses of a particular approach and
identifies aspects of a problem where further research is needed. Haralick [Haralick 94]
underlines the necessity of the evaluation of computer vision algorithms if the field is
to produce methods of practical use to engineers.

In spite of significant advances in image segmentation techniques, evaluation of
these methods thus far has been largely subjective. Typically the effectiveness of a new
algorithm is demonstrated only by the presentation of a few segmented images that are

evaluated by some method, or it is otherwise left to subjective evaluation by the reader.

! The work included in this chapter was presented at the International Conference on Image Analysis
and Recognition (ICIAR2006) [Monteiro 06].

S7
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The readers frequently do not know whether the results have been opportunistically
selected or they are typical examples, and how well the demonstrated performance
extrapolates to larger sets of images.

Evaluating the output of segmentation algorithms is still problematic. The work of
Martin et al. [Martin 01] presents a significant advance in this direction by providing
segmentation results that can be used as a baseline for comparing the output of different
methods, as well as suitable error metrics to quantify the performance of the algorithms
in terms of the quality of their segmentations. However, at this time to our knowledge
only the normalized cuts algorithm has been evaluated in this way, and the results of
this evaluation cannot be interpreted in a meaningful way in the absence of comparative
results for other segmentation methods. In fact there are very few comparative studies
on the methods used for evaluation [Zhang 96].

The selection of an appropriated method for the segmentation of a particular image
is a difficult issue, as there is no universally accepted figure(s) of merit to evaluate the
performance of an image segmentation result. We still need to rely in the experience,
knowledge and intuition of the person in charge of conceiving the image segmentation
algorithm in the selection phase, together with the semantic information about the
type of images to be segmented and the qualitative assessment of the final user.

Typically researchers show their segmentation results on a few images and point out
why the results ’look good’. We never know from such studies if the results are good
or typical examples. Since none of the proposed segmentation algorithms are generally
applicable to all images, and different algorithms are not equally suitable for a partic-
ular application, there is the need to make comparisons so that the better ones can
be selected. The majority of studies proposing and comparing segmentation methods
evaluate the results only with one evaluation method. However, results vary signifi-
cantly among different evaluators, because each evaluator may have distinct standards
for measuring the quality of the segmentation.

The main difficulty in evaluating segmentation algorithms stems from the ill-defined
nature of the problem being addressed. Zhang, in his survey [Zhang 96|, proposes this
definition of image segmentation: ’[Image segmentation]| consists of subdividing an
image into its constituent parts and extracting these parts of interest (objects).’

Without explicit knowledge of what one would like the output of the algorithm to

be, it is hard to say whether one algorithm is better than another. Many researchers
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prefer to rely on quality human judgement of results for evaluation. Borra and Sarkar
[Borra 97] argued that segmentation performance can be evaluated only in the context
of a task such as object recognition. Pal and Pal [Pal 93| say that 'a human being
is the best judge to evaluate the output of any segmentation algorithm’. McCane
[McCane 97| proposes an evaluation method based entirely on the application for which
the algorithm was designed. If a segmentation method leads to a better performance
on a task, then that segmentation method is better for that task, regardless of what a
human expert thinks about the quality of the segmentation.

In some sense boundary detection and region segmentation are two dual problems
and their performance evaluation appears to be a similar task. One may convert a seg-
mented region map to an equivalent boundary map by marking the region boundaries
only and then applying any boundary detection evaluation method. However, a simple
example as shown in Figure 3.1, reveals a fundamental difference: although in terms of
the boundaries the two segmentation results only differ marginally, their discrepancy
in terms of regions is substantially larger. In the present work although we made a
review on boundary based evaluation, our first concern is with region segmentation

evaluation.

(a) (b)

Figure 3.1: Two segmentation results.

Some researchers argue that segmentation algorithms should be evaluated in the
context of a particular task such as object recognition [Borra 97|, that is different
algorithms should be compared in terms of the potential benefit they provide for a
particular higher-level task. Other researchers (see for example [Martin 01]) propose
that segmentation algorithms should be evaluated as stand-alone modules by comparing
their output to ’ground truth’ which is usually a segmentation produced by human
observers.

This latter view is more suitable for our purposes so, for the remainder of the chap-

ter, experimental results are considered in the light of what a human observer would see
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in a given image. This leads us to two essential problems: 1) Different human observers
will produce different segmentations of the same image, and 2) Human observers use
high level knowledge, and solve high level vision problems such as recognition and per-
ceptual completion while segmenting the image. Research by Martin et al. [Martin 01]
indicates that human segmentations do not vary randomly, instead they show regular-
ities that can be exploited to design and evaluate segmentation algorithms. They also
suggest ways in which the use of higher level knowledge by human observers can be
accounted for, thus allowing for the direct comparison of segmentations produced by
human observers and segmentation algorithms.

A potential problem for a measure of consistency between segmentations is that
there is no unique segmentation of an image. One approach is to ask human subjects
to segment the images by hand. If a reasonable consensus emerges, the hand segmen-
tations can be treated as ground truth, and compared to the outputs of segmentation
schemes. Martin et al. [Martin 01] take this approach. They present a database
containing hand segmented images from the Corel database [Martin 01]. They define
an error measure which quantifies the consistency between segmentations of differing
granularities and find that different human segmentations of the same image are highly
consistent. According to Martin et al. [Martin 01], two subjects may segment an image

differently for any of several reasons:

e Perception. If two subjects perceive the same scene in two different ways, then

they may see different objects and produce different segmentations.

e Attention. Subjects may pay attention to different parts of the scene to different
degrees, and may therefore over-segment the objects of focus, and under-segment

the other objects.

e Refinement. Two subjects may segment an image identically in all regards,
except that one subject may divide objects into smaller pieces than the other

subject did.

The two last effects produce variations between segmentations but not inconsisten-
cies, then the error should be smaller. This implies that we need to define segmentation
consistency measures that do not penalize such differences. If two segmentations arise
from different perceptual organizations of the scene then it is fair to declare the seg-

mentations inconsistent. One desirable property of a good measure is to accommodate
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refinement only in regions that human segmenters find ambiguous and to penalize
differences in refinement elsewhere.

An alternative approach is to allow human subjects to evaluate directly the output
of segmentation algorithm using psychovisual tests and judge which of segmentations
is more meaningful to them. Shaffrey et al. [Shaffrey 02| proposed an evaluation
procedure that subjects human observers to a psychovisual test comparing directly the
output of different segmentation algorithms and judge which pair of segmentations is
more meaningful to them. Heath et al. [Heath 97] evaluated the output of different edge
detectors on a subjective quantitative scale using the criterion of ease of recognizability
of objects (for human observers) in the edge images. Chalana and Kim [Chalana 97| use
multiple expert observers to agree on ground truth in the context of medical imagery,
while Hoover et al. [Hoover 96] do so in computer vision through carefully created
ground truth to test range finding algorithms.

Only a few evaluation methods actually explore the segments obtained from the
segmentation process. Some measures are best suited to evaluate edge detection
[Sahoo 88|, working directly on the binary image of the regions’ boundaries [Huang 95|.
Although we can always treat segmentation as a boundary map, the problem is in the
simplified use of the edge map, as simply counting the misclassified pixels, on an
edge/non-edge basis. Pixels on different sides of an edge are different in the sense that
they belong to different regions - that is why it may be more reasonable to use the
segmentation partition itself.

Evaluation of image segmentation differs considerably from the binary foreground
background segmentation evaluation problem examined in [Goumeidane 03, Huang 95|,
in that the correctness of the two class boundary localization is not the only quantity
to be measured. This derives from the presence of an arbitrary number of regions in

both the reference segmentation and the segmentation to be evaluated.

3.2 Problem formulation

An evaluation metric is desired to take into account the following effects:

e Over-segmentation. A region of the reference is represented by two or more

regions in the examined segmentation.
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e Under-segmentation. Two or more regions of the reference are represented by
a single region in the examined segmentation.
e Inaccurate boundary localization. Ground truth is usually produced by

humans that segment at different granularities.

e Different number of segments. We need to be able to compare two segmen-

tations when they have a different number of segments.

Under-segmentation is considered to be as a much more serious problem as it is eas-
ier to recover true segments through a merging process after over-segmentation rather
than trying to split an heterogeneous region. One desirable property of a good eval-
uation measure is to accommodate refinement only in regions that human segmenters
could find ambiguous and to penalize differences in refinements elsewhere. In addition
to being tolerant to refinement, any evaluation measure should also be robust to noise
along region boundaries and tolerant to different number of segments in each partition.

Segmentation evaluation can be judged according to the amount of mis-segmented
pixels estimated by a direct comparison between reference and resulted segmentation
mask. Pixels can be classified into four sets: well-classified pixels (true positives,
T,), incorrectly detected pixels (false positives, F}), correctly undetected pixels (true
negatives, 7,,), and incorrectly undetected pixels (false negatives, F},). True negative
pixels are ignored in some evaluation measures, e.g. Precision-Recall curves.

Let S and R be two segmentations of the same image, where S = {s1, s9, ..., i} is
the segmentation mask to be evaluated, containing k regions, and R = {ry,7,...,r,} is
the reference mask, containing ¢ regions. The pixel classification sets can be expressed

as:
T,=SNR F,=SNR F,=SNR T,=SUR (3.1)

where R and S denotes the complement of R and S respectively. We assume that an
image is composed of objects that when aggregated form all the image. So, if a pixel
is classified as true for one object it is classified as false for other object. Figure 3.2
shows the classification of pixels according to the comparison between the reference
object and the segmented object.

These possible measures can be arranged in a confusion matriz [Stehman 97|. This

matrix contains information about actual and segmented regions done by a segmen-
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Figure 3.2: Pixel classification in the segmentation evaluation process.

tation system. The diagonal elements represent correctly classified pixels while the
cross-diagonal elements represent misclassified pixels. Figure 3.3 shows the confusion

matrix for a two region segmentation algorithm.
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Figure 3.3: Confusion matrix in a two region segmentation problem.

3.3 Related work

A review on evaluation of image segmentation is presented by Zhang in [Zhang 96|, who
classifies the methods into three categories: analytical, where performance is judged
not on the output of the segmentation method but on the basis of their properties,
principles, complexity, requirements and so forth, without reference to a concrete im-
plementation of the algorithm or test data. While in domains such as edge detection

this may be useful, in general the lack of a general theory of image segmentation limits
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these methods; empirical goodness methods, which compute some kind of 'goodness’
metric such as uniformity within regions [Borsotti 98, Huang 95|, contrast between re-
gions [Levine 85|, or shape of segmented regions [Sahoo 88|. For edge detection, human
intuition based measures have been introduced by Heath et al. [Heath 97| that propose
an edge detection assessment based on the bootstrap resampling technique; and finally,
empirical discrepancy methods, which evaluate segmentation algorithms by comparing
the resulting segmented image against a manually-segmented reference image, which
is often referred to as ground truth, and computes error measures.

As stated by Zhang [Zhang 96|, the major difficulty in applying analytical methods
is the lack of general theory for image segmentation. The analytical methods may only
be useful for simple algorithms or straightforward segmentation problems, where the
researchers have to be confident in the models on which these algorithms are based.

Empirical goodness methods, also known as unsupervised evaluation methods quan-
titatively evaluate the results of segmentation algorithms according to some human
characterization about the properties of the ideal segmentation. These methods have
the advantage that they do not require manually segmented images to be supplied as
ground truth data. The great disadvantage is that these metrics are heuristic and may
exhibit strong bias towards a particular algorithm. For example the intra-region and
the inter-region grey-level uniformity metric will assume that a well-segmented image
region should have low variance of grey-level. This will cause that any segmentation al-
gorithm which forms regions of uniform texture to be evaluated poorly. Although these
evaluation methods can be very useful in some applications [Palmer 96, Borsotti 98|,
their results do not necessarily coincide with the human perception of the goodness of
segmentation. For this reason, when a reference image is available or can be generated,
empirical discrepancy methods are preferred.

Empirical discrepancy methods, which compare segmentation output with ground
truth segmentation of the test data and quantify the levels of agreement and/or dis-
agreement, have the benefit that the direct comparison between a segmented image and
a reference image is believed to provide a finer resolution of evaluation, and as such,
they are the most commonly used methods of segmentation evaluation. A detailed
survey on different discrepancy errors can be found in [Ortiz 06].

Zhang [Zhang 96| has proposed a discrepancy evaluation based on misclassified

pixels. Yasnoff et al. [Yasnoff 77|, in one of the earliest attempts, have shown that



3.4 Previous evaluation measures 65

measuring the discrepancy based only on the number of misclassified pixels does not
consider the pixel position error. Their solution is based on the number of misclassified
pixels and their distance to the nearest correctly segmented pixels, where each pixel
has an associated correct class, and takes measures of classification error from the pix-
elwise class confusion matrix. Two error measures, the misclassification percentage and
pixel distance error are used. However, they only applied it to foreground/background
segmentation.

Other discrepancy measures calculate the distances between wrong segmented pix-
els and the nearest correctly segmented pixels [Odet 02|, thus introducing a spatial
component to the measure, or are based on differences between feature values mea-
sured from regions of the correctly segmented and output images. Huang and Dom
[Huang 95| introduced the concept of distance distribution signatures. In [Odet 02| the
use of binary edge masks and scalable discrepancy measures are proposed. Although
it was adapted to segmentation region maps in [Goumeidane 03], that was only done
with background/foreground segmentations.

Another concept sometimes used in evaluation is the receiver operating character-
istic (ROC) curve that comes from psychophysics and signal detection theory and has
received an important amount of attention within the vision community [Bowyer 01,
Brown 06, Fawcett 06]. A ROC curve is a plot of false positive rate against true posi-
tive rate as some parameter is varied. The confusion matrix can be used to construct a
point in ROC space. ROC curves are commonly used by the medical community, who
found them useful in bringing out the sensitivity (true positive rate) versus specificity
(1 — false positive rate), and in recent years have been increasingly adopted in the
evaluation of medical imaging techniques [Skudlarski 99, Sorenson 05, Mendongca 06].
The major drawback of ROC curves is that they are only suitable for binary segmen-
tation problems, such as edge detection. An exception of the two-class classification
problems is the work of Rees et al. [Rees 02] which addressed multi-class classification
evaluation by means of ROC analysis. An extensive literature research on the use of
ROC curves can be found in Kelly Zou’s bibliography of ROC literature [Zou 05].

In their recent work, Davis and Goadrich [Davis 06] demonstrate that for a given
dataset of positive and negative examples, there is a one-to-one correspondence between
a curve in ROC space and a curve in Precision-Recall space, such that the curves contain

exactly the same confusion matrices, if there is at least one true positive pixel.
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3.4 Previous evaluation measures

In this section we present some of the best known measures used in image segmentation
evaluation. According to the evaluation approach we divide these measures in region-

based and boundary-based.

3.4.1 Region-based evaluation

The region-based scheme evaluates the segmentation accuracy in the number of regions,
the locations and the sizes. Let the segmentation be S and the corresponding ground
truth be R. Both S and R are functions on the image plane with labels as their function
values. A region-based evaluation between two segmented images can be defined as
the total amount of differences between corresponding regions. Of course only regions

that are likely the same in both segmentations should be taken into account.

Hamming distance

Huang and Dom [Huang 95| introduced the concept of directional Hamming distance
between two segmentations, S and R, denoted by dy (S = R). They began by es-
tablishing the correspondence between region i = {1,2,....k} of S with region j =
{1,2,...,q} of R such that s; N'r; is maximized. The directional Hamming distance

from S to R is defined as:

d S = R ZTzER Zsﬁﬁs],stﬂn;ﬁ@ m St‘ (32)

where |-| denote the size of a set. Therefore, dy (S = R) is the total area under the
intersections between all r; € R and their non-maximal intersected regions from S. A

region-based evaluation measure based on normalized Hamming distance is defined as

dy (S= R)+dy(R=5)
2 x|9|

Dy=1-— (3.3)
where |S| is the image size and Dy € [0, 1]. The smaller the degree of mismatch the
closer the Dy is to one.

Moreover, they define two types of errors in region segmentation: missing rate (e7)

and false alarm rate (eR) The former indicates the percentage of the points in R being
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mistakenly segmented into the regions in S which are non-maximal with respect to
the corresponding region in R; while the latter describes the percentage of points in S
falling into the regions in R which are non-maximal intersected with the region under

consideration. We therefore have

ey = dn (5 = 1) (TST k) and e{% = du (R = 5) (}|%5|:> S) (3.4)

These measures have been used to compare several segmentation algorithms by

integration of region and boundary information [Freixenet 02].

Local Consistency Error

To compensate for the difference in granularity while comparing segmentations, many
measures allow label refinement uniformly through the image. Martin, in his the-
sis [Martin 02| proposed an error measure to quantify the consistency between image
segmentations of differing granularities - Local Consistency Error (LCE) that allows
labelling refinement between segmentation and ground truth.

Let 7 (S, p;) be the set of pixels corresponding to the region in segmentation S that

contains the pixel p;. Then, the local refinement error associated with p; is

|7 (S, pi) \r (R, pi)|
|7 (S, i)

E(S,R,p;) = (3.5)

where \ denotes set difference. Finally, the overall performance measure is defined as

LCE(S,R,p;) = % Z min {E (S, R,p;), E (R, S,p;)} (3.6)

where E (S, R, p) measures the degree to which two segmentations agree at pixel p, and
N is the size of region where pixel p belongs. Note that LCE is an error measure, with
a score () meaning no error and a score 1 meaning maximum error.

Due to its tolerance of refinement, this measure is not sensible to over- and under-
segmentation and may be therefore not applicable in some evaluation situations. Thus,
it is only meaningful if the two segmentations have similar number of segments. As
observed by Martin [Martin 02|, there are two segmentations that give zero error for

LCE - one pixel per segment, and one segment for the whole image.
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Bidirectional Consistency Error

To overcome the problem of degenerate segmentations, Martin proposed an adaptation
of the LCE formula that penalizes dissimilarity between segmentations proportional to
the degree of region overlap. If we replace the pixelwise minimum with a maximum we
get a measure that does not tolerate refinement at all. The Bidirectional Consistency

Error (BCE) is defined as:

BCE (S, R, p:) = % S max (B (S, R.p) B (R, S,0) (3.7)

Partition distance measure

Cardoso and Corte-Real [Cardoso 05] proposed a discrepancy measure - partition dis-
tance (dsym,) defined as: "given two partitions P and @ of S, the partition distance is the
minimum number of elements that must be deleted from S, so that the two induced par-
titions (P and () restricted to the remaining elements) are identical". dgyn, (Q, P) =0
means that no points need to be removed from S to make the partitions equal, i.e.,
when @) = P.

In addition to d,,, measure, they proposed an asymmetric partition distance de-
fined as: "given two partitions R and ) defined in a set S of N elements, the asymmetric
partition distance is the minimum number of elements that must be deleted from S,

so that the induced partition () is finer than the induced partition R".

3.4.2 Boundary-based evaluation

Boundary-based approach evaluates segmentation in terms of both localization and

shape accuracy of extracted regions boundaries.

Distance Distribution Signatures

Huang and Dom in [Huang 95| presented a boundary performance evaluation scheme
based on the distance between distribution signatures that represent boundary points
of two segmentation masks.

Let Bg represent the boundary point set derived from the segmentation S and Bgr
the set of boundary pixels of the ground truth R. A distance distribution signature
from the set Bg to the set Bg of boundary points, denoted dp (Bs, Bgr), is a discrete
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function whose distribution characterizes the discrepancy, measure in distance, from
Bg to Br. The distance from x in set Bg to Bp is defined as the minimum absolute

distance from all the points in Bpg:

d(z, Br) = min{dg (z,vy)},Vy € Bg (3.8)

where dp denotes the Euclidean distance between points x and y.

The discrepancy between Bg and Bpg is described by the shape of the signa-
ture, which is commonly measured by its mean and standard deviation. As a rule,
dp (Bs, Bg) with a near-zero mean and a small standard deviation indicates high sim-
ilarity between segmentation masks. Since the Huang and Dom [Huang 95| paper do
not normalize these measures, we cannot determine between two different results which
segmentation is the most desirable.

In order to normalize the evaluation measure between (0 and 1, we propose a modi-
fication to the distance distribution signature of Huang and Dom. Thus, we introduce
a ¢ value that sets an upper limit for the error. For d (z, Bg) = min {dg (x,y),c}, the
two boundary distances could be combined in a function similar to the one presented
in Equation (3.3):

dB (B.5'7 BR) + dB (BR7 BS)
cx (IRl +15])

Dp=1- (3.9)

where |R| and |S| are the number of boundary points in reference mask and segmented

mask, respectively.

Precision-Recall measures

Martin in his thesis [Martin 02|, propose the use of precision and recall measures to
characterize the agreement between the oriented boundary elements (termed edgels)
of the region boundaries of two segmentations. Thus, given two segmentations, S
and R, where S is the result of segmentation and R is the ground truth, precision is
proportional to the fraction of edgels from S that matches with the ground truth R,
and recall is proportional to the fraction of edgels from R for which a suitable match

was found in S. Precision and recall measures are defined as follows:

T T
b Recall = —2— (3.10)

Precision = ————
T, + F, T, + F,
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To compute precision and recall we must determine which true positive pixels are
correctly detected, and which detections are false. We could simply consider coinci-
dent boundary pixels as true positive and declare all others pixels to be either false
positive or false negative. However, this approach would not tolerate any localiza-
tion error, and would be a poor indicator of performance since the ground truth data
contains boundary localization errors as a result of handmade segmentation. In Mar-
tin’s work, precision and recall are computed using a bipartite matching formulation
that matches edgels using their location and orientation. He uses Andrew Goldberg’s
Cost Scaling Assignment package [Goldberg 95] to solve the assignment problem that
allows to compare two boundary maps while both permitting localization error and
avoiding over-counting. In cases where segmentation classifies pixels as on-boundary
or off-boundary, we can correspond boundary pixels instead of edgels, and omit the
orientation penalty from the edgels weight.

In probabilistic terms, precision is the probability that the result is valid, and
recall is the probability that the ground truth data was detected. A low recall value is
typically the result of under-segmentation and indicates failure to capture salient image
structure. Precision is low when there is significant over-segmentation, or when a large
number of boundary pixels have greater localization errors than some threshold.

Precision and recall measures have been used in the information retrieval systems
for a long time [Raghavan 89]. These measures are also used in the medical community
where they go under the names of specificity and sensitivity, respectively. The inter-
pretation of the precision and recall for evaluation of segmentation are a little different
from the evaluation of retrieval systems. In retrieval, the aim is to get a high precision
for all values of recall. However in image segmentation, the aim is to get both high
precision and high recall. The two statistics may be distilled into a single figure of

merit:

o PR
aR+(1—a)P

(3.11)

where o determines the relative importance of each term. Following [Martin 02|, « is
selected as 0.5, expressing no preference for either.

The main advantage of using precision and recall for the evaluation of segmenta-
tion results is that we can compare not only the segmentations produced by different

algorithms, but also the results produced by the same algorithm using different input
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parameters. However, since these measures are not tolerant to refinement, it is possible
for two segmentations that are perfect mutual refinements of each other to have very

low precision and recall scores.

Earth Mover’s Distance

Using the concept of Earth Mover’s Distance (EMD) to measure perceptual similarity
between images was first explored by Peleg et al. [Peleg 89| for the purpose of measuring
distance between two grey-scale images. More recently EMD has been used for image
retrieval [Rubner 00].

EMD evaluates dissimilarity between two distributions or signatures in some feature
space where a distance measure between single features is given. The EMD between two
distributions is given by the minimal sum of costs incurred to move all the individual
points between the signatures.

Let P = {(p1,wp,) s -, (Pm, Wp,,)} be the first signature with m pixels, where p; is
the pixel representative and w,, is the weight of the pixel; the second signature with n
pixels is represented by Q = {(¢1,w,) , ..., (gn, Wy, ) }; and D = [d;;] the distance matrix
where d;; is the distance between two contour points’ image coordinates p; and g;. The
flow f;; is the amount of weight moved from p; to ¢;. The EMD is defined as the work

normalized by the total flow f;;, that minimizes the overall cost:

2 Z fidij

EMD (P,Q) = sz

(3.12)

As pointed by Rubner et al. [Rubner 00], if two weighted point sets have unequal
total weights, EMD is not a true metric. It is desirable for robust matching to allow
point sets with varying total weights and cardinalities. In order to embed two sets
of contour features with different total weights, we simulate equal weights by adding
the appropriate number of points, to the lower weight set, with a penalty of maximal
distance. Since normalizing signatures, with the same total weight do not affect their

EMD, we made }_, ; fi; = 1. Equation (3.12) becomes,

EMD (P,Q) = Zme i (3.13)
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subject to the following constraints: fi; >0, > fij = wy, and 3, fi; = wy,.

J

As a measure of distance for the EMD ground distance we use

=

i = 1—e o (314)

d

where ||p; — ¢;|| is the Euclidean distance between p; and ¢; and « is used in order
to accept some deformation resulted from manual segmentation of ground truth. The
exponential map limits the effect of large distances, which otherwise dominate the

result.

3.5 Weighted evaluation measure

In the context of image segmentation, the reference mask is generally produced by
humans. There is an agreement that interpretations of images by human subjects
differ in granularity of label assignments, but they are consistent if refinements of
segments are admissible [Martin 02]. One desirable property of a good evaluation
measure is to accommodate refinement only in regions that human segmenters could
find ambiguous and to penalize differences in refinements elsewhere. In addition to
being tolerant to refinement, any evaluation measure should also be robust to noise
along region boundaries and tolerant to different number of segments in each partition.

For the purpose of evaluating image segmentation results, a correspondence between
the examined segmentation mask, S, and the reference mask, R, has initially been
established, indicating which region of S better represents each reference region. This
is performed by associating each region 7; of mask R with a different region s; of mask
S on the basis of region overlapping, i.e. s; is chosen so that r; N s; is maximized. The
set of pixels assigned to s; but not belonging to r; are false positives, F,, that can be
expressed as F, = s; N7;, where 7; denotes the complement of ;. The pixels belonging
to r; but not assigned to s; are false negatives, F},, and can be expressed as I, = 5;Nr;.

The minimum required overlap between r; and s; is 50% of the reference region.
Pixels belonging to regions where this ratio is not achieved are considered as false pixels.
These measure quantify the errors due to under and over segmentation. Clearly, more
visually significant regions that were missed in the segmented mask are assigned a

significantly higher error.
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The normalized sum of false detections is an objective discrepancy measure that
quantifies the deviation of the results of segmentation from the ground truth and can

be expressed as:
B+ F,

o (3.15)

EF

where N is the set of all pixels in the image. The value of €z is proportional to the
total amount of errors and indicates the accuracy of region boundaries localization.
The quality of the segmentation is inversely proportional to the amount of deviation
between the two masks.

In applications where the final evaluator of quality is the human being, it is funda-
mental to consider human perception to deal with the fact that different kind of errors
are not visually significant to the same degree. To build a spatial accuracy measure

with high perceptive meaning, we have to use the following assumptions:

e The visual relevance of a wrong pixel increase with its distance from the border

of the reference mask.

e As we move away from the border, false negative pixels achieve always greater
relevance, since they mean that a bigger part of the object is being missed.

e With false positives the situation is slightly different. Although they also increase
their relevance at far locations, that increment tends to stabilize with the distance

from the reference border.

To accommodate human perception, the different error contributions are weighted
according to their visual relevance. Gelasca et al. [Gelasca 04| present a psychophysical
experiment to assess the different perceptual importance of errors. They conclude that
a false positive pixel contributes differently to the quality than a false negative. False
negatives are more significant, and the larger the distance the larger the error.

We define two weighted functions w, and w, to deal with that fact where w, is
associated with false positive pixels and w, is associated with false negative pixels. Let
d, be the distance of a false positive pixel from the boundary of the reference region,

and d,, be the distance of a false negative pixel.

log (1+d
w, = 2B T Ogg ) (3.16)
w, = 2o (3.17)

D
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These functions are normalized by the image diagonal distance D. The weighted

function for each false pixel is also represented in Figure 3.4.

0,8 4
—— weight false positive
weight false negative
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Distance

Figure 3.4: Weight functions for false negative and false positive pixels.

The weights for false negative pixels increase linearly and are larger than those
for false positive pixels at the same distance from the reference region border. As we
move away from the border of an object, missing parts are more important than added
background, e.g., in medical imaging, it may be enough that the segmented region
overlaps with the true region, so the tumour can be located. But if there are missing
parts of the tumour the segmentation results will be poor.

To obtain a measure between [0, 1], we normalize the total amount of weight by the

image size. The discrepancy measure of weighted distance, ¢,,, becomes:

Ew = % an + pr (3.18)

where f,, and f, represent the false pixels. We define a new measure of similarity as
Sw = 1 — €. The value of s,, = 1 indicates a perfect match between the segmentation

and the reference mask.

3.6 Analysis on evaluation methods

We conducted two experiments to validate the measure proposed in this work. The
first with results obtained from manual segmentations and the second with synthetically
generated segmentations.

To achieve comparative results about different evaluation methods, two strategies

can be followed: the first one consists in applying the evaluation methods to segmented
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images obtained from different segmentation approaches. The second one consists in
simulating results of segmentation processes. To exempt the influence of segmentation
algorithms, the latter has been adopted and a set of images obtained from manual
segmentation available at the Berkeley Segmentation Database [Martin 01] was used.
As the ground truth is not unique, we used as ground truth the manual segmentation
with the best F-measure against all the others. Figure 3.5 shows the segmentation
results used in this comparative study where result (i) is also used to set up the weighted
parameters of false pixels.

A good evaluation measure has to give large similarity values for results (a)-(e)
and has to strongly penalize other results ((f)-(i)). Figure 3.6 shows the comparison
results between the proposed method and the methods presented in Section 3.4.1, for
the images in Figure 3.5, expressed in terms of region-based evaluation.

Due to its tolerance to refinement, LCE gives low error (high similarity) scores, even
when the segmentation result is very different from the ground truth (images (f)-(i)).
Measure Dy has a similar behaviour. BCE and ds,,, give good evaluations for images
((f)-(i)). However, since these measures are not tolerant to refinement, the results are
poor for results ((a)-(e)).

The results obtained from images ((a)-(e)) show that the proposed measure is tol-
erant to refinement, in accordance with the way human perceive visual information.
Since our measure weights the segmentation errors according to their distance to the
correct segmentation it strongly penalizes segmentation errors of images ((f)-(i)).

Results of boundary-based evaluation on the same set of segmentation results are
reported in Figure 3.7. On comparing the results of the boundary-based measures, it
is made evident that they are well correlated. EMD tolerates well some amount of
deformations that normally happens in the manual segmentation process. However,
when the number of pixels in ground truth differs a lot from the number of pixels in
the segmented image, EMD gives poor results. Despite its success, the EMD method
still needs to be refined to address the limitation in the complexity of algorithm that
require to be further reduced. The Dp measure gives similar results with F-measure,
but it is even more intolerant to refinement.

Table 3.1 presents the evaluation results obtained from a set of trivial synthetically
generated segmentations presented in Figure 3.8, where we make constant the number

of false detections in each segmentation.
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Ground truth

(h)

Figure 3.5: The first row shows original image and the segmentation ground truth. From
(a) to (e) we have different manual segmentations of the same image. Images from (f) to (i)
are segmentation results of other images.
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Similarity

Segmentations

Figure 3.6: Evaluation of segmentation, in terms of similarity, from a set of evaluation
schemes based on regions.

1,0

Similarity

0,0 A

Segmentations

Figure 3.7: Evaluation of segmentation, in terms of similarity, from a set of evaluation
schemes based on boundaries.
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(a) (b) (©) (@)

Figure 3.8: Synthetically generated set of segmentations, where (a) is the reference.

Since LCE, BCE, d,,,, and Dy, are just proportional to the total amount of false
detections, different position of those pixels do not affect the similarity. This makes
those methods unreliable for applications where the results will be presented to humans.

Note that s,, produces results that agree with the visual relevance of errors.

Table 3.1: Numerical evaluation of segmentations from Figure 3.8.

images LCE BCE dsym Dy Sw

(b) 0.99380  0.98088  0.99349 0.99349  0.99741
(c) 0.99380  0.98088  0.99349  0.99349  0.99612
(d) 0.99380  0.98088  0.99349  0.99349  0.99159

3.7 Summary

In this chapter we introduce a new approach for segmentation evaluation based on
regions that takes into account, using a single metric, not only the accuracy of the
boundary localization but also the under-segmentation and over-segmentation effects
according to the ambiguity of the regions, regardless to the number of segments in
each partition. The proposed metric is based on examining the spatial accuracy of seg-
mentation results using a manually generated reference mask. Its output is a weighted
sum of misclassified pixels, effectively indicating how well the examined segmentation
mask corresponds to the reference one. We introduce a modification to the distance
signature of Huang and Dom, the D g measure; and apply the concept of Earth Mover’s
Distance to the evaluation of image segmentation. We experimentally demonstrated
the efficiency of the new measure against well known methods. This metric can be ap-
plied both to automatically provide a ranking among different segmentation algorithms
and to find an optimal set of input parameters of a given algorithm. This measure will

be used in the evaluation of image segmentation experimental results in Chapter 6.



CHAPTER 4

Hybrid spatial segmentation: the

model

This chapter presents a new framework to spatial image segmentation. The
main idea is to use atomic regions to quide a segmentation using the inten-
sity and gradient information through a spectral graph-cut approach. This
method produces simpler segmentations less over-segmented and it is com-

pared favourably with state-of-the-art methods (See also Chapter 6).

4.1 Introduction

Image segmentation is one of the largest domain in image analysis, and aims at iden-
tifying regions, the so-called segments that have a specific meaning within images.
Another definition of image segmentation is the identification of regions that are uni-
form with respect to some parameter, such as image intensity, texture or motion. While
the latter definition is often used for technical reasons, the former definition should be
preferred from an application point of view. Although the effort made in the computer
vision community there is no algorithm that is known to be optimum in image seg-
mentation. Different images require different methods, different applications demand
new approaches. Much research is being done to discover new methods building up on
previous ideas.

Since the Gestalt movement in psychology [Wertheimer 38|, it has been known that
perceptual grouping plays a powerful role in human visual perception. The main goal

of this chapter is to develop an algorithm for efficient segmentation of a grey level
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image that a) identifies perceptually homogeneous regions in the images, b) makes
minimal assumptions about the scene, and c¢) avoids merging of multiple objects into
single segments and vice-versa. The presentation of an improved rainfalling watershed
approach, the definition of a new structure for region based graph, the presentation of
a new similarity function, and the application of multiclass normalized cuts to group
atomic regions are the main contributions of this chapter.

Spectral segmentation is a promising approach to perceptual grouping or image
segmentation that takes into account global image properties as well as local spatial
relationships. It treats image segmentation as a graph partitioning problem. A common
characteristic of these techniques is the idea of clustering/separating pixels or other
image elements using the dominant eigenvectors of a matrix derived from the pairwise
pixel similarities, as measure by one or more cues. It thus segments an image from a
global point of view. The advantage of having a global objective function is that hard
decisions are made only when information from the whole image is taken into account
at the same time [Malik 01].

These methods use the eigenvectors and the eigenvalues of a matrix representation
of a graph to partition an image into disjoint regions. A salient region in the image is
the one for which the similarity across its border is small, whereas the similarity within
the region is large. A well known spectral graph analysis method is normalized cut
algorithm [Shi 00] that minimizes a discriminative energy function defined in terms of
the graph link weights. The normalized cut algorithm is a graph partitioning algorithm
that has previously been used successfully for image segmentation. It has originally
applied to pixels by considering each pixel in the image as a node in the graph. One
important issue of this approach is the size of the corresponding similarity matrix. If
the graph node set contains all the pixels of an image, the size of the similarity matrix
is equal to the squared number of pixels, and therefore generally too large to fit into
computer memory completely.

The energy function modelled by the normalized cut is capable of generating clean
results, even though the intensity regions can sometimes be broken into a small number
of pieces. As a recent paper |Carson 02| notes: “large, uniform background areas in
the image are sometimes arbitrarily split into two pieces due to the use of position as
a feature. On the whole, however, including position yields better segmentation results

than excluding it.”
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Since the use of positional information as a feature is known to be problematic
[Carson 02], several authors have explored alternatives. One possibility is to perform
a fairly atomic segmentation at the very beginning, and then compute feature vectors
from these regions rather than from pixels. Thus to reduce the size of the graph, nodes
can be used to represent disjoint atomic regions covering the image instead of single
pixels. The output of the preliminary segmentation step is a set of spatially coherent
clusters, which could then be used to compute the affinity matrix for the spectral-based
segmentation algorithm. It can also be used directly for segmentation by a merging
process.

Our WNCUT! approach overcomes the problem of over-segmentation in the prelim-
inary segmentation stage by using the spectral methods to intelligently re-assemble the
sub-set of atomic regions into the final segmented object based on a similarity function
among the regions. Actually our approach prefers the objects to be over-segmented
into a number of smaller regions to ensure that a minimal amount of background is
connected to any of the object regions.

In order to apply WNCUT, first we must represent the micro-regions in graph
terms. Suppose that the image under consideration is partitioned into a set of k
disjoint regions denoted by R = {Ry, ..., R;}. Then R can be represented by a set of k
nodes in an undirected graph, called the Region Similarity Graph (RSG). An evident
computational advantage is obtained describing the image by a set of regions instead
of pixel in the RSG structure: it enables a faster region merging in images with higher

spatial resolution.

4.2 Overview of the proposed method

The proposed methodology has four major stages. First, we smooth image noise, as
a pre-processing stage, using an anisotropic filter. Next, we create an over-segmented
image based on the initial magnitude gradient image. In the third stage, the over-
segmented image will be the input for the image RSG construction. Finally, we apply
a multiclass normalized cut approach on the RSG. A block diagram of the proposed
method is depicted in Figure 4.1.

This framework integrates edge-based and region-based segmentation with spectral-

1From Watershed Normalized Cut.
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( Input Image >

Edge Preserving Noise Filter
(Bilateral filter)

*

Preliminar Segmentation
(over-segmentation)

*

First Region Merging
(Eliminates spurious regions)

Graph-based Region Grouping
(Multi-class Normalized Cut)

*

< Segmented Image )

Figure 4.1: Block diagram of the proposed method.

based clustering as follows:

1. Reduce image noise using the bilateral filter;

2. Compute gradient magnitude and remove the weakest edges by gradient minima
suppression (pre-flooding);

3. Make initial partitioning using the gradient information;

4. Make a simple post-processing to remove single tiny regions by merging them
with neighbouring regions. These regions are considered to be spurious;

5. Calculate the statistics of all atomic regions;

6. Initialize the region similarity graph where each node corresponds to an atomic
region;

7. Use a spectral-based approach in order to obtain the final segmentation.
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We illustrate the algorithm by an example shown in Figure 4.2. An input im-
age is decomposed into a number of atomic regions to reduce the graph size in a
pre-segmentation stage as in Figure 4.2.(b). Each atomic region has nearly constant
intensity and it is represented by a node in the graph GG. Two vertices are connected if
their atomic regions are adjacent (i.e. share the same boundary). Figure 4.2.(c) shows

the result produced by our algorithm where each closed region is assigned a colour.

(a) Input image (b) Atomic regions (c) Segmentation

Figure 4.2: Example of image segmentation. (a) Input image. (b) Atomic regions. Each
atomic region is a node in the graph G. (c) Segmentation (labelling) result.

4.3 Noise reduction and gradient computation

Images taken with digital cameras will pick up noise from a variety of sources. As the
watershed algorithm is very sensitive to noise it is desirable to apply noise reduction
filter in the pre-processing step. Several methods have been proposed in the litera-
ture to reduce the spurious boundaries created due to noise and produce a meaningful
watershed segmentation. Ogor [Ogor 95| proposed morphological opening and closing.
Gauch |Gauch 99| used Gaussian blurring. Hernandez and Barner [Hernandez 00| sug-
gested median filtering. However, some of these filters tend to blur image edges while

they suppress noise which is undesirable for the watershed algorithm.

4.3.1 Bilateral filter

To prevent this effect we use the non-linear bilateral filter [Tomasi 98]. The bilateral
filter was first introduced by Smith and Brady under the name “SUSAN” [Smith 97] as
a non-linear filter that combines domain and range filtering. It was rediscovered later
by Tomasi and Manduchi [Tomasi 98] who called it the ’bilateral filter’” which is now

the most commonly used name.
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The basic idea underlying bilateral filtering is to replace the intensity of a pixel
(nucleus) by taking a weighted average of the pixels within a neighbourhood (in a
circle) with the weights depending on both the spatial and intensity difference between
the central pixel and its neighbours. In smooth regions, pixel values in a small neigh-
bourhood are similar to each other and the bilateral filter acts essentially as a standard
domain filter, averaging away the small, weakly correlated differences between pixel
values caused by noise. Bilateral filter preserves image structure by only smoothing
over those neighbours which form part of the "same region" as the central pixel.

Expressed formally, given an input signal f (x), using a continuous representation

notation as in [Tomasi 98|, the output signal h (z) is obtained by:

V)

) = T G0 s (1(9). (1) de

(4.1)

where ¢ (£, x) measures the spatial closeness between the centre pixel z and a nearby
point &; the photometric similarity is given by s (f (£), f(x)), and € represents the
filter support.

Considering a grey level image I, the result of the bilateral filter I°/ is defined as:

> I (p)-c(p,po)-s((p),I(po))
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(4.2)

where the so-called nucleus py := (ug, vg) is the pixel which is going to be filtered and
p := (u,v) is a pixel which belongs to the convolution mask around the nucleus.

The decreasing weight functions ¢ and s, which represent closeness (in the spatial
domain) and similarity (in the range domain) respectively, are Gaussian distributions

of the form:

¢ (p, po) = exp (—M> (4.3)

2
20

S(1(p) 1 (po)) = exp <— U ®) ~ I (po)) ) (1.4)

2
207

The parameter o, is the standard deviation of the spatial component of the blurring

function and o, is the standard deviation of the intensity component. The non-linearity
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of the filter comes from the division by the two Gaussian distributions and from the
dependency on the pixel intensities through the spatial component.

We can control the spatial support of the filter and thus the level of blurring by
varying o,. By varying o, we can control how much an adjacent pixel is down weighted
because of the intensity difference. If the grey level difference between two regions is
larger than o,., the algorithm computes averages of pixels belonging to the same region
as the reference pixel. Thus, the algorithm does not blur the edges which is its main
scope. In our experiments we apply the bilateral filter implementation of Smith and
Brady [Smith 97] with o, = 30 and o, = 4.

Figure 4.3 shows the comparison between the usual unilateral filter (e.g. the mean
filter) and the bilateral filter for an 1D signal. Since the spatial support of the bilateral
filter is a circle with radius o4 the bilateral filter preserves discontinuities where the
unilateral filter uses both object and background intensities in the smoothing process,

as showed by the red lines of Figure 4.3.

(a) (b)

Figure 4.3: Unilateral versus bilateral filter. (a) Unilateral filter. (b) Bilateral filter.

It is well known that median filters preserve the location of edges while eliminat-
ing structures such as impulses, which can correspond to undesirable local intensity
minima or maxima. In cases where the central pixel is uncorrelated with the whole
neighbourhood, and hence it is treated as pulse noise, the denominator of Equation
(4.2) is zero. This is dealt by replacing the intensity of the pixel intensity with the
median of its closest neighbours.

Figure 4.4 shows the result of smoothing an image with Gaussian smoothing,
anisotropic diffusion [Perona 90| and bilateral filter, respectively.

Since bilateral filtering does not involve the solution of partial differential equations

it is a good non-iterative alternative to anisotropic diffusion proposed by Perona and
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() (d)

Figure 4.4: Noise reduction filters. (a) Image with added Gaussian noise with o = 10. (b)
After Gaussian filter with o = 2. (c) After anisotropic diffusion filter with 100 iterations. (d)
After bilateral filter with o, = 30 and o5 = 4.

Malik [Perona 90]. Despite the difference in implementation both methods are designed

to smooth the image while edges are preserved.

4.3.2 Gradient computation

The gradient computation step is crucial as it is used in two different sections of the
proposed algorithm: in the preliminary segmentation and in the construction of the
region similarity graph.

Provided that the original noise level is not high or the noise has been effectively
reduced in the first stage, then any of the known gradient operators, namely classical
Sobel, Prewitt or morphological operators may perform well. However, if the original
noise level is high or the noise has not been effectively reduced in the first stage, the
use of small scale Gaussian derivative filters may further reduce noise.

Images are first convolved with Gaussian oriented filter pairs to extract the magni-
tude of orientation energy (OE) of edge responses as used by Malik et al. in [Malik 01].

The filters shown in Figure 4.5 are tuned to detect edges of different shapes, parame-
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terised by p = {po, ps, pe}, where p,, ps and p, refer to orientation, scale and elongation

respectively.

F, (p)

Figure 4.5: Linear filters of 4 orientations, 2 elongations and 2 scales, in both odd and even
phases that form quadrature pairs.

Given image I, the orientation energy approach can be used to detect and localize

the composite edges, and it is defined as:
OE (p) = (I x F.(p))* + (I F,(p))* (4.5)

where F.(p) and F,(p) represent a quadrature pair of even and odd-symmetric fil-
ters which differ in their spatial phases. The even-phase filters are the second-order
derivative and the corresponding odd-symmetric filters are their Hilbert transforms
which correspond to the first-order derivative, both smoothed with Gaussian functions
specified by p.

At each pixel i, we can define the dominant orientation energy (OF; (p)*) and the

parameter (pf) as the maximum energy across scale, orientation and elongation:
OFE; (p)" = maxOFE (p) p; = argmax OF (p) (4.6)

Orientation energy OF (p) has a maximum response for contours of shape p, whereas
the zero-crossing of filter F,(p) locate the positions of the edges. The value OE* is
kept at the location of 7 only if it is greater than or equal to the neighbouring values.

Otherwise it is replaced with a value of zero.
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4.4 Over-segmentation as pre-processing

An ideal over-segmentation should be easy and fast to obtain, and should not contain
too many segmented regions and it should have its region boundaries as a superset of
the true image region boundaries. In this section we present a pre-processing stage
that groups pixels into “atomic regions”. The motivations of this preliminary grouping
stage resemble the perceptual grouping task: (1) abandoning pixels as the basic image
elements, we instead use small image regions of coherent structure to define the corre-
sponding graph representation. In fact, since the real world does not consist of pixels,
it can be argued that this is even a more natural image representation than pixels as
those are merely a consequence of the digital image discretization; and (2) the number
of pixels in natural images is high even at moderate resolutions. By treating regions as
the elementary unit for image processing, we can reduce the computational complexity
without a corresponding loss of accuracy.

This section presents two strategies for the pre-segmentation stage: chunk graphs
and rainfalling watershed. Alternatively, the atomic regions could be computed us-
ing other methods, such as normalized cuts [Ren 03|, graph cuts [Felzenszwalb 04],
edge detection followed by edge tracing and contour closing [Barbu 05| or by an over-

segmented version of the mean-shift approach [Luo 04].

4.4.1 Chunk graph

The objective is to partitioning the image into a number of disjoint regions so that
each region has consistent intensity. In this section we propose a graph coarsening
approach based on a chunk graph defined below. This refinement or coarsening could
be thought of as a hierarchical structure on the image where graph computation is
performed at different levels of granularity with the connected pixels from the lower
level collapsing into nodes in the higher level. In addition to significantly reducing the
number of nodes in the graph, this coarsening creates small aggregates of pixels which
have similar intensities, adapted to the image at hand.

A chunk graph G’ = (V' E’) of a graph G is defined as follows: Each node of
G’ represents a chunk, which is a subset of G; each chunk corresponds to a set of
homogeneous pixels; chunks on G’ are disjoint and their union is G.

A graph is then constructed to present the spatial relationship of the pixels. The
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graph G is initially set to represent the 8-neighbour of each pixel in the image. Since
we want to find sets of homogeneous nodes the processing order of the nodes is not
important. The edges corresponding to connections between homogeneous nodes are
removed. The resulting graph G’ contains nodes that represent homogeneous atomic
regions in the image. Therefore, we transform graph G = (V| F) into a new graph
G' = (V' E"), where E' C E. Graph G’ is composed by a set of subgraphs (chunks)
that follow the normalized cut criterion in their construction. This means that edges
between two nodes in the same chunk should have relatively high similarity weights, and
edges between nodes in different chunks should have lower similarity weights. Figure

4.6 shows an example of a two level chunk graph.

Level 1 Level 2

Figure 4.6: Graph chunk sampling. Computation is performed at different levels of granu-
larity where the connected pixels from the lower level collapse into nodes in the higher level.

In the following discussion, we denote nodes of graph G’ using v; and v;, and use
ei;j to represent the edge connecting nodes v; and v;. An edge e;; is labelled according
to the absolute difference of the mean intensities of nodes v; and v;. A merge, M (i, j),
is a graph transformation operation that merges the nodes v; and v;. The procedure of
node merging is actually to integrate two or more chunks into a bigger one. It is also
called an edge contraction as the edge e;; is removed. The graph G is transformed in
a new graph G’ that has node v; and all other nodes of G except node v;. The graph
links weights between the atomic regions are defined in terms of the smallest matching
cost for fitting both atomic regions by the same intensity.

By the above definition, a merge always reduces the total number of regions. This
merge process is guaranteed to converge. A decision function, called the merge crite-
rion determines whether two nodes should be merged. Basically, this merge criterion

measures the strength of the boundary between two regions by comparing two quan-
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tities: one based on measuring the dissimilarity between elements along the boundary
of the two components and the other based on the measure of the dissimilarity among

neighbouring elements within each of the two components. We define two measures

" ( ) eijeljr\}ga(}zi,E)wJ ( )

Out,, (A, B) = min Wi (4.8)
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where A and B are regions, In,, (A) is the internal variation within the region, Ng (A, E)
are the 8-neighbours of A, and Out,, (A, B) is the external variation between the re-
gions. We merge together two regions? when the external variation between them is

small regard to their respective internal variations

Out,, (A, B) < MIn, (A, B) (4.9)

with
MIn, (A, B) =min (In, (A) +7(A),In, (B) +7(B)) (4.10)

where the threshold value 7 (A) = «a/|A| determines how large the external variation
can be with regards to the internal variation to still be considered similar, a is some
constant parameter, and |A| is the size of A.

Neighbouring pixels whose properties are similar enough are joined. A pixel is not
chained until all the pixel pairs which are more similar are chained. This ensures that
each pixel is always joined to its best fit neighbour. We illustrate the algorithm by an

example on image segmentation shown in Figure 4.7.

(a) Input image (b) 9461 chunks (c) Segmentation

Figure 4.7: Example of image segmentation. (a) Input image. (b) Atomic regions produced
by the chunk graph. (c) Segmentation result.

2A region could be formed only by a single pixel.



4.4 Over-segmentation as pre-processing 91

4.4.2 The watershed transform

Watershed transform is a classical and effective method for image segmentation in grey
scale mathematical morphology. For images the idea of the watershed construction
is quite simple. An activity image is considered as a topographic relief, as shown in
Figure 4.8, where for every pixel in position (z,y), its activity level plays the role of
the z-coordinate in the landscape. Local maxima of the activity image can be thought

of as mountain tops, and minima can be considered as valleys.

(c) (d)

Figure 4.8: Image as a topographic relief. (a) Intensity image, (b) gradient and (c) its
topographic representation. (d) Watershed segmentation result.

A drop of water placed anywhere on this surface will follow the path of steepest
descent until it reaches a minimum. This idea helps to establish an equivalent relation-
ship among pixels that trace to the same minimum and it is used to group pixels in
the image under different catchment basins. Thus, the algorithm works by finding the
minima of the surface, which correspond to the catchment basins and tries to group

every other pixel under one of these basins, producing a segmented output. Since
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most structures contain several catchment basins, generally watershed segmentation
produces a large number of regions even for simple images.

A general topographic interpretation of a two-dimensional function is depicted in
Figure 4.9. The most important notions in this context are the ones of minima, catch-
ment basins (or simply basins), and watersheds that are separating basins from each
other. Using this terminology, the watershed approach transforms an image into a

disjoint set of basins plus a set of watersheds.

water level

___ catchment basins

watersheds

dam

regional minima regional minima

(a) (b)

Figure 4.9: (a) Minima, catchment basins, and watersheds on the topographic representation
of a gradient image. (b) Building dams at the places where the water coming from two different
minima would merge (adapted from [Vincent 91]).

The watershed approach has been applied in many image segmentation problems
and it is known to yield robustness in extracting meaningful regions and contours
[Roerdink 01]. The watershed transform approach to image segmentation combines
region growing and edge detection techniques: it groups the image pixels around the
regional minima of the image and the boundaries of adjacent regions follow the crest
lines dividing the influence zones of the minima. This transform is a powerful tech-
nique to partition an image into many regions while retaining edge information and it
produces a complete division of the image in separated regions even if the contrast is
poor, thus avoiding the need for any kind of contour joining.

Several algorithms have been proposed for the computation of watershed transform
applied to images [Vincent 91, Beucher 93, Moga 97, De Smet 99]. Yet, the application
of watershed algorithms to an image is often disappointing: like many other methods,
the watershed algorithm is sensitive to noise and local texture, and often the image is
over-segmented into a large number of tiny regions due to the large number of min-
ima within an image or its gradient. However, unlike other methods, which typically

produce incorrect or displaced boundaries in the presence of noise, the watershed al-
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gorithm usually produces extra boundaries. This is referred to as over-segmentation,
which means that apart from the real boundaries, the algorithm also produces spurious
boundaries due to noise. Even though small changes in the edge map values can re-
route the flow of water producing different watersheds. This problem can be removed
by pre-processing the image to reduce noise and using a good post-merging scheme.
This can make the watershed algorithm robust and if combined with the right merging
scheme it is a good choice for automatic and semi-automatic segmentation problems.
One of two different algorithms are generally used to implement watershed segmen-
tation, namely immersion and rainfalling simulation. Each of these can be used to
detect the segments in the image either directly or using morphological operators. We

briefly review these approaches as follows.

Immersion watershed

In the flooding or immersion approach [Vincent 91|, single pixel holes are pierced at
each regional minimum of the activity image which is regarded as topographic land-
scape. When sinking the whole surface slowly into a lake water leaks through the holes,
rising uniformly and globally across the image, and proceeds to fill each catchment
basin. Then, in order to avoid water coming from different holes merge, virtual dams
are built at places where the water coming from two different minima would merge
(cf. Figure 4.10). When the image surface is completely flooded the virtual dams or
watershed lines separate the catchment basins from one another and correspond to the
boundaries of the regions.

Figure 4.10 illustrates the immersion simulation approach. Figure 4.10.a) shows a
1D function with five minima. Water rises in and fills the corresponding catchment
basins, as in Figures 4.10.b)-c). When water in basins b3 and b, begin to merge a
dam is built to prevent this overflow of water. Similarly, the other watershed lines are

constructed. The final result containing five segments is shown in Figure 4.10.d).

Rainfalling watershed

The original concept behind the watershed transform was rainfalling on a terrain and
flowing down paths of steepest descent to local minima [Beucher 79|. If a drop of water
were to fall on any point of the altitude surface, according to the law of gravitation, it

would flow down to a lower altitude, along the steepest slope path, until it reaches a
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Figure 4.10: TIllustration of immersion watershed transform on a continuous 1D function
interpreted as a landscape. The landscape is sequentially flooded from bottom to top. a)
Holes are pierced at each regional minimum. b) At certain flooding height there are two
regions with one dam between basin b3 and basin by. ¢) At intermediate flooding height there
are three regions with two dams. d) Final segmentation with five segments.

point or region of minimum altitude. The accumulation of water in the neighbourhood
of a minimum is called catchment basin. The whole set of points of the surface whose
steepest slope paths reach a given minimum constitutes the catchment basin associ-
ated with this minimum, and all points that drain into a common catchment basin
are part of the same watershed, in other words, watersheds are the borders between
catchment basins. Thus, raindrops falling on both sides of a watershed line flow into
different catchment basins. An illustration of a complete flooding process on a one-
dimensional function is given by Figure 4.11 where five catchment basins are defined
by the rainfalling simulation.

In the case of the rainfalling approach, every pixel can be traced to a minimum
independent of the tracing of other pixels while in the immersion approach most pixels
get their labels from a previously labelled neighbour.

The optimized implementation of the rainfalling method is two or three times faster
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Figure 4.11: Illustration of rainfalling watershed transform on a continuous 1D function
interpreted as a landscape. a) Rainfalling process defines four top levels or dams. b) Final
segmentation with the same five catchment basins as immersion watershed approach.

than the immersion method [De Smet 00]. Moreover, the rainfalling watershed treats
the floating point type so that there is no round-off error in the implementation. There-

fore, rainfalling-based watershed is more accurate than immersion-based.

4.5 Rainfalling watershed implementation

We propose a new implementation to the rainfalling watershed simulation in order to
overcome some of the problems associated with watershed transform. To describe our
implementation, we first define terms that are required to understand the working of
the algorithm. We then discuss in detail our implementation of watershed segmentation
by rainfalling simulation.

Let us consider a gradient image f whose domain is denoted as Dy C R? Let

Ng (p) denote the neighbours of a pixel p in a 8 — connectivity grid.

Definition 1 (Regional minimum) A pizel p € Dy is called a regional minimum if

Bq € N5 (p) so that f(q) < f (p).

A regional minimum is a connected set of one or more pixels of similar value sur-
rounded by pixels of higher value. In other words, a pixel belongs to a regional minimum

if there is no descending path leading from it to another pixel with strictly lower value.

Definition 2 (Activity slope) A pizel p is on an activity slope if Vp € Dy, Jq €
Ns (p) so that f (q) < f (p)-
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Definition 3 (Flat region) A pizel p lies on a flat region with altitude h if 3q €
Ns (p) so that h = f(q) = [ (p)

A flat region is a smooth connected-component region of uniform gradient values
from which it is impossible to reach a location of different altitude without having to
descend or climb. A flat region can be classified into three types namely maximum

plateau, plateau, and minimum flat region.

Definition 4 (Inner pixel) A pizel p is an inner pixel of a flat region if Vg € Ng (p)
so that f (q) = [ (p).

Definition 5 (Border pixel) A pizel p is called a border pixel p € B of a flat region

if p is on the flat region and it is not an inner pizel.

Definition 6 (Indoor pixel) A pizel p is an indoor pixel of a flat region if p is on
the flat region and 3q € Ng (p) so that f(q) > f (p).

Definition 7 (Outdoor pixel) A pizel p is an outdoor pixel of a flat region if p is
on the flat region and 3q € Ng (p) so that f (q) < f (p)-

Definition 8 (Maximum plateau region) A flat region is called ¢ maximum plat-

eau region in Dy if Vg € B, q is an outdoor.

Definition 9 (Plateau region) A flat region is called a plateau region in Dy if
dp,q € B, so that p is an outdoor and q is an indoor.

Definition 10 (Minimum flat region) A flat region is called ¢ minimum flat region

in Dy if Vg € B, so that q is an indoor.

Definition 11 (Catchment basin) A pizel belongs to a catchment basin for a given

regional minimum (RM) if one of the following three conditions are fulfilled:
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1. The pixel is on a slope line which is connected to the RM or to an indoor pixel
of the minimum flat region of RM.
2. The pizel is on the same flat region as the RM.

3. The pizel is on a activity slope line which is connected to one of the pixels fulfilling

condition 2.

The catchment basin of a regional minimum pj, is defined as the set of pixels that

are topographically closed to p, than to any other minimum.

Definition 12 (Watershed) The boundaries between basins form the watersheds.

Unlike standard watershed algorithms, the aim of the approach described in this
section is to provide a strategy for watershed segmentation which does not require a
pre-processing step in order to either sort all pixels of the input image [Vincent 91],
to pre-compute the local minima from where the basins are flooded [Meyer 94|, or to

introduce a metric for plateau pixels [Moga 97].

4.5.1 Plateau regions analysis

Two problems arise when applying the watershed transform to an image. The first
problem is the occurrence of plateau regions, i. e. regions of constant activity value
as discussed in numerous publications [Gauch 99, Stoev 00, Roerdink 01]. The second
problem, which is partly linked to the plateau region problem, is the dependency of the
watershed location on both the used algorithm and the grid connectivity [Roerdink 01].

A pixel is said to be part of a plateau region if its value is equal to the value of
at least one of its 8-neighbouring pixels in the activity image and its value is over the
pre-flooding threshold. In our work a plateau region belongs to a unique catchment
basin and a catchment basin has at most only one plateau region, as we will see below.

Conventionally, motion on a plateau surrounded by lower altitudes is oriented to-
ward the closest downward outdoor of the plateau [Moga 97|. However, physical mean-
ing of flat regions in intensity images [Vincent 91, Moga 97| is not the same as in
gradient magnitude images [Gauch 99, Stoev 00]. Flat regions in intensity images cor-
respond to uniform intensity regions of the image, while in gradient magnitude images,

flat regions correspond to uniform variations of image intensity (ramps). Therefore,
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the approach we use to analyse flat regions in rainfalling simulation has a different
interpretation relying on the activity image used (intensity image or gradient image).
To our knowledge this is the first time that this specificity is handled.

Moga and Gabbouj [Moga 97| described a parallel implementation for computing
watershed transform based on rainfalling simulation. To deal with plateau regions,
they transform the original image into a “lower complete image”, i.e. an image where
the only pixels without neighbours of lower altitude are the pixels of minima. In
this lower image the pixels belonging to a non-minimum plateau are labelled with the
geodesic distance to the plateau’s nearest outdoor. Afterwards a raindrop starts at
each pixel and its path toward the line with the steepest descent is followed until a
regional minimum is reached.

Stoev and Strasser [Stoev 00| presented a sequential approach where every pixel
p is compared with the adjacent pixels and if possible the path of steepest descent
is followed and p is pushed on a stack S. containing the pixels on the current path.
Otherwise, if a flat region is reached, the whole flat region is processed in order to
determine the nearest outdoor. If there are outdoors, the inner pixels are assigned to
the appropriate outdoors and the path continues. They do not make any distinction
between plateau regions and minimum flat regions, so it does not detect ramps in
intensity images.

Gauch [Gauch 99| avoided flat region problems by working with Gaussian smoothed
floating point images. This removes all regions with uniform intensity. However, this
approach has several problems: if the neighbours of an edge decrease in intensity rapidly
on the left and gradually on the right, the detected location of the edge will be to the
right of the correct position; in very smoothed images which have few intensity minima
the tops of same ridge-like structures may be missed.

A characteristic of some rainfalling approaches [Gauch 99, Hernandez 00| is the
predominance of edges along a 45° angle. This is due to the fact that they do not scale
the neighbouring pixels in diagonal directions on the computation of steepest descent
which produces higher values on those directions. It increases the tendency to follow
4-connected directions.

Classical rainfalling method pours water onto the terrain surface of the entire image
many times |Gauch 99, Kim 02|, thus requiring a long processing time to obtain a

satisfactory segmented image. Moreover, if the water falls on a wide and flat surface,
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the flow route to the lowest position becomes longer, and the processing time increases
in proportion to the length of the flow route. Therefore, to solve such problems, plain
regions corresponding to flat regions need to be excluded from the rainfall process.

In the next section we propose an improved approach that can increase the speed
and overcome the main shortcoming of rainfalling watershed segmentation method -
the flat regions. Our activity image is the magnitude gradient of an image which
simplifies the detection of uniform intensity regions as they are represented by zeros on
the gradient magnitude. The only plateaus are result of ramps in the image intensity
which occur less times than uniform intensity regions.

The proposed method performs rainfall only within the regions of interest (ROI)
in which a pixel shows variation in gradient magnitude (see Figure 4.12). The set of
neighbour pixels with constant gradient magnitude, i.e. within a flat region, are desert

regions where rain rarely falls or, to be more precise, where only a raindrop falls.

4.5.2 Water flow tracing

The regional minima are the points which define the bottoms of watersheds, so the goal
here is to identify the drainage directions for each pixel in the image. By following the
image gradient downhill from each point in the image, the set of points which drain to
each regional minimum can be identified.

We smooth the input image with an anisotropic filter described below and convert it
to a floating point image gradient to predict the direction of drainage in the image. This
simplifies the process of identifying minima points and reduce the over-segmentation
problem. The use of floating point gradient is quite important as it avoids the problem
of quantize the activity image which would lead to a loss of information and accuracy.

The watershed approaches usually require a pre-computation of the input image
in order to detect the minima pixels (lower complete image in [Moga 97]). Since the
plateau computing can be performed only when it is reached, in our algorithm we avoid
the pre-computation step by sequentially scan the input image only once. For each not
yet labelled pixel, the gradient descent labelling can be implemented efficiently in a
single pass through the image. Figure 4.12 presents an example of the search process to
find the regional minimum in the 3D terrain surface of an image. The yellow textured

region represents the desert region, while the other region represents the ROI.
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Search mask Desert area

Basin area
(ROI)

Figure 4.12: Example of water flow procedure using search mask (For a better illustration
of the flow procedure, the search mask in the figure is 5 x 5).

Since we use a 3 x 3 search mask to compute the downhill search of the rainfalling
watershed, to handle the image borders we build a one-pixel wide wall around the
activity image and set the height to a value higher than the maximum value of the
gradient image. This step is used to prevent water from leaking out of the surface.

A drop of water falls at (x;,y;) within the ROI, excluding the desert areas. The
downhill or gradient descent direction of a pixel is then computed by examining its
connected neighbours. Each pixel p is compared with its 8-neighbours and if it is on a
steepest descent line to some pixel ¢, the value of p in the label is set to point to ¢g. This
search process is then repeated until the centre position of the mask has the lowest
height. Hence, every time a regional minimum (x,,,y,,) is reached, the path setted in
the direction of the predecessor ¢ is traversed backwards and the pixels are labelled
with the regional minimum’s Id. Here, restricting the rainfall to ROIs reduces both
the target region to be processed and the length of the flow route, thereby increasing

the speed of the segmentation method based on the water flow model.



4.5 Rainfalling watershed implementation 101

nwp np nep

wp cp ep

sSwp sp Sep

Figure 4.13: The 3 x 3 search mask used in water flow trace (steepest descent).

In this step, the rainfalling concept is carried out by calculating the steepest descent
direction for each pixel p. The directions are limited to the pixels neighbouring the
central pixel ep of a 3 x 3 search mask, as shown in Figure 4.13, according to the

following formula:

steepest descent = min {(nwp — cp)/\/§, (np — cp) , (nep — cp)/\/i,

(wp —cp), (ep — cp),

(swp — cp)/\/i (sp—cp) ., (sep — cp)/\@}

At this time we present a new approach to handle the problem of plateau regions.
If we assume that the pixel p, which has not yet been processed, is the next pixel on

the path, five cases illustrated in Figure 4.14 can happen:

Case 1: p has no adjacent pixel with lower altitude, hence p is an isolated regional
minimum;

Case 2: p has only one adjacent pixel ¢ with lowest altitude. This is the regular case,
where the algorithm follows the steepest descent path;

Case 3: p has adjacent pixels with the same altitude which means that p is an indoor
pixel;

Case 4: p has at least one adjacent pixel with the same altitude and at least one lower
pixel ¢ which means that p is an outdoor pixel;

Case 5: p has more than one adjacent pixel with lowest altitude where ¢; and ¢, are
non-adjacent pixels. In this case the algorithm cannot determine which of the

adjacent pixels is the one the raindrop should flow to.

When case 1 occurs, a regional minimum is reached and a new Id is assigned to
the pixels on the path. In case 2, the pixel p is assigned to the path and if the lowest

neighbour ¢ is not marked yet, it is considered as the next processed pixel: p «— ¢q. If
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Figure 4.14: The five cases which can occur when the steepest descent path is followed.
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q is already marked and it is an indoor pixel to a plateau region, the current path is
terminated and its pixels are labelled with the label of p; if ¢ is not an indoor pixel, the
current, path is also terminated and its pixels are labelled with the label of ¢. In case
3, if p is an indoor pixel to a plateau region the current path comes to an end and its
pixels are labelled with the label of the pixel that precedes p in the path. Then the
reached plateau has to be processed, since the steepest path cannot be unequivocally
determined within plateaus. Thus, when a plateau is reached we label every pixel on
the same plateau with the same label. We hold the location of indoor pixels to be used
in cases 2 and 5. If p is an indoor pixel to a minimum flat region?, the path is labelled

with the label of p. The same label is assigned to all the pixels in the flat region. In

3 A pixel is on a minimum flat region if its value is lower than the pre-flooding threshold.
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case 4, the path is terminated and labelled with label of o; the plateau is labelled
with p label and a new drop is put in ¢ pixel which begins a new path. Case 5 occurs
when the pixel p is adjacent to m non-adjacent pixels ¢;,2 = 1,..,m with the same
altitude. In this case the algorithm cannot unequivocally decide which pixel should
be processed next. In [Moga 97|, the authors consider the first detected pixel with
the lowest altitude as the next pixel to be processed which could produce erroneous
results. In our approach all adjacent lowest pixels are traversed as if they were hit by
a raindrop. After processing all ¢;, the pixel with the lowest and nearest minimum is
chosen to be the next processed one p < ¢; and the path computation continues.
Since this approach is directed towards image segmentation, we put emphasis on the
decomposition of an image into labelled regions or, in terms of the watershed transform,
into catchment basins, whereas the extraction of watershed lines is not considered as
an output of the algorithm. Our watershed produces a segmentation with zero-width
watershed lines. This means that we assign to each pixel the label of the catchment
(minimum) it belongs to so that the set of basins tessellates the image plane. Once all
pixels in the image have been associated with their respective minima, the output image
will contain the watershed regions of the image. We can simply locate the watershed

lines by bounding the output image detecting changes in watershed region numbers.

4.6 Multiclass normalized cut

Although the pre-processing step serves to reduce the number of regions in the output
of the watershed algorithm, it does not resolve the problem of over-segmentation. From
our observation and testing it reveals that even when the small gradients are set to
zeros, it could still cause over-segmentation. Generally there are two methods to reduce
this over-segmentation. One is to use the markers [Grau 04, Levner 07| before the
initial segmentation to extract the desired regional minimal to flood them. Although
the markers work well for many types of images (especially medical images) their
selection requires either explicitly prior knowledge of the image structure or careful
user intervention. The other is to use some criteria to merge the regions produced by
the initial segmentation. In our algorithm we use the latter method to produce the final
segmentation. Thus we propose a spectral-based multiclass normalized cut approach

to produce a meaningful segmentation.



104 Hybrid spatial segmentation: the model

Traditionally graph-based methods map an image onto a graph where nodes are
composed of pixels and links are composed of connections between nodes. Each node
has a weight based on some features and each link has a weight generally defined by
the weight difference of the nodes it connects. The algorithm will group nodes or will
cut the graph into connected regions [Shi 00] by link weight (reflecting similarity of
pairs of nodes). It can be used without any supervision, and it does not require a
learning phase. Graph-based segmentation takes into account global image properties
as well as local spatial relationships and results in a region map that is ready for further
processing, e.g. region labelling.

These methods have been applied in clustering and particularly in image seg-
mentation. It is largely recognized that segmentation can be considered as a graph-
partitioning problem; there are several approaches in the literature to solve this prob-
lem, including the spanning trees [Kwok 97|, graph cuts [Shi 00], and the binary par-
tition tree [Salembier 00].

There are different ways to measure the quality of a segmentation but in general
we want the elements in a region to be similar and the elements in different regions
to be dissimilar. This means that links between two nodes in the same region should
have relatively low weights, and links between vertices in different regions should have
higher weights. The normalized cut criterion balances the weight of the cut with the
weights of the resulting regions.

The core computational technique of the normalized cut algorithm is a generalized
eigenvalue problem. Although it is an elegant way to optimize the normalized cut
criterion, the computational complexity of an eigenvalue decomposition is very high.
In the original description of the normalized cut algorithm for image segmentation, one
node corresponds to one pixel, so the number of nodes in the graph equals the number
of pixels in the image.

Spectral methods use the eigenvectors and eigenvalues of a matrix derived from the
pairwise similarities of pixels. The problem of image segmentation based on pairwise
similarities can be formulated as a graph partitioning problem in the following way:
consider the weighted undirected graph G = (V, E, W) where each node v; € V' cor-
responds to a locally extracted image features, e.g. pixels and the links in £ connect
pairs of nodes. A weight w; ; € R{ is associated with each link based on some property

of the pixels that it connects (e.g., the difference in intensity, colour, motion, location
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or some other local attribute). Let ' = {V;}f:l be a multiclass disjoint partition of
V such as V. = UM,V and V,; NV, = 0,i # j. Image segmentation is reduced to
the problem of partitioning the set V' into disjoint non-empty sets of nodes (V7, .., Vi),
such similarity among nodes in V; is high and similarity across V; and V; is low. The
solution in measuring the goodness of the image partitioning is the minimization of the
normalized cut as a generalized eigenvalue problem.

In order to reduce the number of nodes in the graph we replace the individual pixels
by micro segments in a pre-processing stage. Image is decomposed into a number of
atomic regions where each one is a vertex in the graph RSG. However, it is very
important that the atomic regions will already yield a meaningful segmentation, i.e.
the atomic regions must be homogeneous and the edges contained in the image must
correspond to segment boundaries. Watershed segmentation is a classical and effective
method for image segmentation in grey scale mathematical morphology that delivers
these requirements. This method, in a wide perspective, has been applied successfully
into some fields like remote sensing images processing of satellite and radar [Chen 04],
biomedical applications [Grau 04] and computer vision [Kim 03].

Shi and Malik [Shi 00| introduced the normalized cut segmentation criterion for
bipartitioning segmentation. Let V4, Vg be two disjoint sets of the graph V, NVp = (.
We define links (V4, Vg) to be the total weighted connections from V4 to Vp:

links (Va, V)= Y wiy (4.11)

1€Va,jEVE

The intuition behind the normalized cut criterion is that not only we want a parti-
tion with small link cut but we also want the subgraphs formed between the matched
nodes to be as dense as possible. This latter requirement is partially satisfied by in-
troducing the normalizing denominators in the NCut equation. The normalized cut

criterion for a bipartition of the graph is then defined as follows:

links (A, B) N links (A, B)
links (A, V) ' links (B,V)

Necut (A, B) = (4.12)
By minimizing this criterion we simultaneously minimize the similarity across par-
titions and maximize the similarity within partitions. This formulation allows us to

decompose the problem into a sum of individual terms and formulate a dynamic pro-
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gramming solution to the multiclass normalized cut (kNCut). So, the NCut problem

is naturally extended to a kNC'ut, finding a partition I" that minimizes the function

links (vl,Vl) links (‘/2,72) links (Vk,vk)
kENCut (I') = e+ ——= 4.13
Cut (D) = s i)+ ks ) T Tinks (V) (4.13)
where V; represents the complement of V; and links (V4,Vp) = Y. wij.

1€Vy,jEVE
For a fixed k partitioning of the nodes of GG, reorder the rows and columns of W

accordingly so that

W 21 22 2k (4.14)

and the rows of W correspond to the nodes in V;. Let D = diag (D, ..., D) be the
n x n diagonal matrix so that D; is given by the sum of the weights of all links on node
k
i: D; =Y W,;. It is easy to verify that
j=1

links (%,Vi) =D, — W and links (V;, V') = D; (4.15)

Barnes [Barnes 82| formulated the multiclass partitioning problem in terms of an
indicator matrix. A multiclass partition of the nodes of G is represented by an n x k
indicator matrix X = [xq,...,Xx] where X (i,1) = 1 if ¢ € V} and 0 otherwise. Since a
node is assigned to one and only one partition there is an exclusion constraint between

columns of X: X1, = I,,. It follows that

links (V;, Vi) =xi (D - W)x; and links (V;, V) = x{ Dx; (4.16)

Therefore,

er(D—W)XlJr xi (D — W) x;
x1 Dx; X DXy

ENCut (I') =

(4.17)

o (XTWXl - XEWXk)

xIDx;  xIDxy

subject to X7 DX = I,
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The solution for the generalized Rayleigh quotients that compose Equation (4.17)
is the set of eigenvectors X associated with the set of the smallest eigenvalues & =

{0 =11 < ... <1y} of the system
(D - W)X = ®DX (4.18)

However, this problem is NP-hard [Shi 00, Meila 01] and therefore generally in-
tractable. If we ignore the fact that the elements of x; are either zero or one, and allow
them to take continuous values, by using the method of Lagrange multipliers as shown
in [Chan 94|, Equation (4.18) can be expressed by the standard eigenvalue problem.
Let y; = DY2x; and Y = [y1,y2, ..., Yi-

WY =YA (4.19)

subject to YTY = I, where W = D~Y2W D=2 is the normalized graph Laplacian
matrix?, with A = {1 =X > ... > \;} where \; = 1 — v;.

If Y is formed with any k eigenvectors of W then WY = YA where A is the k x k
diagonal matrix formed with the eigenvalues corresponding to the k eigenvectors in Y.

These k eigenvectors must be distinct to satisfy Y7Y = I;,. This means that
YWY =YTYA=LA=A (4.20)

and the trace of YWY is the sum of the eigenvalues corresponding to the k eigen-
vectors in Y. It follows that this sum is maximized by selecting the eigenvectors cor-
responding to the k largest eigenvalues of W, So, Equation (4.17) becomes equivalent

to

k
ENCut (I') = k — trace <YTWY> =k— Z i (4.21)
i=1

Theorem 1 (Fan’s Theorem [Fan 49]) Let the eigenvalues \; of a symmetric ma-
triz Q) be so arranged that A\ > Ay > ... > \,. For any positive integer k < n, the sums
Zle i and Zle Ant1—i are respectively the maximum and minimum of Zle Yy Qy;

when k orthonormal vectors y;(1 < j < k) vary in the space.

4Although the Laplacian matrix is usually represented by I — W, replacing W with I — W only
changes the eigenvalues (from A to 1 — \) and not the eigenvectors.
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It follows from Fan’s Theorem that the maximum on the right hand side of Equation
(4.21) is achieved when Y is taken to by any orthonormal basis for the subspace spanned
by the eigenvectors corresponding to the k largest eigenvalues of W. From this we reach

the following relaxed optimization problem

min  kNCut (I') =k — max trace (YTWY) (4.22)
XTDX=I, YTY=I,
By putting together Fan’s theorem with Equation (4.22) we establish a lower bound
[ (k) on kNCut (I') as

k
min N Cuty () > k — z; by (4.23)

where A, ..., A, are the k largest eigenvalues of W. (For a proof see [Meila 01].)

For k = 2 the bound becomes [(2) = 2 — (1 + Xg) = 1 — Ay = 1y that is the
second smallest eigenvalue of the generalized eigensystem of Equation (4.18). This is
consistent with the bi-partitioning method proposed by Shi and Malik [Shi 00].

The core computational technique of the normalized cut algorithm is the eigenvalue
problem Equation (4.27). It requires the solution to a large sparse system of symmetric
equations. The LANCZOS algorithm [Scott 87| provides an excellent method for ap-
proximating the eigenvectors corresponding to the smallest or the largest eigenvalues
of a sparse matrix with a time complexity of O (n3/2k) where n is the dimension of the

matrix and k£ the number of eigenvectors.

4.6.1 Multiclass NCut in a random walk view

The Markov chain describing the sequence of nodes visited by a random walker is called
a random walk on a weighted graph. We associate a random variable, s;, representing
the state of the Markov chain to every node in a step ¢; If the random walker is in state
1 at time ¢, we say s; = 1.

We define a random walk by the following single-step transition probability p; ; that
represents the probability of jumping from a node 7 to a node j in one step, given that
we are in node ¢, which is proportional to the weight w; ; of the link connecting nodes
i and j: p;;j = Pr(si1 = j|s¢ = 4] = w;;/d;, where d; is the degree of node i, given by

the sum of links connecting node 7 to all the nodes.
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The kNCut criterion can also be understood in the Markov random walk framework.
Let V4, Vg € V. We define Py, v, = Pr[V4 — Vp|V4] as the probability of the random

walk going from set V4 to set Vg in one step if the current state is in Vjy.

ZiEVA,jEVB wi,j N links (VA, VB)

Py, v, = = 4.24
VaVe > ey Wiy links (Va,V) (4.24)
From this and from Equation (4.17) we express Equation (4.13) as:
k
ENCut (T) =k =Y Py, (4.25)
i=1

The stochastic transition matrix P is obtained by normalizing the similarity matrix

in order to the rows sums be all 1 (the degree matrix of P is the identity matrix).
P=D"'W (4.26)

The NCut is strongly related to the concept of low conductivity sets in the Markov
random walk [Meila 01]. Minimizing the NCut for the bipartition V4, V5 means that
the probabilities of evading set V4, once the walk is in it and of evading Vg are both
minimized.

The relationship between the Laplacian matrix W and the Markov random walk
transition matrix P was presented by Meila and Shi [Meila 01]. Equation (4.19) can

be transformed into a standard eigenvalue problem of,
PZ =AZ (4.27)

where the eigenvectors of P are related with the eigenvectors of W by Z = D7Y?%Y.
Since D is diagonal this means that the i-th row of Y is the same as the i-th row
of Z scaled by D;/Q. So after the rows of Z are normalized to length 1, the optimal
solution obtained from Z is identical to the solution obtained from Y.
Z = [z1,..., 2] is an n x k matrix formed by stacking the k largest eigenvectors
of the eigensystem from Equation (4.27) in columns. The continuous solution X is

obtained from Z by renormalizing each of Z’s rows to have a unit norm.

X=z(z"z)" (4.28)
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Recovering a discrete solution X from the continuous solution X is however a
complex task. To overcome this problem, a majority of the theoretical work on spectral

methods have dealt with successive bi-partitioning generating 2¥ partitions [Shi 00].

4.6.2 Discrete partition

Due to the orthogonal invariance of the eigenvectors [Ng 02| any continuous solution
can be replaced by a discrete solution X = XR for any orthogonal matrix R € RF*%,
We can obtain this optimal discrete solution using the classical perturbation theory
for matrix eigenvalue problems. In this work we follow a similar approach to the one
presented by Yu and Shi in [Yu 03].

To discretize Z into X, we first normalize the rows of Z into X and then search for
the rotation R that brings X the closest possible to a binary indicator vector X. The
optimum discrete solution can be found iteratively. Given a continuous solution, we
solve for its closest discrete partitioning solution; given a discrete solution, we solve for
its closest continuous optimum. After convergence, X corresponds to a partitioning
that is nearly globally optimal.

An optimal partition X should satisfy the following conditions:

2

minimize ¢ (X, R) = HX ~ XR

subject to X € {0, 1Y%, XTI, =1, (4.29)
RT'R =1,

This can be solved by an iterative optimization process:

~ 2
e Given R, we want to minimize ¢ (X) = HX — XRH . The optimal solution is

given by non-maximum suppression:

X (i,m) = istrue (m = arg max [f( (, k;)D ,1eV (4.30)

We let the first cluster centroid to be given by the row of the continuous solution
X corresponding to the row of Z with the maximum sum, and then repeatedly choose
as the next centroid the row of X that is closest to being 90° from all the centroids

already picked.
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2

e Given X, we want to minimize ¢ (R) = HX — XR|| . The solution is given by

singular value decomposition (SVD) diagonalization:

U.Q.V=XTX
(4.31)
R=VUT

where U and V are k x k orthonormal matrices, UTU = VTV = I, and Q is a
k x k matrix that contains the singular values of X TX in decreasing order on its

diagonal and it is equal to zero elsewhere.

Since ¢ (R) = 2 (n — trace (2)), the larger trace () is the closer X is to X R.

Such iterations monotonously decrease the distance between the continuous opti-
mum and the discrete solution.

Figure 4.15 shows a comparison between continuous and discretized eigenvectors.
Although there is correct information in the continuous solution, it could be very hard

to split the pixels into segments.

4.7 Region similarity graph

Spectral-based methods use the eigenvectors and eigenvalues of a matrix derived from
the pairwise similarities of features (pixels or regions). This effect is achieved by con-
structing a fully connected graph.

Based on the graph construction, there are two main groups of methods for image
segmentation: region-based methods where each node represents a set of connected
pixels, and pixel-based methods where each node corresponds to a pixel of the image.
Region-based methods are usually modelled by a region adjacency graph (RAG). How-
ever, in the merging process these methods take into account only local information.
Pixel-based methods construct an undirected weighted graph, taking each pixel as a
node and connecting each pair of pixels with a weighted link. This reflects the likeli-
hood that these two pixels belong to the same object. In these methods segmentation
criteria are based on global similarity measures. In general, these methods are based
on the partition of the graph by optimizing some cut value instead of merging the most

similar adjacent regions.
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Figure 4.15: Continuous vs. discrete eigenvectors: (a) A generalized continuous eigenvector.
(b) The discrete solution of the same eigenvector. (c)-(d) Graphic representation of values
from the red rows in the images.

Considering all pairwise pixel relations in an image may be too computational ex-
pensive. Unlike other famous clustering methods [Shi 00, Yu 03| which use all pixels
to construct the graph, our method is based on selecting links from a region sim-
ilarity graph where each node corresponds to an atomic region. We represent the
over-segmented image by a weighted undirected graph G = (V, E, W), called region
similarity graph (RSG). The RSG is similar to the region adjacency graph (RAG)
[Haris 98, Hernandez 00| but it allows the existence of links between pairs of non-
adjacent regions.

The proposed RSG structure takes advantages of both, region and pixel-based rep-
resentations. The set of nodes V' corresponds to the over-segmented regions where
nodes are represented by the centroid of each micro-region. The set of links E repre-
sent relationships between pairs of regions, and the link weights W represent similarity
measures between pair of regions and they are defined taking into account the intensity

difference between regions and the maximum amount of gradient in the line connecting
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the regions centroids (intervening contours). Figure 4.16 shows a synthetic image and

its corresponding RAG and RSG.

Figure 4.16: (a) Original image. (b) Corresponding RAG. (¢) RSG with links between
non-adjacent regions.

(a)

Some characteristics of the RSG model that yield to some relevant advantages with

regard to the RAG model are:

e [t is defined once and it does not need any dynamic updating when merging
regions. Merging two regions in a RAG structure requires a considerable amount
of processing to update RAG to reflect changes generated by the merging. It
requires identity updating for every pixel in the merged region, as well as every
region adjacent to those two regions.

e The segmentation, formulated as a not necessarily adjacent graph partition prob-

lem, leads to the fact that extracted objects are not necessarily connected.

4.7.1 Pairwise spatial similarity

The quality of a segmentation based on a RSG depends fundamentally on the link
weights (similarity) that are provided as input. The weights should be large for nodes
that belong to the same group and small otherwise. Using the micro-regions obtained in
the pre-segmentation step as graph nodes, the corresponding weight function W € Ry
is defined assigning each link with the similarity between two nodes.

This weighted graph depends on external parameters that are related to the defini-
tion of similarity (which is task dependent) and to the transformation from perceptual
similarity to link weight. Exponential decreasing function is supported psychophysi-
cally. It has been argued by Shepard [Shepard 87| that there is a robust psychological

law that relates the distance between a pair of items in psychological space and the
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probability that they will be perceived as similar. Specifically, this probability is a
negative exponential function of the distance between the pair of items.

In the RSG model nodes are represented by the centroid of each region as a result
of the initial over-segmentation. Links together with their associated weights are de-
fined using the spatial similarity between nodes, their connectivity and the strength
of intervening contours [Malik 01] between region centroids. The resulting graph is a
structure where region nodes represent complete image regions.

For each pair of nodes, node similarity is inversely correlated with the maximum
contour energy encountered along the path connecting the centroids of the regions.
If there are strong links along a line connecting two centroids, these atomic regions
probably belong to different segments and should be labelled as dissimilar. So, edge
information can be integrated by reducing the pairwise similarity of such centroids.

Let 7 and j be two atomic regions:

maXteline(i,j) ”OE* (f“ TJ)”QI (4 32)

Wi (1,7) = exp | —
ic (4,7) p [ )
where line (7, j) is the straight line between centroids z; and ;.

The intensity distance between nodes contributes for the link weight according to

the following function:

wr (i, §) = exp (—M> (4.33)

These cues are combined in a final link weight similarity function, with the values

0. and oy selected in order to maximize the dynamic range of W:

In almost all the graph-based approaches proposed in the literature the spatial
distance cue is also used to compute the similarity between graph nodes. However,
during our experiments, we note that such cue is responsible for the partition of image
homogeneous areas - an issue commonly associated to normalized cut algorithm. It is
demonstrated by the common sense that if we consider two atomic regions belonging
to the same homogeneous area but distant from each other if we decrease the similarity

between nodes with spatial distance the probability that normalized cut will not merge



4.8 Hybrid segmentation framework 115

the two regions will increase. Thus, we decided not to use centroid spatial distance as a
similarity cue. To this decision we take in attention the fact that intervening contours

are equivalent to spatial distance without suffering from the same problems.

4.7.2 Implementation details of the RSG

For a computational consideration it is important to sort and label all the regions
created by the watershed segmentation. In the following some implementation details
are given about the construction of the RSG. For each region r;, spatial location 7; is
computed as centroids of their pixels. If the region is convex, the centroid is inside of it
but if the region is concave, the centroid changes to the corresponding location of the
nearest boundary pixel of that region. Two dynamic data structures are used through
which it is very convenient to add or remove regions: 1) A label map in which each
pixel value corresponds to the label of the segment that this pixel belongs to; 2) An
array of segments where each segment is represented by a linked-list of pixels which
correspond to the pixels that belong to the segment. This list includes the location
and the grey-level of each pixel.

This dual representation of a partitioned image allows for a very efficient imple-
mentation. The label map grants us immediate access to the label of every pixel in the
image. The array of lists gives us immediate access to the set of pixels that belong to
each segment. Using this representation two different segments can be merged into one
by iterating through the corresponding linked-lists and updating the label map. Even
more, we can easily obtain the centroid and the mean value of each segment.

To compute the similarity matrix the current approach uses only image brightness
and magnitude gradient. Additional features such as texture, could be added to the
similarity criterion. This may slow the construction of the RSG but the rest of the

algorithm will proceed with no change.

4.8 Hybrid segmentation framework

The algorithm described in this chapter can be well classified into the category of
hybrid techniques (see section 4 of chapter 2), since it combines the edge-based, region-
based, and the morphological techniques together through the spectral-based approach.

Rather than considering our method as another segmentation algorithm, we propose
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that our hybrid technique can be considered as an image segmentation framework
within which existing image segmentation algorithms that produce over-segmentation
may be used in the preliminary segmentation step.

To improve efficiency we introduce a graph cut formulation which is built on a pre-
computed image over-segmentation instead of image pixels. In this framework graph
(G is not a necessarily adjacency graph with nodes being a set of atomic regions. We
propose a powerful image segmentation algorithm by combining watershed transform
and the multiclass spectral method to complement their strengths and weaknesses.

In most images there are usually large regions of pixels that belong to the same
salient region and have only small interior intensity variations and they are thus easily
identified. To combine these pixels into one region and to reduce the spatial resolution
without losing important information we have decided to use a gradient watershed algo-
rithm that provides over segmented but homogeneous regions with well located region
boundaries. Since watershed segmentation provides a good set of object boundaries,
this approximation produces reasonable results and improves the speed significantly.

The normalized cut and watershed approaches have complementary strengths:

e In the output of the watershed approach we have a reduced complexity represen-
tation. The dimension of the graph is far smaller when assigning nodes to atomic

regions than to pixels, reducing the cluster computation.

e We have complete freedom in the choice of similarity function. This means that
region interior as well as gradient information can be used. In particular atomic
regions allow the comparison of distributions of feature vectors rather than single
points as with the pixel based algorithms.

e Further, while the watershed depends fundamentally on local measurements of
similarity (via the gradient function) region affinities can be calculated over the

whole image, if desired, leading to a more global view of the similarity structure.

The combination of watershed and spectral methods solves the weaknesses of each
method by using the watershed to provide small prototype regions from which similarity
matrix could be obtained. Rather than clustering single feature points we will clus-
ter micro-segments, confident that the underlying primitive segments are reliable. Our
approach actually prefers the objects to be over-segmented into a number of smaller re-

gions to ensure that a minimal amount of background is connected to any of the object
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regions. The new criterion takes joint advantage of the two methods aiming at com-
bining the best qualities of both segmentation approaches, giving a final segmentation
that is more visually appropriated.

Preliminary segmentation by watershed transform is capable of producing atomic
regions with complete and accurate boundaries, which can be considered as a good
starting point for region merging. We present a new approach for locally applying a
floating point based rainfalling simulation in a single image scan. In the second stage
these atomic regions are used to construct a graph representation of the image, which is
processed by a discrete multiclass normalized cut algorithm (kNCwut). This combined
framework results in a considerable speed-up of the entire algorithm.

A critical issue in watershed techniques is known to be over-segmentation i.e. the
tendency to produce too many basins [Haris 98]. Several methods have been proposed
in the literature to reduce the spurious boundaries created due to noise and produce
a meaningful segmentation. Ogor [Ogor 95| proposes morphological opening and clos-
ing. Gauch [Gauch 99| uses Gaussian blurring. Hernandez and Barner [Hernandez 00]
suggest median filtering while De Smet et al. [De Smet 99| apply non-linear filtering
by anisotropic diffusion.

In this work we provide three methods to overcome this problem. First, bilateral
anisotropic filtering [Tomasi 98| can be applied to remove noise from the image. Sec-
ondly, some of the weakest edges are removed by a gradient minima suppression process
known as pre-flooding. This concept uses a measure of depth of a certain basin. Prior
to the transform, each catchment basin is flooded up to a certain height above its
bottom, i.e. the lowest gradient magnitude and it can be thought as a flooding of the
topographic image at a certain level (flooding level). This process will create a number
of lakes grouping all the pixels that lie below the flooding level (see Figure 4.17). This
step is useful in reducing the influence of noise and partly eliminates over-segmentation.

The third one, handles to control over-segmentation eliminating spurious tiny re-
gions associated with uniform regions through a merging step. This eliminates tiny
regions which have similar adjacent regions, while maintaining the accuracy of the
partition. This stage is required to reduce the computational complexity in the graph
partitioning. Another advantage of these steps is to prevent large homogeneous (flat)
regions from being split in the graph-based segmentation (a common problem with

balanced graph cut methods).
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activity slope

watersheds

regional minima lakes

Figure 4.17: Pre-flooding process. Lakes are formed by merging neighbouring pixels below
the flooding threshold.

Our approach to solve image segmentation as a graph partitioning problem is related
to O’Callaghan and Bull [Callaghan 05] and De Bock et al. [De Bock 05] work. How-
ever, there are important differences between their works and ours: although De Bock
et al. use a rainfalling watershed, it does not handle the problem of flat regions. Thus,
when a raindrop falls in such kind of regions it forms a single region. It results in
a larger number of atomic regions with dimension 1; O’Callaghan and Bull use an
immersion-based watershed to compute initial segmentation; In the merging process
De Bock et al. perform a bipartition normalized cut similar to the one presented in
[Shi 00] and O’Callaghan and Bull use a weighted mean cut function for graph parti-
tioning. It is also important to note that both schemes use a simple region adjacency

graph structure to compute region similarity.

4.9 Summary

In this chapter we have proposed a new global image segmentation algorithm which
combines edge- and region-based information with spectral techniques through the mor-
phological algorithm of watersheds. A non-linear smoothing (bilateral filter) is used to
reduce over-segmentation in the watershed algorithm while preserving the location of
the image boundaries. The purpose of the pre-processing step is to reduce the spatial
resolution without losing important image information. An initial partitioning of the
image into primitive regions is set by applying a rainfalling watershed simulation on
the image gradient magnitude. This step presents a new approach to overcome the
problems with flat regions. This initial partition is the input to a computationally effi-

cient region segmentation process (multiclass normalized cut algorithm) that produces
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the final segmentation. The latter process uses a region similarity graph representation
of the image regions.

To prevent large homogeneous regions from being split (a common problem of
balanced graph based methods) we computed an over-segmentation of the image using
the watershed technique. Clearly, large homogeneous regions are not partitioned into
separate regions, unless there is a small amount of linking pixels between parts of the
same region.

Using small atomic regions instead of pixels leads to a more natural image repre-
sentation - the pixels are merely the result of the digital image discretization process
and they do not occur in the real world. Besides producing smoother segmentations
than pixel-based partitioning methods, it also reduces the computational cost in several
orders of magnitude.

Any region-based segmentation algorithm which produces an over-segmented image
can be used to extract the micro regions that will be combined based on the similarity
function. So, our framework can easily integrate these algorithms and overcome their

problems of over-segmentation in order to produce a better segmentation.



120 Hybrid spatial segmentation: the model




CHAPTER b

Region-based motion segmentation:

the model

This chapter describes an approach for integrating motion estimation and
region clustering techniques with the purpose of obtaining precise multiple
motion segmentations. Motivated by the good results obtained with the al-
gorithm proposed in Chapter 4 we propose a hybrid approach where motion
segmentation is achieved within a region-based clustering approach taken
the initially result of a spatial pre-segmentation and extended to include
motion information. Motion vectors are first estimated with a multiscale
variational method applied directly over the input images and then refined
by incorporating segmentation results into a region-based warping scheme.
The complete algorithm facilitates obtaining spatially continuous segmenta-

tion maps which are closely related to actual object boundaries.

5.1 Introduction

Motion segmentation is basically defined as grouping pixels that are associated with a
smooth and uniform motion profile. The segmentation of an image sequence based on
motion is a problem that is loosely defined and ambiguous in certain ways. Though
the definition says that regions with coherent motion are to be grouped, the resulting
segments may not conform to meaningful object regions in the image.

The analysis of image motion and the processing of image sequences using motion

information is becoming more and more important as video systems are finding an
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increasing number of applications in the areas of coding, entertainment, robot vision,
education, personal communications and multimedia. In video surveillance, segmen-
tation can help to detect special events or to track objects over time. To reliably
classify regions of an image sequence by their motion information is an important part
of many computer vision systems. In video surveillance it is important to be able to
detect which are the regions with movement. If one has detected a foreground object,
further operations can be done on that object, such as recognition, identification or
tracking. In robotics it is important to know which foreground objects are in order to
properly interact with them. In video conferencing one wants to decide which objects
are foreground and which ones are background to be able to encode the parts separately
in order to save bandwidth, as the background needs to be transmitted only once.

Recent applications such as content-based image/video retrieval, like MPEG-7
[Chang 01], and image/video composition, require that the segmented objects are se-
mantically meaningful. Indeed, the multimedia standard MPEG-4 [MPEG4 99| speci-
fies that a video is composed of meaningful video objects. In order to obtain a content-
based representation, an image sequence must be segmented into an appropriate set of
semantically shaped objects or video object planes. Although the human visual system
can easily distinguish semantic video objects, automatic video segmentation is one of
the most challenging issues in the field of image processing.

Motion segmentation is closely related to two other problems, motion detection
and motion estimation. Motion detection is a special case of motion segmentation
with only two segments corresponding to moving versus stationary image regions (in
the case of a stationary camera) or global versus local motion regions (in the case of
a moving camera) [Dufaux 95]. In these cases, the motion profile of a pixel represents
only the probability that a pixel is moving or not. When using stationary cameras,
background subtraction is a particularly popular method to segment foreground and
background. The idea behind background subtraction is to compare the current image
with a reference image of the background, and from there decide what is background
and what is not by looking for change at each pixel.

There is a strong interdependence between the definition of the spatial support of a
region and of its motion estimation. On one hand, estimation of the motion information
of the region depends on the region of support. Therefore, a careful segmentation of

the regions is needed in order to estimate the motion accurately. On the other hand, a
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moving region is characterized by coherent motion characteristics over its entire surface
(assuming that only rigid motion is permitted). Therefore, an accurate estimation of
the motion is required in order to obtain an accurate segmentation of the region.

All the motion estimation approaches assume that there is point correspondence
between two consecutive frames which induces dense motion vector field of an image.
No matter what method is used, at some stage we need a mechanism to assign each
point to one of the recovered motions. This mechanism must take into account the
smoothness of the world, i.e., the intuitive notion that the points belonging to the
same motion are also spatially clustered in the image. This fact has been widely
acknowledged in the literature on 2D motion segmentation [Shi 98, Cremers 05].

The estimation of an accurate motion field plays an important role in motion seg-
mentation. However, general motion estimation algorithms often generate an inaccu-
rate motion field mainly at the boundaries of moving objects, due to reasons such as
noise, aperture problem, or occlusion. Therefore, segmentation based on motion alone
results in segments with inaccurate boundaries.

In this chapter, a hybrid framework is proposed to integrate differential optical flow
approach and region-based spatial segmentation approach to obtain for the accurate
object motion. Our method adopts the variational optical flow approach of Brox et al.
[Brox 04] in conjunction with several proposed techniques to convert the dense optical
flow field to region-based motion field, with the suppression of noise and outliers.

Motion information will be initially represented through a dense motion vector field,
i.e., it estimates which one best relate the position of each pixel in successive image
frames. For the task at hand we adopt a high accuracy optical flow estimation based
on a coarse-to-fine warping strategy [Brox 04| which can provide dense optical flow
information. This method accelerates convergence by allowing global motion features
to be detected immediately, but it also improves the accuracy of flow estimation because
it provides better approximation of image gradients via warping. This technique is
implemented within a multiresolution framework, allowing estimation of a wide range
of displacements.

Handling spatial and temporal information in a unified approach is appealing as
it could solve some of the well known problems in grouping schemes based on motion
information alone [Wang 94, Weiss 97|. Brightness cues can help to segment untextured

regions for which the motion cues are ambiguous and contour cues can impose sharp
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boundaries where optical flow algorithms tend to extend along background regions.
Graph based segmentation is an effective approach for cutting (separating) sets of
nodes on a graph producing segmentation. As such, its extension to integrate motion
information is just a matter of adding a proper similarity measure between nodes in

the graph.

5.2 Previous work in motion segmentation

There is large literature on methods for segmenting from motion (see [Zhang 0la)
for a comprehensive review on motion segmentation). The majority of the proposed
approaches rely on the partition of each frame into solely two regions: one object and
the background which could be too restrictive in some applications, e.g. coding.

A common class of methods for segmentation from motion is based on matching
features points, such as corners or interest points. Since these systems process only a
relatively sparse set of feature points, they are used to detect and track moving objects
in a scene, rather than segmenting them with high resolution. Instead of matching
feature points, some systems match small image blocks. Others, focusing on the si-
multaneous solution of motion estimation and segmentation assume a fixed number
of regions and they are still more concerned with motion estimation for compression
[Chang 97].

We can divide motion segmentation methods into the following three categories:

e Optical flow based segmentation.
e Simultaneous or sequential recovery of motion and segmentation.

e Fusion of motion estimation and static segmentation.

In the first approach, a dense optical flow field is recovered first and then seg-
mentation is performed by fitting a model (often affine) to the computed flow field
[Mémin 98|. Geometry of the scene can be used to combine this approach with a re-
gion growing approach. Reliable estimation of optical flow is difficult and separating the
two processes causes errors to propagate from the first stage to the segmentation. The
second approach attempts to solve the problems of the first one by doing simultaneous
or sequential motion recovery and segmentation. In these techniques the segmenta-

tion is often formulated by using a Markov Random Field (MRF), which is a way of
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incorporating spatial correlation into the segmentation process. The third approach
aims to improve segmentation performance by using static segmentation based on the
intensities of a single image to provide cues for the dynamic segmentation [Dufaux 95].
Gelgon and Bouthemy |Gelgon 95| used a region-level graph labelling approach to com-
bine the static and dynamic segmentations. Since the support area for estimating the
motion is chosen based on the static segmentation, biases in the motion estimation are
likely to mislead the segmentation algorithm.

Other approaches to motion segmentation have been developed including the sta-
tistical model fitting algorithm of Bab-Hadiashar and Suter [B.-Hadiashar 98| and mo-
tion based segmentation techniques which do not use the dense motion estimation
approaches are just outlined. For instance, Torr [Torr 95| proposed using the funda-
mental matrix for motion segmentation purposes. These algorithms are feature based
and used a sparse set of features to identify the objects. Therefore, the number of data
is relatively small.

Multibody factorization algorithms [Costeira 95| provide an elegant framework for
segmentation based on the 3D motion of the object. These methods get as input a
matrix that contains the location of a number of points in many frames and they
use algebraic factorization techniques to calculate the segmentation of the points into
objects, as well as the 3D structure and motion of each object. A major advantage of
these approaches is that they explicitly use the full temporal trajectory of every point,
therefore they are capable of segmenting objects whose motions cannot be distinguished
using only two frames. Despite recent progress in multibody factorization algorithms,
their performance is still far from satisfactory. In many sequences, for which the correct
segmentation is easily apparent from a single frame, current algorithms that use only
motion information often fail to reach this segmentation.

Most motion segmentation techniques handle the optical flow or just the image
difference, as a precomputed feature that is provided to a standard segmentation
method. In contrast to those methods, some more recent approaches propose to solve
the problems of optical flow estimation and segmentation simultaneously [Mémin 02,
Cremers 05, Brox 06al. Cremers and Soatto introduced in [Cremers 05] the level set
based motion competition technique. The optical flow is estimated separately for each
region by a parametric model and the region contour is evolved directly by means of

the fitting error of the optical flow. This idea has been adopted in [Brox 06a] where the
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parametric model has been replaced by the better performing non-parametric optical
flow model from [Brox 04]. A fundamental problem with the simultaneous segmen-
tation and velocity estimation approach is that we typically need a segmentation in
order to compute the motion model parameters and we need motion models in order
to partition the image into regions.

When there is camera motion in video, segmenting or clustering motion is usually
done by separating the objects (foreground) from the background. The use of normal-
ized cuts for motion segmentation was introduced in [Shi 98], in which graph cutting
techniques are used to obtain a motion related set of patches in the image sequence.
The relationship between patches is defined on the basis of their motion similarity as
well as their spatial and temporal proximity in the image sequence. The method is
pixel-based, therefore it imposes a high computational overhead and thus, restricted
to very small image sizes in order to minimize the graph cutting complexity. As a
result it does not attempt to provide accurate shape recovery. Shi and Malik propose
an approach to this problem which uses a sparse, approximate version of the similarity
matrix in which each unit is connected only to a few of its nearby neighbours in space
and time and all other connections are assumed to be zero.

The MPEG-4 video coding schemes use a block-based approach to motion esti-
mation. The image is arbitrarily divided up into small blocks. For each block, a
translational motion is estimated by making a search in the next frame for the most
similar block. These systems are preferably used in the context of low-bit-rate video
coding. This method again results in a rather crude segmentation with a resolution
given by the block-size. However, the purpose of video coding is, in any case, compres-
sion rather than best representing the motion of the underlying object. Using regions
instead of blocks provides more accuracy since block-wise motion does not fulfil real
motion in the real world.

One of the earliest works on combining multiple features for segmentation is re-
ported by Thompson [Thompson 80]. The image is segmented based on intensity and
motion, by finding 4-connected regions that have similar intensity and optical flow
values. The regions are then merged together using a variety of heuristics. Black
[Black 92| presented an approach of combining intensity and motion for segmentation
of image sequences based on Markov Random Fields (MRF). He uses three energy

terms: intensity, boundary and motion. Tekalp et al. [Tekalp 98] presented a system
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in which both colour and motion segmentation is done separately, followed by clustering
the colour segments together that belong to the same motion segment. This assumes
that the colour segments are more detailed, but nevertheless accurate, than the motion
segments and they only need to be grouped together for correct segmentation.

In several approaches intensity is involved at pixel level through a spatial segmenta-
tion stage providing a set of regions that are handled by a region-based motion scheme.
In [Ayer 95|, a spatial segmentation stage is followed by a motion-based region-merging
phase where regions are grouped by iterating estimation of the dominant motion and
grouping of regions that conform to that motion. Tsaig and Averbuch [Tsaig 02| pro-
posed a framework for automatic segmentation of moving objects with MRF model.
They partitioned each frame into homogeneous regions by using watershed algorithm
and constructed a region adjacency graph. They modelled MRFs on the graph and
used the motion information to classify regions as foreground or background. By treat-
ing the region as an elementary unit for the MRF model, they efficiently reduced the
computational complexity usually associated to MRFs. Although the method produce
good results it was only applied to foreground-background motion segmentation.

Zeng and Gao [Zeng 04] followed the same framework with a solution to the oc-
clusion problem. Occlusion has been an obstacle to estimate accurate motion vector.
They detected occlusion region by forward and backward motion validation scheme
and removed the potential misclassification of the uncovered background regions. In
addition, region growing technique is used to improve the segmentation results.

Other methods involve, in contrast, motion-based intermediate regions or layers.
The idea of segmenting an image into layers was introduced by Wang and Adelson
[Wang 94] followed by Darrell and Pentland [Darrell 95|. In the paper of Wang and
Adelson, affine model is fitted to blocks of optical flow, followed by a K-means clustering
in motion parameter space. Motion segments are clustered in the layer extraction step
of the algorithm to derive a set of layers that represent the dominant image motion. The
affine model of each layer is refined based on its spatial extent. In the layer assignment
step, a global cost function is optimized in order to improve the assignment of segments
to layers. The algorithm, then, iterates the layer extraction and assignment steps until
the costs would not be improved for a fixed number of iterations and returns the
solution of lowest costs. The results presented are convincing, though the edges of

segments are not very accurate, most likely due to the errors in the computation of
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optical flow at occlusion boundaries. Darrell and Pentland use a robust estimation
method to iteratively estimate the number of layers and the pixel assignments to each
layer. They show examples with range images and with optical flow.

Smith et al. [Smith 01, Smith 04] have developed a Bayesian framework for seg-
mentation of video sequence into ordered motion layers. Their approach is focused on
the relationship between the edges in successive image frames.

Fowlkes et al. [Fowlkes 01| proposed a method for combining both static image
cues and motion information considering all images in a video sequence as a space-time
volume and attempt to partition this volume into regions that are coherent with respect
to the various grouping cues. This approach is based on a technique for the numerical
solution of eigenfunction problems known as the Nystrom method. It exploits the fact
that the number of coherent groups in an image sequence is considerably smaller than
the number of units of volume. It does so by extrapolating the complete grouping
solution using the solution to a much smaller problem based on a few random samples

drawn from the image sequence.

5.3 Motion estimation

Motion segmentation schemes must also estimate, at some point in the process, the
motion information in the scene. This section gives an overview of motion estimation
process and the different approaches available.

Motion perception is an important cognitive element of the visual interpretation of
our 3D world. In an ideal case, the movement of an object in 3D space corresponds to
a 2D motion in an image sequence. These projected motions can be represented by a
motion vector field in the image plane. The estimation of motion from image sequences
has a long tradition in computer vision where accurate techniques for estimating the
velocity field (optical flow field) are indispensable components. All work on image
sequences begins by trying to find out how the image changes with time, analysing
how different elements in the frame move.

Horn and Schunck [Horn 81] defined the optical flow as a velocity field in the im-
age sequence which transforms one image into the next. In other words, the motion
vector field is defined as the set of motion vectors that are used to denote the relative

displacement of the image intensity values in a time-varying image sequence.
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The estimation of optical flow relies on the assumption that objects in an image
sequence may change position but their appearance remains the same (or nearly the
same). Classically this is represented by the grey-level constancy assumption or the
optical flow constraint [Horn 81, Lucas 81]. However, this assumption by itself is not
sufficient for optical flow estimation. Horn and Schunck [Horn 81] add a smoothness
assumption to regularize the flow, and Lucas and Kanade |[Lucas 81| assume constant
motion in small windows. Higher accuracy can be achieved using coarse-to-fine and /or
warping methods [Black 96, Brox 04, Bruhn 05b]. These methods accelerate conver-
gence by allowing global motion features to be detected immediately, but they also
improve the accuracy of flow estimation because they provide a better approximation
of the image gradients via warping [Brox 04].

From the scope of the used technique, motion estimation can be categorized into the
following classes: non-parametric block-based [MPEG4 99|, parametric motion model-
based [Ayer 95, Torr 95, Black 96, Weiss 97|, and gradient-based approaches [Horn 81,
Lucas 81, Brox 04, Bruhn 05b]. All of these approaches assume that there is point
correspondence between two consecutive frames which induces dense motion vector
field of an image.

Block-based motion matching has been adopted in the international standards for
digital video coding algorithms such as H.264 and MPEG-4. They operate by matching
specific "features" (e.g., small blocks) from one frame to the next one. The matching
criterion is usually a normalized correlation measure, typically by analysing the corre-
lation in the feature neighbourhood. Block matching assumes that the motion field is
piecewise translation. The current frame is broken up into blocks of equal size and for
each block in the frame, the best match in the reference frame is computed within a
certain neighbourhood.

Because of its simplicity, fast computation and relative robustness in visual effect,
it is one of the most commonly used motion estimation methods even used as an in-
termediate stage in some pixel-based approaches. The weakness of the non-parametric
block-based method is its inability to describe rotations and deformations, and the
possibility of obtaining motion vectors that completely differ from the "true" motion.
Additionally, a block-based scheme only provides a coarse motion field which is insuf-
ficient for motion segmentation.

Parametric estimation techniques (known also as feature-based methods) assume
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that the motion in the scene (optical flow) can be described as a geometric transforma-
tion, i.e. affine or perspective transformation. Thus, rather than estimating the flow
field, these techniques directly estimate the parameters of the motion model. In most
cases, however, the motion between successive frames cannot be described as a single
geometric transformation, due to presence of independently moving objects thus the
scene is usually decomposed into several regions, each exhibiting a coherent motion, to
where the motion parameters are then estimated.

The focus of this thesis is on gradient-based or differential methods (known also
as pizel-based methods), in which the most recent progress has been made. These
methods have the advantage that they do not have to find feature point correspondence.
The motion vector field, or the so-called optical flow in gradient-based approaches, is
estimated from the derivatives of image intensity over space and time and they are based
on the assumption of data conservation (intensity and gradient). Due to the widely
known aperture problem, additional assumptions are required to infer a particular 2D

image velocity.

5.4 Optical flow

Optical flow is defined as the 2-D vector field that matches a pixel in one image to
the warped pixel in the other image. In other words, optical flow estimation tries to
assign to each pixel of the current frame a two-component velocity vector indicating
the position of the same pixel in the reference frame.

Given two successive images of a sequence I (z,y,t) and I (z,y,t+ 1) we seek at
each pixel x := (z,y,t)" the optical flow vector v (x) := (v,,v,, 1) that describes the
motion of the pixel at x to its new location (x + v,,y + vy, t + 1) in the next frame.

Estimating optical flow involves the solution of a correspondence problem. That
is, what pixel in one frame corresponds to what pixel in the other frame. In order to
find these correspondences one needs to define some property or quantity that it is not
affected by the displacement. Many differential methods for optical flow are based on
the assumption that the image intensity remains unchanged along motion trajectories

(brightness constancy constraint) [Lucas 81]:

I(z,y,t) =1(z+v,,y+v,t+1) (5.1)
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The brightness constancy assumption requires that the grey value of a pixel does
not change as it undergoes motion. It is customary to accommodate for this sensitivity
to noise by pre-blurring the image or equivalently by using weighted windows around
each pixel. In the following, we will assume that the intensity of a moving point remains
constant throughout time. Expanding the total differential into partial derivatives gives
a relation between the spatial image gradient and the homogeneous velocity vector,

known as optical flow constraint:
Lo -ovg+1,-v,+ 1, =0 (5.2)

as it has been formulated in the classical algorithms of [Horn 81, Lucas 81|. I, denote
partial derivatives where I, and I, are the spatial derivatives of image brightness, and I;
is the difference between the image sequences. It must be noted that this linearisation is
only valid under the assumption that the image changes linearly along the displacement
which, in general, is not the case especially for large displacements.

Obviously, this single equation is not sufficient to uniquely compute the two un-
knowns v, and v,. This issue is commonly referred to as aperture problem. For non-
vanishing image gradients it is only possible to determine the flow component perpen-
dicular to the image gradient. It is also clear that Equation (5.2) is only well defined
in areas of the image with high gradient and then it is the results from these areas that
must then be spread into the other areas of the image. In motion estimation this is
typically resolved either by smoothing or by parameterising the motion.

Besides prior information on the flow magnitude, the work of Weiss and Adelson
[Weiss 97| suggests that humans also use prior information about the smoothness of
optical flow. In a non-rigid motion, although each pixel of an image can move freely,
the motion is assumed to be locally coherent. The optical flow field undergoes two
forces, one that matches the warped image with the original image and the other that
keeps the optical flow field smooth.

Consequently, a second assumption is needed that is capable to provide a unique
solution of the flow vector. There are two popular possibilities: local and global meth-
ods. The first one was proposed by Lucas and Kanade [Lucas 81] and assumes that the
optical flow can be described by a parametric model in a local neighbourhood, which

is in the simplest case the model of constant flow. This allows to locally compute
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the optical flow for each pixel ignoring the situation outside the local neighbourhood.
The other class of techniques is based on the work of Horn and Schunck [Horn 81| and
assumes the optical flow field to be smooth. This induces a dependency of the flow
vector at a pixel on the flow at all other pixels. Recently, some combined approaches
have been proposed which tried to overcome the intrinsic problems to each of the two

methods [Bruhn 05b].

5.4.1 Relevant literature

There are several motion estimation algorithms known in the literature. A complete
survey describing the basic ideas behind the most important algorithms was presented
in [Beauchemin 95|, whereas the authors of [Barron 94| compare quantitatively the
performance of various optical flow techniques.

Two seminal variational methods were proposed by Horn and Schunck [Horn 81]
and by Lucas and Kanade [Lucas 81]. The Horn and Schunck optical flow algorithm
[Horn 81] uses a global regularisation between a data term consisting of the motion
constraint equation and a smoothness term constraining the velocity to vary smoothly
everywhere. Lucas and Kanade |[Lucas 81] assumed the velocity is constant in lo-
cal neighbourhoods and formulate a least squares calculation of the velocity for each
neighbourhood. Both of these methods are based on a least-squares criterion for the
optical flow constraint, and some global or local smoothness assumption on the esti-
mated flow field. In practice, flow fields are generally not smooth. The boundaries
of moving objects will correspond to discontinuities in the motion field. At these dis-
continuities, the smoothness assumption is strongly violated. Yet, one cannot simply
drop the regularisation term, since the problem of motion estimation is highly ill-posed.
Ideally, one would like to enforce a regularity of the estimated motion field only in the
areas corresponding to the different moving objects, allowing for discontinuities across
the boundaries of objects. Yet this requires knowledge of the correct segmentation.

Many researchers have addressed this coupling of segmentation and motion estima-
tion. Rather than first estimating local motion and subsequently segmenting or clus-
tering regions with respect to the estimated motion [Wang 94| some researchers have
proposed to model motion discontinuities implicitly by non-quadratic robust estimators
[Nagel 86, Black 96, Mémin 98]. Others tackled the problem of segmenting motion by

treating the problems of motion estimation in disjoint sets and optimization of the mo-
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tion boundaries separately [Odobez 98, Paragios 00, Farnebéck 01]. Some approaches
are based on Markov random field (MRF) formulations and optimization schemes
such as stochastic relaxation by Gibbs sampling [Konrad 92|, deterministic relaxation
[Bouthemy 93], graph cuts [Shi 98|, energy minimization via graph cuts [Boykov 01b]
or expectation-maximization (EM) [Weiss 97]. As pointed out in [Weiss 97|, exact so-
lutions to the EM algorithm are computationally expensive and therefore suboptimal
approximations are employed.

Ju et al. [Ju 96] proposed a "Skin and Bones" model to compute optical flow using
an affine flow model with a smoothness constraint on the flow parameters to ensure
continuity of motion between patches. They formulate the problem as an objective
function with a data term that enforces the affine flow models within a patch and
a prior term that enforces spatial smoothness between the estimated affine motions
and those of neighbouring patches. Black and Anandan [Black 96] exploited locally
adaptive parametric motion models to drive the optical flow estimation. Lai et al.
[Lai 05] proposed a gradient-based regularisation method that includes a contour-based
motion constraint equation that enforced only at zero-crossing. Farnebick algorithm
[Farnebéck 01| has three distinct components: estimation of spatio-temporal tensors,
estimation of parametric motion models and simultaneous segmentation of the motion
field. Mémin and Pérez [Mémin 98, Mémin 02| proposed a robust energy-based model
for the incremental estimation of optical flow in a hierarchical piece-wise parametric
minimization of an energy functional in regular or adaptive meshes at each hierarchical
level from the coarsest to the finest levels. To increase precision as well as robust-
ness against noise Bruhn et al. [Bruhn 05b| proposed a method that combines local
and global methods, in particular, those of Horn-Schunck and Lucas-Kanade which
forms the combined local-global (CLG) method. The data term in the Horn-Schunck
regularisation is now replaced by the least squares Lucas-Kanade constraint.

Brox et al. [Brox 04] proposed a variational method that combines a brightness
constancy assumption, a gradient constancy assumption and a discontinuity-preserving
spatio-temporal smoothness constraint. In order to allow for large displacements, this
technique implements a coarse-to-fine warping strategy. The results obtained with
this method are among the best of all methods for optical flow estimation. Recently,
Papenberg et al. [Papenberg 06] added a few additional constraints to this algorithm

and got even better results.
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5.4.2 Variational methods

Differential methods, and in particular variational methods based on the early approach
of Horn and Schunck [Horn 81| are among the best performing techniques for comput-
ing the optical flow [Brox 04, Bruhn 05a, Papenberg 06]. Such methods determine
the desired displacement field as the minimiser of a suitable energy functional, where
variations! from model assumptions are penalised. In general, this energy functional
consists of two terms: a data term that imposes temporal constancy on certain image
features, e.g. on the grey value of objects, and a smoothness term that regularises the
often non-unique (local) solution of the data term by an additional smoothness con-
straint. While the data term represents the assumption that certain image features do
not change over time and thus allow for a retrieval of corresponding objects in subse-
quent frames, the smoothness term stands for the assumption that neighbouring pixels
most probably belong to the same object and thus undergo a similar type of motion.
Due to the smoothness constraint which propagates information from textured areas
to nearby non-textured areas the resulting flow field is dense i.e. there is an optical
flow estimate (vector) available for each pixel in the image.

A variational approach formulates some model assumptions Ay, ..., A,, in terms of

an energy functional [Brox 05]:

E(e1(x),...,e,(x)) :/Q(Al,...,Am) dx (5.3)

and tries to find those functions ey, ..., e, that minimize the energy, possibly by re-

specting additional constraints.

It is necessary to quantify the model assumptions by the so-called penaliser terms.
Each penaliser induces a high energy for those cases where the model assumption
is not fulfilled and a low energy otherwise. The theory of the calculus of variations
provides a way how to minimize the energy functional. It leads to the so-called Euler-
Lagrange equations, which have to be satisfied in a minimum. The Euler-Lagrange
equations are partial differential equations. For sufficiently simple energy functionals,
these Euler-Lagrange equations lead to a linear system of equations, which can be

solved by well-founded and optimized numerical methods.

IThis is where the term wvariational method comes from.
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The combined variational approach differs from usual variational approaches by the
use of a gradient constancy assumption. This assumption provides the method with the
capability to yield good estimation results even in the presence of small local or global
variations of illumination. Besides this, the combination of non-linearised constancy
assumptions and a coarse-to-fine strategy yields a numerical scheme that provides a
well founded theory for the very successful warping methods.

Given two successive images of a sequence [ (z,y,t) and I (z,y,t+ 1), we aim to
obtain the optical flow vector* v := (v, v,) which gives the relative displacement
between the pixels of the two images.

Pixels in areas of homogeneous intensity are ambiguous as they can appear similar
under several different motions (optical flow constraint). Pixels in areas of high in-
tensity gradient are also troublesome as slight errors in the motion estimate can yield

pixel of a very different intensity, even under the correct motion.

Constancy assumptions on data

Estimating motion requires a solution to what pixel in one frame corresponds to what
pixel in the other frame. In order to find these correspondences we need to define some

assumptions that are not affected by the displacement.

e Brightness constancy assumption

The common assumption is that the grey value of the pixel does not change as

it undergoes motion:
I(z,y,t)=1(z+v,,y+v,t+1) (5.4)

A first order Taylor series expansion leads this assumption to the well-known

optical flow constraint of Equation (5.2).

However, this constancy assumption cannot only deal with image sequences with
either local or global change in illumination. In this case other assumptions
that are invariant against brightness changes must be applied. Invariance can be

ensured by considering spatial derivatives.

?In this thesis we represent the optical flow vector v (x) := (vg, vy, DT by v = (vg, Uy).
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¢ Gradient constancy assumption

A global change in illumination both shifts and/or scales the grey values of an
image sequence [Papenberg 06]. Shifting the grey values will not affect the gra-
dient. Although scaling the grey values changes the length of the gradient vector
it does not affect its direction. Thus, we assume that the spatial gradients of an

image sequence can be considered as constant during motion:
VI (z,y,t) = VI(x + v,y +v,,t+1) (5.5)

where V = (0x, 0y) denotes spatial gradient. Although the gradient can slightly
change due to changes in the grey value too, it is much less dependent on the

illumination than on the brightness assumption.

Finding the flow field by minimizing the data term alone is an ill-posed problem
since the optimum solution, especially in homogeneous areas, might be attained by
many dissimilar displacement fields [Amiaz 07]. This is the aperture problem: the
motion of a homogeneous contour is locally ambiguous. In order to solve this problem
some regularisation is required. The most suitable regularisation assumption is piece-
wise smoothness [Brox 04|, that arises in the common case of a scene that consists of
semi-rigid objects.

The data term Ep (v,,v,) incorporates the brightness constancy assumption, as
well as the gradient constancy assumption. While the first data term models the
assumption that the grey-level of objects is constant and does not change over time,
the second one accommodates for slight changes in the illumination. This is achieved

by assuming constancy of the spatial image gradient:
Ep (vg,vy) = / V(I (x+v)—1 X)) +~|VI(x+v)—VI (x)|2) dx (5.6)
Q

where () is the region of interest (the image) over which the minimization is done. The
parameter « relates the weight of the two constancy assumptions, and 9 (s?) = v/s2 4 &2
is a non-quadratic (convex) penaliser applied to both the data and the smoothness
term which represents a smooth approximation of the L; norm, L; (s) = |s|. Using
the L; norm rather than the common L, norm reduces the influence of outliers and

makes estimation robust. Due to the small positive constant e, 9 (s?) is still convex
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which offers advantages in the minimization process. The incorporation of the constant
¢ makes the approximation differentiable at s = 0; the value of ¢ sets the level of
approximation which we choose to be 0.001.

Applying a non-quadratic function to the data term addresses problems at the
boundaries of the image sequence, where occlusions occur and therefore outliers in the

data compromise the correct estimation of the flow field.

Smoothness assumption

The smoothness assumption [Horn 81, Weiss 97, Brox 04| is motivated by the obser-
vation that it is reasonable to introduce a certain dependency between neighbouring
pixels in order to deal with outliers caused by noise, occlusions or other local violations
of the constancy assumption. This assumption states that disparity varies smoothly
almost everywhere (except at depth boundaries). That means we can expect that the
optical flow map is piecewise smooth and it follows some spatial coherency. This is
achieved by penalising the total variation of the flow field. Smoothness is assumed
by almost every correspondence algorithm. This assumption fails if there are thin
fine-structured shapes (e.g. branches of a tree, hairs) in the scene.

Horn and Schunck proposed in their model the following smoothness (homogeneous)

term [Horn 81]:
Es,yo (02,1,) = / Vo, ? + |V, [Pdx (5.7)
Q

However, such a smoothness assumption does not respect discontinuities in the flow
field. In order to be able to capture also locally non-smooth motion it is necessary to
allow outliers in the smoothness assumption. This can be achieved by the non-quadratic

penaliser ¢ also used in the data term. Thus, the smoothness term Eg (v,, v,) becomes:

Fs (02, 0,) = /Qw (V0 + Vo, ) dx (5.8)

The smoothness term gives a penalty to adjacent segments which have different
motion parameters.

Xiao et al. [Xiao 06] proposed an adaptive bilateral filter to regularize the flow
computation which is able to achieve the smoothly varied optical flow field with highly

desirable motion discontinuities. This approach combines information from regions
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with similar flow and similar intensities taking into account occlusions. The method

produces very similar results with the Brox et al. approach [Brox 04].

Energy functional

Applying non-quadratic penaliser functions to both the data and the smoothness term
and also integrating the gradient constancy assumption, results in the optical flow

model described by the following energy functional:
E (vy,vy) = Ep (vg,0y) + aEg (vg, vy) (5.9)

where « is some positive regularisation parameter which balances the data term FEj
with the smoothness term FE,: Larger values for « result in a stronger penalisation of
large flow gradients and lead to smoother flow fields.

The minimization of E (v,,v,) is an iterative process, with external and internal
iterations [Amiaz 07]. The external iterations are with respect to scale. The internal
iterations are used to linearise the Euler-Lagrange equations and solve the resulting
linear set of equations [Brox 04]. Linearisation via fixed-point iterations is used both
in the external and internal loops. The linear equations are solved using successive
over relaxation. We employ the technique proposed by Brox et al. [Brox 04| which
is currently one of the most accurate optical flow estimation method available. The
reader is referred to Thomas Brox’s PhD thesis [Brox 05] for a solution to minimize

this functional.

5.4.3 Multiscale approach

In the case of displacements that are larger than one pixel per frame, the cost function
in a variational formulation must be expected to be multi-modal and the minimization
algorithm could easily be trapped in a local minimum [Brox 04]. A good approxima-
tion for smoothing the energy functional is to smooth the underlying images. As the
smoothing of the images removes small details that are responsible for local minima, we
can expect that the energy functional containing the smoothed images has considerably
less local minima.

Instead of costly smoothing operations on the originally sized images it is also

possible to downsample the images in a pyramid framework. The multiscale coarse-to-
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fine approach is used by most actual algorithms for optical flow estimation in order to
support large motion and to improve accuracy [Brox 04, Bruhn 05b, Amiaz 07|. This
removes small details the same way as a smoothing operation on the original image.
Additionally, it leads to a much more efficient multiscale implementation. Thus, this
procedure is chosen here. Figure 5.1 shows the multiscale warping scheme used in the

optical flow estimation.

Image t+1

# —» optical flow estimation <—

T warping + upsample

" —>  optical flow estimation ~<— -

¥

Figure 5.1: Coarse-to-fine optical flow estimation.

This approach relies on estimating the flow in a full pyramid of images, starting
with the smallest possible image at coarsest scale and the upper levels are warped
representations of the images based on the flow estimated at preceding scales. In the
context of large displacements, the problem is compensated by the already computed
motion from all coarser levels before the resolution is refined. What remains to be solved
at each resolution level is the motion increment d (v,,v,) for the difference problem.
Such procedure allows to keep the displacements at each resolution level small, so that
linearised constancy assumptions remain reasonable approximations. This ensures that
the small motion assumption of Equation (5.2) remains valid.

Warping denotes the distortion of the image which is required for the compensation
of the already computed motion. In general, it was argued that it makes sense to embed
optical flow approaches for small displacements into a coarse-to-fine framework, since

large displacements become smaller at coarser levels and thus allow for an accurate
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estimation with linearised model assumptions. Each level in the pyramid can cause
the initialization at a finer scale to be too close to a local minimum just appearing
at that scale. Brox et al. |[Brox 04| suggested to reduce this risk by making smaller
steps. They proposed a downsampling factor n € (0, 1) between successive resolution
levels in the pyramid, typically® n € [0.80,0.95] which allows smooth flow projections
between adjacent image levels in the pyramid. Though this high factor increases the

computational cost it allows highly accurate optical flow computations.

5.4.4 Motion estimation analysis

The used optical flow estimation method has several positive properties that are im-

portant to our motion segmentation task:

e Due to non-linearised constancy assumptions the method can deal with larger
displacements than most other techniques. This ensures a good estimation quality
even when the object changes its location rapidly.

e [t provides dense and smooth flow fields with subpixel accuracy due to the mul-
tiscale approach.

e The method is robust with respect to noise as shown in [Brox 04].

e By the introduction of the gradient constancy assumption it is fairly robust with

regard to illumination changes that appear in most real-world image sequences.

For a qualitative evaluation and to a better visual-
ization of the computed flow fields, we used a colour
RGB representation shown in Figure 5.2. While the
colour itself indicates the direction of the displace-
ments, the brightness expresses their magnitude. Fig-
ure 5.3 shows how the individual model assumptions

influence the quality of the computed optical flow. We

used a real-world sequence (the Dancing sequence),
where a person dances in front of the camera. Be- pigure 5.2: Flow colour code.
fore we applied the different numerical schemes we pre-

processed the sequence by convolution with a Gaussian kernel of standard deviation

o = 1.0. Starting from the classical local constraints approach (with no regularisation)

3This reduction factor is larger than the commonly used 0.5.
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of Lucas and Kanade [Lucas 81|, each extension of the optical flow model implies a

significant improvement in the result.

()

Figure 5.3: (a) One frame of Dancing sequence. (b) Computed flow field using only local
constraints [Lucas 81|. (c¢) Computed flow field using homogeneous propagation of [Horn 81].
(d) Computed flow field using a non-quadratic regularisation term [Brox 04].

In a first step the introduction of the homogeneous propagation term of Horn and
Schunk allows the model to have spatial coherency in the flow map by propagating the
flow to homogeneous regions. However, this smoothness constraint does not respect
discontinuities in the flow field producing over-smoothing on the flow. In the second
step the incorporation of a non-quadratic smoothness term allows the model to capture
the motion discontinuities more accurately. The non-quadratic regularisation term
allows the propagation of information without crossing image and flow discontinuities.

In order to get a visual impression of the quality of the estimation* the Ettlinger

Tor traffic sequence® is used. Figure 5.4 shows both the computed flow field between

4We used the implementation of Brox et al.’s algorithm which was available to us by courtesy of
Thomas Brox. We would like to thank him for providing optical flow software.
% Available at http://i2iwww.ira.uka.de/image_ sequences/.
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frame 5 and 6 and its magnitude and orientation plot. As proposed in Barron et
al. [Barron 94| we pre-processed each image sequence by convolution with a Gaussian

kernel of standard deviation referred to as parameter o.

(a) (b)

Figure 5.4: (a) Computed flow field between frame 5 and frame 6 of the Ettlinger Tor traffic
sequence. (b) Magnitude and orientation of the flow field with o = 0.6, & = 40 and v = 20.

Although the sequence suffers from interlacing artefacts the optical flow estimation
algorithm gives very realistic results where the flow boundaries are relatively sharp.

This is a direct consequence of using non-quadratic smoothing functions.

5.5 Building the region-based motion graph

Studies in motion analysis have shown that motion-based segmentation would benefit
from including not only motion but also the intensity cue, particularly to retrieve region
boundaries accurately [Dufaux 95, Weiss 96, Galun 05]. Hence, the knowledge of the
spatial partition can improve the reliability of the motion-based segmentation.

We would like to identify prominent groups that follow the same motion structure.
In order to do so, it is necessary to compute a measure of affinity between each region.
Taking our cues from the Gestalt school, we consider brightness similarity, intervening
contours and common fate. These sources of information should measure the likelihood
that two regions R; and I?; represent different parts of the same moving object. Such
scheme requires the construction of a structure exploiting the motion information which

represents the relationships among partitions and between successive image partitions.
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This section focuses on this stage consisting in the introduction of a region-based
motion graph representation. To this end a region-based contextual information has to
be formalized and exploited. Figure 5.5 gives an overview of the scheme to construct

the region-based motion graph.

Image Image
t t+1

Spatial image Estimation of
partition optical flow field

Region-based
spatial graph

Region-based
motion graph

Figure 5.5: Diagram of the region-based motion graph construction.

A spatial partition of the first frame of the image sequence is first required by
some over-segmentation process (e.g. watershed). A region-based spatial graph is then
derived from the spatial image partition (Section 4.5). A 2D motion model is estimated
within each region, and the optimal motion label configuration is sought for using an
energy minimization approach, so that region undergoing similar (respective different)
motion are given the same (respective different) labels.

We aim at assigning a motion vector to every node in the graph, with a view to
partitioning this graph into node subsets, corresponding to groupings of regions of
coherent motion. The predefined regions should be so that all pixels within a spatial
atomic region were assigned the same motion label. It is generally true that motion
boundaries coincide with intensity segment boundaries but not vice versa; i.e., intensity
segments are almost always a subset of motion segments. Therefore, we can first
perform an intensity segmentation to obtain a set of candidate motion segments. Then,
those segments which have the same motion can be merged to obtain the final motion
segmentation map.

Given the initial spatial partition R;,i = 1,...,q, containing ¢ micro regions, a
regular graph is derived from its topology. We denote it by ©, the nodes V; of which

correspond to the regions R; of the spatial partition. Let links F; ; join in I' the nodes
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associated with regions ¢ and j, in the spatial partition, with a weight W (i, 5) given

by spatial and motion similarity measures between the regions.

O ={{Vi,.Va} {AE(L,1), ... E(q, )}, {W (1,1),..., W(q,9)}} (5.10)

We attach three features to each region: the centroid location, the mean intensity,
and the optical flow vector estimated between subsequent pairs of images. For the
motion information characteristic segment R; is assumed as uniquely assigned a seg-
mentation label Lg,. Each atomic region has a single motion vector that illustrates its
motion, estimated using the technique described below in Section 5.5.1.

The definition of the region similarity which involves not only motion information
but also spatial characteristics is a challenging issue. In particular, the spatial informa-
tion provides important hints about object boundaries. All the available information
should be put to work in order to robustly define the objects present in the scene.

We propose a region similarity measure that exploits both spatial similarity w; (i, j)

and motion similarity w,, (i, j):

where ¢ is a regularisation term that reflects the importance of each measure. Spatial
similarity measure is obtained using the technique described in Section 4.7, and motion
similarity measure is described below in Section 5.5.2. At this phase the role of wj is

only to be a refinement measure. Therefore, in our experiments ¢ was set to 0.95.

5.5.1 Region motion vector

The proposed method applies spatial pre-segmentation to the first image. Using atomic
regions implicitly resolves the problems identified earlier which requires smoothing of
the optical flow field since the spatial (static) segmentation process will group together
neighbouring pixels of similar intensity, so that all the pixels in a area of smooth
intensity grouped in the same region will be labelled with the same motion. We thereby
presume two basic assumptions: i) it is assumed that all pixels inside a region of
homogeneous intensity follow the same motion model, and ii) motion discontinuities
coincide with the boundaries of those regions. To ensure that our assumptions are met,

we apply a strong over-segmentation method to the image.
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Our first goal is to associate a unique optical flow vector to each atomic region.
While the atomic region motion vector is computed from the optical flows, it is nec-
essary to consider the real situation that some of the optical flows might have been
contaminated with noises, causing the computation of the region motion vector deviate
from its genuine motion vector. For each optical flow, its contribution to the deviation
depends both on its magnitude and on its direction. Thus, another goal is to detect
and exclude those optical flows which tend to cause large errors to the computation of
the region motion vector. We achieve these goals by obtaining the dominant motion of

the atomic regions region from the mode of each optical low component in the region.

5.5.2 Motion similarity measure

For region-based motion segmentation, we assign a unique motion vector to each region.
To reflect human perceptual characteristics for motion similarity measure, we adopt
the distance metric proposed by Yoshida [Yoshida 02]. The idea here is to represent
a motion vector v = (v,,vy) in a (U, U,) plane (Figure 5.6) with radius p and the

argument ¢ given by:

1
p(v) =log (1 + 3 (v2 +v)) /2) (5.12)

6 (v) = tan™* (Uy/vx> (5.13)

The parameter 3 is a positive parameter included to reflect the variation in the
similarity judgement of motion from person to person.

The motion information of each region are computed in reference to different points -
the centroids of the regions. We define a motion distance d,, (i, j) expressing the degree
of similarity between the motion fields of two regions R; and R; in reference to the

centroid of R;. From Figure 5.6, d,, (7,j) can be expressed as:

4o (i) = /T, 7 5707
AU, = p; cosb; — pjcosb; (5.14)

AU, = p;sin; — p;sin 8,
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p )
0(v)

Figure 5.6: Representation of motion vectors in the (U, U,) plane.

where p;, p;, 0; and 6; are calculated by Equations (5.12) and (5.13). In fact, this
motion distance expresses how well the motion model of region R; can also fit the
motion of region R;.

As the distance measures have their own range it is desirable to normalize their
values. The parameter o, in Equation (5.15) is used to normalize the distance measure
to a range [0, 1].

Wi, (i, 7) = exp (—dn (i, 5)° /02,) (5.15)

5.6 Motion segmentation algorithm

In this section, we aim to integrate spatial segmentation and motion information for
high quality motion segmentation. If it is true that for synthetic sequences flow field
values can be computed exactly, that is not the typical scenario, where flow field is
estimated from a sequence of images. Then, our approach should be robust against
inaccuracies in the motion information.

Starting from a pre-segmentation of the reference frame, the proposed technique
determines the motion objects constituting the scene at hand. To that end, the over-
segmented regions are merged according to their mutual spatial and temporal similarity.
By treating regions as the elementary unit for image processing, we can reduce the
computational complexity without a corresponding loss of accuracy. The information
about spatial and temporal similarity between regions is represented by a region-based
motion graph. A spectral-based clustering algorithm is used to detect clusters of similar

motion regions and to achieve the motion segmentation.
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We assume that a region of uniform motion (rigid motion) will be composed of one
or more atomic regions each of which possessing uniform intensity. Consequently, the
motion boundaries will be a subset of the intensity boundaries determined at this stage.
We refer to this assumption as segmentation assumption. Our choice of this assumption
is supported by the following fact: the atomic regions resulting from the spatial pre-
segmentation are usually small enough to justify the assumption of piecewise constant

intensity and motion.

Region-based ‘

image
representation ‘
Region-based Multi-class Moving object
motion graph normalized cuts segmentation
Motion field ‘

estimation ‘

Figure 5.7: Block diagram of the proposed hybrid motion segmentation method.

The procedure of the motion segmentation algorithm is presented in the diagram

of Figure 5.7 and illustrated in Figure 5.8. It can be summarized as follows:

Step 1: Spatial pre-segmentation: images of sequence are partitioned into homo-
geneous atomic regions based on their brightness properties using the segmenta-
tion algorithms introduced in Section 4.5

Step 2: Motion estimation: estimate the dense optical flow field with the varia-
tional scheme described in Section 5.4.2.

Step 3: Dominant motion extraction: extract the highly reliable optical flows for
each atomic region. It selects from the dense flow field the dominant motion
vector according to the directions and magnitudes of the optical flows. This step
eliminates the influence of noise and outliers.

Step 5: Region-based motion graph: build the region-based motion graph where
the nodes correspond to regions.

Step 6: Graph partitioning: multiclass spectral based graph partitioning using the

normalized cut approach described in Section 4.6.
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(f) (©) (h)

Figure 5.8: Tllustration of the proposed motion segmentation algorithm. (a)-(b) Frame 5
and 6 of the Ettlinger Tor sequence (grey-scale). (c¢) Absolute difference between the frames.
(d) Atomic regions. (e) Computed dense optical flow. (f) Region-based vector field scaled by
a factor of 2. (g) Motion segmentation. (h) "Difference" between (e) and (g).
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The input is represented by two consecutive frames of the Ettlinger Tor sequence
(frames 5 and 6). The sequence consists of 50 frames of size 512 x 512 and depicts a
variety of moving cars (up to 6 pixels per frame). Thereby five groups of cars can be
formed according to their velocity and direction: 1) a bus and a car in the foreground
are moving fast to the right; 2) in the middle area three cars are moving in a similar
direction of group 1 but slower; 3) two cars on the left are moving to the left; 4) in the
upper middle area three cars are moving slowly to the left; 5) on the upper right area
a car is moving up.

In the first step, an initial segmentation of the frames is achieved with watershed-
based segmentation. The result is a fine partition of the image into regions with
intensity homogeneity where region sizes are kept small (in this case we suppress the
pre-flooding step). Motion estimation between the frames is obtained with the vari-
ational method described in Section 5.4.2 and depicted in Figure 5.8.e) according to
colour code proposed in Figure 5.2. In the following, a dominant motion vector is
associated with each region produced in step 1. Figure 5.8.f) shows a representation
of the resultant flow vectors scaled by a factor of 2. Finally, Figure 5.8.g) presents the
result of the motion segmentation where different kind of motions are represented by
different colours® in accordance with the five groups upper referenced.

It is important to understand why the area under the bus was labelled as belonging
to group 2 and not to group 1. This area has been originated in the motion estimation
process as a consequence of the brightness similarity between the bottom of the bus and
the ground. In other words, since the smoothness term expands the optical flow along
areas of homogeneous intensity it has also expanded the bus motion to the ground.
However, the optical flow of the ground has a lower magnitude which makes it more
similar to the motion of the cars in group 2 than to the motion of the bus. This shows
the accuracy of the motion segmentation algorithm.

As it was expected the result from the motion segmentation is very similar with the
motion estimation result. Figure 5.8.h) shows the refinement produced by the region-
based motion segmentation. It is possible to see that it removes the "halo" originated
by the smoothness term used in the motion estimation process allowing to obtain a
more accurate segmentation. Even more, the segmentation effectively separates the

groups of cars according to their type of motion.

6These colours have nothing to do with the colours in Figure 5.2.
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5.7 Summary

A method for multiple motion segmentation was presented, relying on a combined
region-based segmentation scheme. A region-based motion graph was built on the par-
tition obtained in a spatial pre-segmentation stage. The derivation of a motion-based
partition of the images was achieved through a graph labelling process in a spectral-
based clustering approach. To achieve this aim an appropriate similarity function
(energy function) was defined. Links weights now denote a similarity measure in terms
of both spatial (intensity and gradient) and temporal (flow fields) features. To com-
pute the flow field we use a high accuracy optical flow method based on a variational
approach. The region-based graph-labelling principle provides advantages over clas-
sical merging methods which by operating a graph reduction imply irreversibility of
merging. Moreover, spectral-based approach avoids critical dependency in the order in
which regions are merged. The proposed approach successfully reduces computational
cost, while enforcing spatial continuity of the segmentation map without invoking costly
Markov random field models.

The algorithm takes advantage of spatial information to overcome inherent problems
of conventional optical flow algorithms, which are the handling of untextured regions
and the estimation of correct flow vectors near motion discontinuities. The assignment
of motion to regions allows the elimination of optical flow errors originated by noise.

To partitioning each image into a set of homogeneous regions, we used the watershed
transform implementation proposed in Chapter 4. By treating regions as an elemen-
tary unit for further processing, we reduced the computational complexities without
a corresponding loss of accuracy. Each frame is converted into a region-based motion
graph and the graph is partitioned into perceptually significant groups by means of
the normalized cuts algorithm. The weights on links of the region-based motion graph
are defined by the motion similarity which is computed by using a perceptual measure.
By simultaneously making use of both static cues and dynamic cues we are able to
find coherent groups within a variety of video sequences. The experiments presented
in Chapter 6 show that the proposed method provides satisfactory results in motion

segmentation from image sequences.



CHAPTER 6

Image and motion segmentation:

experimental results

In order to test the performance of the proposed image segmentation frame-
work we use a number of images from the Berkeley dataset. The results
are evaluated and compared with those obtained with the state-of-the-art
methods described in [Deng 01, Comaniciu 02, Cour 05]. Additionally, the
results from the described motion segmentation algorithm are tested using
several benchmark test sequences and therefore allowing a comparison with
other algorithms. Due to the lack of motion segmentation ground truth we

only show visual results for our algorithm.

6.1 Hybrid spatial segmentation: results

For spatial segmentation we mainly used images from the Berkeley Segmentation
Dataset [Martin 01]. This database comprises a ground truth of 300 hand-segmented
images by a minimum of 5 subjects, to compare the segmentation outputs. We iden-
tify each image with the identification number presented in [Martin 01]. To expand
the field of application of our algorithm some other images are also used, including
medical images. The results are shown in Appendix A. Due to the absence of ground
truth to such images we present only the qualitative results of the segmentations.
Although some optimisation could be made, in our experiments we use the same
threshold values for every images. Thus, in the gradient magnitude computation we use

po =8, ps = 1 and p. = 3. The smoothing bilateral filter was applied with o, = 30 and
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os = 4. The flooding level is 0.0125 times the gradient magnitude standard deviation.
The standard deviation of the similarity measures proposed in Equations (4.32) and

(4.33) are 0;. = 0.02 and o; = 0.02 times the maximum intensity value of the image.

6.1.1 Evaluation

The evaluation measure proposed in Chapter 3 requires a calibration image to set up
the weighted functions w, and w,, as defined in Equations (3.16) and (3.17). We use the
calibration image represented in Figure 6.1 to which correspond the threshold values

a, = 80 and a,, = 20.

Figure 6.1: Calibration image used to set up the parameters of s,,.

Figure 6.2 depicts the experimental results on image segmentation of a set of natural
scene images taken from the Berkeley Dataset. Left column shows the original image
with the corresponding Berkeley identification number. Right column presents the
segmentation results where each segment is labelled with a different colour. To show
the accuracy of the segmentation results the labelled segments are superimposed on
the original image. The number of segments is putted under each segmented image.

One problem usually associated with normalized cuts approach is the partition of
homogeneous regions. Due to the suppression of spatial distance in similarity measure
and to the use of the flooding level in the computation of watershed atomic regions
this problem is greatly reduced in our approach.

Table 6.1 and Table 6.2 show the segmentation evaluation in terms of weighted
measure s,, and F-measure from a set of randomly chosen images from Berkeley dataset.
The bottom row shows the evaluation results obtained when considering the calibration

image as being the reference image.
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3096 O segs

24063 10 segs

296059 12 segs

Figure 6.2: Experimental segmentation results over images from the Berkeley dataset.
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Table 6.1: Evaluation of the images in Figure 6.2 in terms of weighted measure s,, and
F-measure.

Measure 3096 24063 245051 286092 296059

sw 099 082  0.74 0.78 0.68
F 0.84 080  0.67 0.71 0.72
Sw, 001 000  0.33 0.19 0.00

Although in complex images such as images 245051 and 286092, the segmentations

are not yet the ideal ones, they exhibit promising results.

Table 6.2: Evaluation of the images in Figure 6.3 in terms of weighted measure s,, and
F-measure.

Measure 37073 41004 42049 65019 90076 118035 143090 241004

S 057 077 090 067 094  0.79 0.79 0.80
F 065 075 089 080 085 074  0.71 0.81
Sw, 000 012 011 015 000  0.09 0.02 0.02

Comparison with other segmentation methods

We have compared our method (WNCUT) with three state-of-the-art segmentation
algorithms: (i) mean shift (EDISON) [Comaniciu 02|, (ii) a multiscale graph based
segmentation method (MNCUT) [Cour 05|, and (iii) JSEG [Deng 01]. For this com-
parison we use the set of natural images shown in Figure 6.3. To provide a numerical
evaluation measure and thus allow comparisons, the experiments for the evaluation
were conducted on the manual segmentations of the Berkeley Segmentation Dataset
[Martin 01]. The task is cast as a boundary detection problem, with results presented
in terms of Precision (P) and Recall (R) measures.

The algorithm provides a binary boundary map which is scored against each one
of the hand-segmented results of Berkeley Dataset, producing a (R, P, F') value. The

final score is given by the average of those comparisons.
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143090 241004

Figure 6.3: Set of tested images taken from the Berkeley dataset. Each image is identified
with the Id number used in the dataset.

Mean shift methods [Fukunaga 75, Comaniciu 02] have gained popularity for image
segmentation due to their lack of reliance on a priori knowledge of the number of
expected segments. Mean shift is an iterative procedure to find clusters in the joint
spatial and colour spaces. Given an image, the algorithm is initialized with a large
number of hypothesized cluster centres randomly chosen from the data. Then each
cluster centre is moved to the mean of the data lying inside the multi-dimensional
ellipsoid centred on the cluster centre. The vector defined by the old and the new
cluster is called the mean shift vector. The mean shift vector is computed iteratively

until the cluster centres do not change their positions. Note that during this process



156 Image and motion segmentation: experimental results

some clusters may get merged.

As described in [Comaniciu 02], the mean shift based segmentation algorithm takes
as input parameters a feature bandwidth h,, a spatial bandwidth h; and a minimum
region (in pixels) M. Tt uses the adaptive specification of the two bandwidths ac-
cording to the data statistics in the image and colour domains to define a kernel in
the joint spatial-range domain to filter image pixels and a clustering method to re-
trieve segmented regions. The two bandwidth parameters are critical in controlling the
scale of the segmentation result. Too large values result in loss of important details,
or under-segmentation; while too small values result in meaningless boundaries and
excessive number of regions, or over-segmentation. In this comparison we tested the
images with a set of values for each parameter, hy, = {7,11,15}, h, = {7,11,15} and
M = {200,300,400}. These values were empirically found, after carrying out several
tests with different images. The parameters were adjusted to each image in order to
obtain the highest F-measure.

Christoudias et al. [Christoudias 02] presented an algorithm using mean shift seg-
mentation that addresses directly to the image clustering. In this approach, a region
adjacency graph is created to hierarchically cluster the modes. Also, edge information
from an edge detector is combined with the colour information to better guide the
clustering. This is the method used in the publicly available EDISON system, also de-
scribed in [Christoudias 02]. The EDISON system is the implementation we use here
as the mean shift segmentation system.

Deng and Manjunath [Deng 01] proposed the JSEG method for multiscale segmen-
tation of colour and texture, based on colour quantization and region growing. Their
algorithm also consists of two stages: colour quantization and spatial segmentation.
Colour quantization maps each pixel into a class label, which is used in the second
stage to minimize a homogeneity measure of colour-texture patterns. Spatial segmen-
tation is based on seeded region growing and region merging. JSEG segmentation
algorithm takes as input parameters a colour quantization threshold ¢,., the number of
scales n, and a region merge threshold m. We leave for automatic determination of g,
and ng by the original software. For each image we change the region merge threshold
in a range of 0.0 — 0.8 and as in EDISON approach found the segmentation result with
the highest F-measure.

We think that it is also important to contrast our method with another successful
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graph partitioning algorithm. In [Cour 05], Cour et al. presented a multiscale spectral
image segmentation algorithm (MNCUT) which works on multiple scales of the image
in parallel, without iteration, to capture both coarse and fine level details.

The quantitative evaluation results are summarized in Figure 6.4 for the set of tested
images. To a better visualisation of the comparative results we decided to represent
these results in a graphic figure. A table with the values of F-measure of Figure 6.4
is presented in Appendix A. Taking into consideration that the methods can produce
results with different number of regions, we have taken as a region count reference
number the average number of regions from the human segmentations available for
each image. To understand the level of variability in the segmentation results, the

errors among the results from the manual segmentation were also computed.
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Figure 6.4: Results of F-measure evaluation for the comparison between methods.

The resulting segmentation after the application of the examined algorithms is
shown in Figure 6.5. Since the F-measure is a boundary-based measure the segmen-
tation results are presented as boundaries over the original images. The proposed
approach produces segmentations of high quality. For all images in Figure 6.5 the set
of segments is reasonably compact. The proposed method produce better results than
the other methods for every images.

This new approach overcomes some limitations usually associated with spectral

clustering approaches. As we can see from the segmentation result of image 118035,
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Figure 6.5: Segmentation results: (a) proposed method (WNCUT), (b) Mean shift (EDI-
SON) [Comaniciu 02], (¢) JSEG [Deng 01], and (d) the multiscale segmentation MNCUT
[Cour 05].
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larger homogeneous regions are not partitioned into separated regions.

Compared with the other methods, the proposed approach has overall less over-
segmentation and a very good boundary location. It produces an overall score of
F =0.77, against F' = 0.72 for EDISON, and F' = 0.66 for JSEG and MNCUT. Note
that due to the variability of segmentations among humans, the overall score of manual
segmentations is F' = (.88.

Although EDISON and JSEG produce results with high value of precision, the
correspondent recall value is in general low. For example, with hy, = 11, h, = 4 and
M = 100, EDISON evaluation for image 41004 gives R = 0.79, P = 0.27 and F' = 0.40.
This is due to the over-segmentation produced by these methods.

According to these results, we can conclude that our method generally provides

results with a F-measure better than other state-of-the-art methods.

6.1.2 Robustness to noise

Larger over segmentation at the first stage will result in a graph that increase the
computational cost, since the eigensystem complexity depends on the number of atomic
regions being clustered. The dominant parameter controlling this stage is the flooding
level threshold applied to the gradient image which we empirically set to 0.025 times
the mean image gradient. This factor determines the degree of over segmentation and
thus the number of nodes of the graph (Figure 6.6).

The flooding level can be a function of local image characteristics, such as gradient
magnitude, intensity or variance. Such function may additionally depend on one or
more parameters. Figure 6.6 compares the watershed segmentation computed without
and with this modification.

To analyse the behaviour of the algorithm in presence of noise, the images were
corrupted with four levels of Gaussian additive noise with standard deviations o =
5, 10, 20, 30. All the tests were done without changing the parameter values of the
methods. The effect of the pre-processing step in reducing the noise, with a reduction
on the number of irrelevant regions in the output of the watershed algorithm, can be
observed in Table 6.3 and in Figure 6.7.

Our method turned out to be extremely robust to artificially added Gaussian noise.

We may notice that segmentation results are not very affected till ¢ = 20, and it
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Figure 6.6: Effects of pre-processing in watershed transform. (a) Original image with added
Gaussian noise with o = 10 (154 401 pixels). (b) Gradient magnitude image. (c) Regions in
the "raw" watershed (6 104 segs). (d) Regions in the pre-processed image (2 223 segs).

produces a good segmentation even for added Gaussian noise with an amplitude of
o = 30. This amount of noise is greater than would be expected in a normal real

image.

6.2 Motion segmentation: results

The motion segmentation algorithm described in Chapter 5 was tested using several
benchmark test sequences: Tennis, Salesman and Flower Garden with Car. These
three are among the sequences widely used by authors for testing video segmentation
and coding applications.

It is difficult to access, in quantitative terms, the accuracy of a real world motion
segmentation. Some authors have presented "ground truth" data to some sequences
[Chung 07]. However, these reference images are not extracted in a motion-based
process. They are obtained using some iterative image segmentation method like the
ones presented in Chapter 2. Therefore, the results presented here are only qualitative.

Figure 6.8 shows the segmentation result with the Tennis sequence. In this part
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Table 6.3: Results of quantitative evaluation in terms of F-measure for original image and
for added Gaussian noise with ¢ = 5, 10, 20, 30.

o 37073 41004 42049 65019 90076 118035 143090 241004

0 0.65 0.75 0.89 0.80 0.85 0.74 0.71 0.81
5 0.64 0.72 0.87 0.71 0.83 0.73 0.68 0.80
10 0.63 0.71 0.81 0.69 0.82 0.72 0.67 0.77
20 0.60 0.68 0.77 0.68 0.81 0.72 0.64 0.75
30 0.53 0.64 0.71 0.67 0.78 0.71 0.58 0.64

of the sequence, the player bounces the ball on his bat as he prepares to serve. The
upper arm is almost stationary, and the lower arm naturally obeys a motion part-way
between that of the upper arm and the bat, so an uncertain labelling is somewhat
justified. The motion of the ball is, of course, a genuine fourth independent motion.
The ball’s displacement between frames is quite large - about 20 pixels.

This example illustrates an important dilemma in motion segmentation. Looking
only at the actual motions the forearm is essentially pivoting at the elbow so that
there is large motion at the bat and smaller motions on the arm, whilst the motion
of the upper part of the arm is so small that it could very plausibly be classified as
the same as the background (Figure 6.8.f)). This is a general problem where motions
in an image (typically due to rotations) become indistinguishable from the motions of
nearby regions. In this case there is always going to be some ambiguity about where
the division between the motion classes should be when considered solely on the basis
of the motion.

Figure 6.8.g) shows the resulting segmentation from the Tennis sequence where
most of the arm is correctly classified. One exception is the bottom of the ball, which is
incorrectly classified in the region in which the flow field is propagated to the adjacent
three atomic regions under the ball. This is essentially due to the large motion of
the ball (Figure 6.8.c)) which causes occlusions that affect the accuracy of motion
estimation. Even more, the region under the ball has diffuse brightness that affects
also the spatial similarity.

Figure 6.9 shows the segmentation result with the Salesman sequence. Here we
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(n) 0.72

Figure 6.7: Performance of the proposed approach on noisy images. Results with added
Gaussian noise with o, from left to right, equal to 5, 10, 20, 30. The values below the images
are the F-measures.

observe multiple local motions of the arm (due to movement of the shirt).

The Salesman sequence does not possess any global motion, but the motion of the
non-rigid object (salesman) is significant in this sequence, especially in respect to the
arm movements. It can be seen in Figure 6.9.g) that our proposed algorithm yields
satisfactory multiple motion segmentation. Regions such as the arm of the Salesman
and his hand, which moves with motion involving rotation, are correctly segmented.
Also the shirt, that is divided in two by the arm, is correctly merged.

Figure 6.11 shows the segmentation result with the Flower Garden with Car se-
quence. This example is part of the well-known Flower Garden sequence. The se-
quence was shot by a camera placed on a driving car, and the image motion is related

to distance from the camera. Thus the tree, which is closest to the camera moves
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Figure 6.8: Tennis sequence. (a)-(b) Frames 8 and 9 (grey-scale). (¢) Absolute difference
between the frames. (d) Atomic regions. (e) Computed dense optical flow. (f) Region-based
vector field scaled by a factor of 2. (g) Motion segmentation. (h) "Difference" between (e)
and (g).
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() (h)

Figure 6.9: Salesman sequence. (a)-(b) Frames 14 and 15 (grey-scale). (c) Absolute
difference between the frames. (d) Atomic regions. (e) Computed dense optical flow. (f)
Region-based vector field scaled by a factor of 2. (g) Motion segmentation. (h) "Difference"
between (e) and (g).
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fastest.

In this experiment a moving car was included in the scene. The inter-frame dif-
ference detects motion at every image pixels. Flower Garden sequence contains many
depth discontinuities, not only at the boundaries of the tree but also in the background.
In this sequence, the camera captures a flower garden with a tree in the centre. Also,
the flower bed gradually slopes toward the horizon showing the sky and far objects.
Semantically, this sequence has five layers: the tree, the car, the flower bed, the house
and the sky.

We should note that this sequence has been recorded in interlacing mode and thus
requires the handling of typical interlacing artefacts. These stripe artefacts that result
from an alternating update of even and odd lines are typical for real-world applications.
These could be reduced during the convolution with the Gaussian kernel. Figure 6.10

shows the effect of interlacing artefacts reduction.

(b)

Figure 6.10: Interlacing artefacts. (a) Detail from frame 5 of the Flower Garden sequence.
(b) image convolved with Gaussian kernel with o = 1.0.

Although the tree divides the flower bed the algorithm merges the two parts in
one only segment. This happens also in the house layer. Note that in the area that
contains the tree’s branches, only one segment is chosen since the sky area has no
brightness variation. Figure 6.11.e) shows the estimated optical flow with different
colours represent different directions. From this figure it looks like as the bottom of
the flower bed, the tree and the sky have the same motion information. However, the
segmentation algorithm making use of the intensity information, correctly divides these
parts.

Figure 6.11.h) shows the resulting tree segment. The region-based approach extracts



166 Image and motion segmentation: experimental results

(h)

Figure 6.11: Flower Garden with Car sequence. (a)-(b) Frames 5 and 6 (grey-scale).
(c) Absolute difference between the frames. (d) Atomic regions. (e) Computed dense optical
flow. (f) Region-based vector field scaled by a factor of 2. (g) Motion segmentation. (h) Tree
segment.
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the tree’s edges accurately along major part of the trunk, even in similar textured area
of the flower bed, but less well in other areas. The fine detail of the small branches

cannot be well represented by image regions, and these are segmented poorly.

6.3 Comparative results

As demonstrated by the results shown in this chapter, motion segmentation is a difficult
task. It is also difficult to assess, in quantitative terms, the accuracy of a segmentation.
It is therefore instructive to compare the results generated by this region-based system
with work published by other authors over recent years; this gives an indication of
the relative success of the region-based approach. Again, with no accepted quantita-
tive measure of segmentation performance, a qualitative comparison is made between
results.

This section presents a comparison with a number of authors who have analysed the
Flower Garden sequence. In this comparison we analyse the accuracy of the resulting
tree segment. The results are extracted from the published papers. Although each
author displays their results differently it is not difficult to compare them.

Wang and Adelson [Wang 94] presented results from this sequence in their paper
introducing the layered representation. Comparisons with Ayer and Sawhney [Ayer 95|
and Weiss and Adelson [Weiss 96] are also presented in Figure 6.12. Both of these
authors’ results show some outlying pixels or regions which are absent in our approach,
which gives the system presented in this dissertation a more pleasing appearance.
Figure 6.12.d) shows the result of the edge-based motion segmentation scheme from
Smith [Smith 01].

The segmentation of the tree in the Wang and Adelson estimate it to be too wide,
while the edge-based approach misses a few sections. Ayer and Sawhney’s is a better
outline, but there is more noise in the background. Although the tree segment of Weiss

and Adelson is similar with our result, it is not so "clean".

6.4 Summary

This chapter has evaluated analytically and empirically the segmentation methods

proposed in Chapter 4 and Chapter 5. We have experimentally shown that the pro-
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Figure 6.12: Comparative results with the Flower Garden sequence. Results presented
by (a) Wang and Adelson in [Wang 94|, (b) Ayer and Sawhney in [Ayer 95|, (¢) Weiss and
Adelson in [Weiss 96] and (d) Smith in [Smith 01].

posed approaches provide an effective region-based segmentation method for achieving
high quality segmentation. It has been shown that good segmentation results can be
achieved when using a combined approach between morphological and graph-based
methods. We compared this new approach against other state-of-the-art segmentation
techniques [Deng 01, Comaniciu 02, Cour 05]. Qualitative results for real-world se-
quences demonstrate the capacity of our approach to segment objects based on spatial
and motion cues. A comparison with some of the best known motion segmentation

methods is also made for the Flower Garden sequence.



CHAPTER [

Conclusion

This thesis is focused on the problems of image and motion segmentation using two
region-based methods.

One of the key ideas presented in this thesis is the simplification of the entry
graph for the normalized cut (NCut) algorithm. A pre-segmentation process allows
the construction of a region-based graph which makes the Ncut algorithm tractable to
large images. This graph has a smaller size than the pixel-based graph, but still with
meaningful data. The initial segmentation is not a simple "pre-processing" step such as
making some assumptions on the sparsity of certain matrices [Shi 00|, or using bottom-
up region merging to reduce input size. By using the watershed transform we provide a
ready-made matrix of relevant data as input to the NCut algorithm. We demonstrate
the reliability of our algorithm with qualitative and quantitative experimental data.

Major reasons for the success of our algorithm over other similar methods are: the
use of edge preserving smoothing filter; the use of intervening contours in the similarity
measure; the exclusion of the spatial distance in the pairwise similarity measure; the
region-based similarity graph; and the multiclass spectral-based approach. Even more,
the use of watershed based regions instead of single pixels as graph nodes largely
decreases the computational cost.

This region-based method also enforces spatial smoothness of the resulting motion
segmentation map without using costly Markov random field models. We observe that
we can tolerate over-segmentation in the spatial region formation step, since these re-
gions will be merged later using motion vector and intensity matching. In contrast
with the classical motion segmentation methods that segment sequences only as fore-
ground /background objects, our method effectively separates the moving areas accord-

ing to their motion. Experimental results demonstrate the robustness of the proposed

169
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method, which can also be viewed as integration of motion and intensity segmentation.

Our basic assumptions for motion segmentation approach are that motion infor-
mation varies smoothly inside a region of homogeneous intensity, while flow field dis-
continuities are located at the borders of those regions. The purpose of applying this
segmentation assumption is to improve the performance of our algorithm in untextured
regions and in the proximity of flow field boundaries.

There are two important advantages to estimating the velocity over a whole re-
gion rather than pixel by pixel. The first advantage is that the effects of noise and
inaccuracies in the velocity vector estimation typically are reduced significantly. The
second advantage is that even if the aperture problem is presented in some part of the
region, information obtained from other parts can help to fill in the missing velocity
component. A disadvantage with velocity estimation over a whole region is that it is
assumed that the true velocity field is at least reasonably consistent with the chosen
motion model. A problem here is that even if we know, e.g. from the geometry of the
scene, that the velocity field should be patch-wise affine, we still need to obtain regions
not covering patches with different motion parameters. There are many possible solu-
tions to this problem, including grey level segmentation and the ideal case of a priori

knowledge of suitable regions.

7.1 Contributions

There have been three main themes pursued through out this thesis. The first two are
image segmentation and correspondingly evaluation, and the third is motion segmen-
tation. This section summarizes the contributions of this work.

Our contribution in Chapter 2 is a review of the recent contributions in the area of
image segmentation with emphasis on the cooperative segmentation methods. We also
proposed a new categorization of image segmentation algorithms.

In Chapter 3, we introduce a new evaluation metric for image segmentation. Most
of the currently used evaluation metrics measure in one way or another the quantity of
false and positive pixels in the segmentation result making no perceptual differentiation
among them. Our region-based measure takes into account not only the accuracy of the
segments boundary localization regardless to the number of regions in each partition.

From the comparison of the proposed metric with some of the best known evaluation
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measures in the literature we have shown that our method is tolerant to refinement
and at the same time strongly penalizes segmentation errors. This comply with the
way humans perceive visual information.

In Chapter 4, we develop a new hybrid segmentation technique for still images
which combines edge and region-based information with spectral techniques through
the morphological algorithm of watersheds. A non-linear smoothing (bilateral filter) is
used to reduce over-segmentation in the watershed algorithm while preserving the lo-
cation of the image boundaries. The purpose of the pre-processing step is to reduce the
spatial resolution without losing important image information. An initial partitioning
of the image into primitive regions is set by applying a rainfalling watershed simulation
on the image gradient magnitude. This step presents a new approach to overcome the
problems with flat regions. This initial partition is the input to a computationally effi-
cient region segmentation process (multiclass normalized cut algorithm) that produces
the final segmentation. The method’s accuracy and robustness were demonstrated
through a series of experiments involving several real images. Our experimental results
were also compared with other published results, and the comparison indicated that
the proposed method produced results that fall into the most accurate category.

The third problem that we address in this thesis is the estimation and segmentation
of motion. In Chapter 5, we apply the proposed framework to motion segmentation.
Motion estimation is obtained with the variational method proposed by Brox et al.
[Brox 04]. This method relies on a piecewise smooth assumption using a gradient
constancy regularisation which yields robustness against illumination changes between
the corresponding images. We also develop the theory linking the motion labelling of
pixels with that of motion labelling of regions. The major advantages of this region-
based motion segmentation algorithm are twofold. First, it is likely to reduce the effect
of leverage pixels by encouraging flow field maps to have spatially coherent support.
Optical flow vectors inside a region are constrained to follow a unique dominant vector.
This allows the assignment of smooth optical flow field in regions of poor texture.
Secondly, optical flow discontinuities are enforced to coincide with region borders. This
is advantageous, since we believe that motion segmentation boundaries can be more
accurately identified by the use of static cues than using motion information only.

The performance of this method was demonstrated in Chapter 6 through a series

of experiments involving several of the most currently used image sequences.
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7.2 Open topics and future research

The work presented in this thesis provides a new effective framework for image and mo-
tion segmentation which has been illustrated on various experiments. The approaches
presented open several extension opportunities and a number of areas of interesting
future work that are still allowed to go through for further exploration.

The motion segmentation assumption is not guaranteed to hold truth. This is
a limitation of our approach and our current solution is to apply a stronger over-
segmentation. However, since this does not completely overcome this problem, our
algorithm could take benefit for example from an operation that allows splitting seg-
ments. It would be interesting to develop a special purpose intensity segmentation
method as well that avoids producing regions which overlap a depth discontinuity.

Our image segmentation evaluation measure needs a calibration image to set up the
thresholds. Further investigation on the choice of universal thresholds is needed. The
segmentation algorithms’ parameters are also chosen empirically. In a more advanced
implementation parameter estimation could be automated (e.g. based on the expected
level of image noise or optical flow field variation).

Image segmentation and motion estimation are considered to be separate problems.
In further research we are planning to set up an image segmentation system that
exploits temporal relationships and a motion estimation system that exploits region-
based image segmentation. These should improve the quality of image segmentation
as well as of motion estimation.

An explicit treatment of the occlusions and, more specifically, of occlusions in the
previous frame could be beneficial. This implies the identification of segments that
have just appeared in the scene and the relaxation of the assumption of the temporal
continuity of the label map in such cases.

The algorithm presented here computes a motion segmentation map between any
two frames of a sequence. It is also possible to extend it to temporally integrate these
maps to obtain more stable motion boundaries across successive frames.

In order to improve the quality of results, we intend to apply the algorithms to
specific areas, e.g. Medical Imaging where some preliminary experiments proved to

achieve good results (see Appendix A).
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Additional experimental results

This chapter presents additional experimental results of the region-based image seg-

mentation algorithm described in Chapter 4.

A.1 Additional quantitative results

Table A.1 shows the quantitative evaluation results of the comparison of WNCUT
method with the state-of-the-art methods. The same results are presented in a graphic

representation in Figure 6.4.

Table A.1: Results of quantitative evaluation in terms of F-measure for the comparison
between the proposed method (WNCUT), Mean shift (EDISON), JSEG and the multiscale
segmentation MNCUT. The last row shows the evaluation among hand-segmented results.

Method 37073 41004 42049 65019 90076 118035 143090 241004

WNCUT 0.65 0.75 0.89 0.80 0.85 0.74 0.71 0.81
EDISON 0.62 0.64 0.85 0.75 0.73 0.70 0.62 0.72

JSEG 0.61 0.55 0.64 0.67 0.66 0.71 0.49 0.78
MNCUT 0.58 0.60 0.75 0.78 0.64 0.70 0.33 0.69
Humans 0.75 0.89 0.92 0.96 0.91 0.85 0.85 0.95
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A.2 Additional qualitative results

To a better visualisation of the results they are superimposed on the original images.
As in the experiments of Chapter 6 the parameters were set to ;. = 0.02 and o; = 0.02.
Figure A.1 presents the results of the segmentation over complex real images. More

results, not so complex, are shown in Figure A.2 and in Figure A.3.

Street

Figure A.1: Experimental segmentation results over complex real images.

Figure A.4 shows the segmentation results over medical images. It is perceptible,
for example, in results of images (c), (d) and (e), the accuracy of the method as it

follow the correct lung boundaries even if they are very complex.
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Claire

Peter 6 segs

15 segs

Figure A.2: Experimental segmentation results over images showing humans.
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42044

172032 20 segs

207056 12 segs

Figure A.3: Experimental segmentation results over real images.
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(f) 7 segs

Figure A.4: Experimental segmentation results over medical images with £ = 7.
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