
Humanoid Robot Simulation with a Joint Trajectory Optimized Controller

José L. Lima, José C. Gonçalves, Paulo G. Costa, A. Paulo Moreira
Department of Electrical and Computer Engineering

Faculty of Engineering of University of Porto
jllima@ipb.pt, goncalves@ipb.pt, paco@fe.up.pt, amoreira@fe.up.pt

Abstract

This paper describes a joint trajectory optimized
controller for a humanoid robot simulator following the
real robot characteristics. As simulation is a powerful
tool for speeding up the control software development,
the proposed accurate simulator allows to fulfil this
goal. The simulator, based on the Open Dynamics
Engine and GLScene graphics library, provides instant
visual feedback.

The proposed simulator, with realistic dynamics,
allows to design and test behaviours and control
strategies without access to the real hardware in order
to carry out research on robot control without damaging
the real robot in the early stages of the development. The
joints controller techniques, such as acceleration, speed
and energy consumption minimization are discussed and
experimental results are presented in order to validate
the proposed simulator.

1. Introduction

In last years, studies of research in biped robots have
been developed and resulted in a variety of prototypes
that resemble the biological systems. Legged robots have
the ability to choose optional landing points, an
advantage to move in rugged terrains, and two legged
robots are also able to move in human environment. So,
studies about biped robots are very important and
stimulating [1]. Locomotion under influence of external
disturbances is a challenging task for a humanoid robot,
once if disturbances are large enough, a fall might
become unavoidable. Closed loop controllers should
minimize the number of falls [2] and if a fall happens,
the robot should detect it and get back into an upright
posture [3]. On the one hand, simulation is a powerful
tool for speeding up the control software development.
On the other hand, developing new control software for
robots can be a difficult and challenge task. The ability
to rapidly prototype software, within a simulation
environment, can be of great benefit to develop robot
control if the resulting software can be easily transfered
from simulation to real world systems. Therefore, the
simulator must capture the most important environment

characteristics; however, developing simulators with
high-fidelity dynamic models that can be simulated in
real-time is a non trivial problem [4]. The simulator must
also be able to measure the consumed energy providing a
good efficiency planning. The planning for humanoid
movements should result in minimum energy
consumption, like it happens in the human body. Joints
angles and torques limits must also be handled.

There are several robot simulators, such as Simspark,
Webots and MURoSimF, that provide humanoid
simulation capability. Meanwhile, the developed
simulator allows to build and to test the low and high
level controllers, with a configurable control period, in a
way that can be mapped with the reality, although with
some overhead. Furthermore, this simulator can be
controlled by network and script language avoiding
installations of development applications. As an
important feature, robots can be built with a configurable
structure based on a xml description file. It is also
possible to create several humanoid robots in the
environment.
Code migration from general realistic simulators to real
world systems is the key for reducing development time
of robot control, localization and navigation software.
Due to the complexity of robot, world, sensors, and
actuators modelling it is not an easy task to develop such
simulator. The motivation of developing a realistic
humanoid robot simulator is to produce a personalized
and versatile tool that will allow in the future the
production and validation of robot software reducing
considerably the development time. This simulator deals
with robot dynamics and how it reacts for several
controller strategies and styles.
This paper proposes a simulator, based on the Open
Dynamics Engine [5], for a humanoid robot and presents
its low level controller. The proposed simulator allows to
design and test behaviours without access to real
hardware in order to carry out research on robot control
once it is developed having in mind the real robot:
dimensions, masses, inertias, joints angles and velocities
limits are accurately resembled.
The paper is organized as follows: Initially, the real
robot, where mechanical design, communication and
control application are described, is presented. Then,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153403995?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

section 3 presents the developed simulator basis and how
simulator robot is built. Section 4 presents the joint
trajectory planning where minimum acceleration,
minimum speed and minimum energy consumption
methods are described. Experimental results are
presented further in section 5. Finally, section 6 rounds
up with conclusions and future work.

2. Real Humanoid Robot

The commercially available Bioloid [6] robot kit,
from Robotis, is the basis of the used humanoid robot.
The overview of the proposed biped robot is shown in
Figure 1. The suggested robot was modified and differs
from the original kit, to follow the dimensional rules of
RoboCup [7] Humanoid League [8]. Next subsections
present the physical robot in which was based the
developed humanoid simulator.

a) b)

Figure 1. Real humanoid robot poses.

2.1. Mechanical Design
The presented humanoid robot is driven by 19 servo

motors: 6 per leg, 3 in each arm and one in the head.
Three orthogonal servos set up the 3DOF (degree of
freedom) hip joint. Two orthogonal servos form the
2DOF ankle joint. One servo drives the head (a vision
camera holder). The shoulder is based on two orthogonal
servos allowing a 2DOF joint and elbow has one servo
allowing 1DOF. The total weight of the robot is about 2
kg and its height is 38 cm. The modelled humanoid robot
is presented in Figure 2 that allows to visualize real
humanoid posture in the interface software.

a) b)

Figure 2. Modelled robot. a) frontal view,
b) back view.

2.2. Communication Architecture
Multiple layers that run on different time scales

contain behaviours of different complexity. The layer
map is presented in Figure 3.

The lowest level of this hierarchy, the control loop
within the Dynamixel actuators (AX-12), has been
implemented by Robotis [9]. Each servo is able to be
programmed with not only the goal position, the moving
speed, the maximum torque, the temperature and voltage
limits but also with the control parameters. This
communication layer is based on a 1Mbps half-duplex
serial bus where each individual servo can be addressed
or a broadcast can be sent. These limitations are placed
in the simulator for a faithful representation.

At the next layer, an interface unity CM-5 module,
based on an Atmel ATMega128 microcontroller, allows
a communication interchange. It receives messages from
the upper layer and translates them to the servos bus.
Answers from servos are also translated and sent back to
the upper layer as presented in Figure 4.

The original firmware was replaced in order to get
higher performances and low level controller achieve. At
the higher layer, target angle and moving speed for the
individual joints are generated from a personal computer
or from an embedded system.

2.3. Behaviour and Control
Perception assumes a major role in an autonomous

robotics, and must be therefore reliable or abundant [10].
For this robot, the joint position, speed and torque
perception was planned. For enlarge the closed loop
control, as a future feature, the accelerometers
information and feet force sensing perceptions were also
planned [11]. At the present, the real humanoid robot is

Figure 3. Layers diagram.

Figure 4. Interface layer.

not equipped with accelerometers and for similarity the
simulator sensors were not included.

As a first approach, an open-loop system can be used
(accelerometers and feet force information are disabled).
This can be done sending pre-programmed joint angles
and angular speeds for each joint. Walk and stand up
movements can be achieved. The developed software
that communicates with CM-5 module and controls the
robot is presented in Figure 5. The main task is to send
preprogrammed joints angles and velocities that
compose a movement and show, in a real-time 3D
window, the real robot posture. Preprogrammed
positions can be planned off-line (disconnected from the
robot) once user can observe the robot postures. It also
allows to obtain the real attitude of the robot.

3. Open Dynamics Engine Simulation

Design behaviour without real hardware is possible
due to a physics-based simulator implementation. The
physics engine is the key to make simulation useful in
terms of high performance robot control. Although there
are a number of open source simulation engines
available, most focus on producing fast pseudo realistic
simulations for use in computer games. These engines
are therefore fast, but produce motions that look good as
opposed to being accurate. In contrast, there exist a
number of simulation engines for rigid body motion that
are unusable for simulating the mechanical interactions
of rigid parts [4]. For real-time simulation, an accurate
but fast simulation engine must be used. ODE, Open
Dynamics Engine [5] checks these requisites. As an
open source rigid body simulation engine, developed by
Russell Smith, has reached a maturity level ensuring that
produced code is stable. It is essentially a simulation
library that provides support for rigid body motion,
rotational inertia and collisions treatment where the
world to be simulated is built. It also allows to use Open
GL (graphics library) routines to render the 3D
simulated environment. The graphic routines are based

on Open GLScene library. It provides visual components
and objects allowing description and rendering of 3D
scenes in an easy, no-hassle, yet powerful manner. It has
grown to become a set of founding classes for a generic
3D engine with RAD (Rapid Application Development)
in mind [12].

3.1. Humanoid Construction
A complex humanoid model can be avoided due to

the ODE usage. Humanoid body simulator construction
is based in body masses and joint connections. Each
body mass imitates the servo motors and connection
pieces weights from the real robot. ODE joints, imitate
the servo motors axis movements and must be defined its
types, angles and torques limits. Joints types can be
classified as hinges or universal joints: a hinge that
allows both bodies to be connected and roll such as arms
and forearms, femur and leg; a universal joint must be
introduced when there are two or more degrees of
freedom between two bodies. It happens when two servo
motors are physically combined. A universal joint allows
two bodies to roll on both axes. As example, presented in
the simulator, these joints connect trunk and arms, trunk
and legs, legs and feet.

3.2. XML model description
The Extensible Markup Language (XML) is a

general specification language that allows its users to
define their own elements. It defines a generic syntax
used to mark up data with simple human-readable tags
[13]. A description of the humanoid robot model in done
resorting to XML description language. Positions, sizes,
masses perform the description of bones and positions,
axis, limits and types perform the description of joints as
presented in the next XML excerpt.

<robot>
 <kind value='humanoid'/>
 <solids>
 <cuboid>
 <ID value='6'/>
 <pos x='-0.040' y='0' z='0.010'/>
 <size x='0.082' y='0.102' z='0.137'/>
 <mass value='0.635'/>
 <desc Pt='Tronco'/>
 <desc Eng='Trunk'/>
 </cuboid>
 </solids>
 <articulations>
 <joint>
 <ID value='0'/>
 <pos x='-0.039' y='0.030' z='-0.170'/>
 <axis x='0' y='1' z='0'/>
 <connect B1='7' B2='17'/>
 <limits Min='-98' Max='32'/>
 <type value='Hinge'/>
 <desc Pt='Joelho Esq'/>

Figure 5. Developed humanoid software
controller.

 <desc Eng='Left Knee'/>
 </joint>
 </articulations>
</robot>

The humanoid robot simulator is built based on the
XML description. By this way, it is an easy task to
modify the robot structure once there is no necessity to
compile a new application, making the simulator useful
to others beyond the programmer. The same language is
used to store the movements of each joint.

GLScene is used to render the 3D graphics
appearance enhancing visualization including shadows,
textures, projections, illuminations and it also provides
depth perception. Zooming and camera positioning
become also an easy task. A screenshot of the developed
simulator is shown in Figure 6, where a 3D scene shows
some humanoid robots and several obstacles, a table
shows the desired joint variables such as angle and
angular speed.

4. Humanoid Joint Trajectory Controller

This controller level accepts, for each servo, angles,
angular speeds and timings requirements from the higher
level. The main objective of this controller is to build
and to follow the trajectories established by angles and
angular speeds requirements having in mind the
acceleration, speed and energy consumption
minimization.

4.1. Servo-Motor model
The servo motor response, such as dynamics,

maximum acceleration and speed, must be known in
order to draw simulator trajectories compatible to the
real robot. The joints closed loops controllers must also
have the same response as servos have.

An input step, from 0 to 50 degrees with a sample
frequency of 30 Hz and an inertial mass, is presented in
Figure 7 (orange lozenges) and allows to obtain the
desired parameters. The maximum speed can be found
by the servo motor angle maximum derivative (ωmax=281
deg/s) and the acceleration can be found by maximum

second derivative (amax=1400 deg/s2). This test was made
assuming that friction and wind-up saturation non
linearities are despised.

The implemented servo motor model in simulator,
based in the real servo motor step response, is tested for
the same input step and with the same inertial mass in
order to validate its similarity with the real one and
presented in the same figure (blue squares). The
overlapped curves allow to validate the servo motor
model implemented in the simulator.

4.2.Trajectory planning
The joints controller finds the intermediate

trajectories that take joints to the desired states and
follow them. It is also able to minimize the accelerations
in order to save consumed energy.

Suppose that for t=t1 (actual time) it is measured
angle θ1 and angular speed ω1, and for t=t2 (next period)
it is desired position θ2 and angular speed ω2, as
illustrated in Figure 8 a) and b), that shows the used
symbology and some examples of possible trajectories,
assuming a constant acceleration in [t1,tm] and [tm,t2].

a) b)

Figure 8. Joint state: a) angle ref. and b)
speed ref.

It is necessary to calculate the angle and angular
velocities equations that result in the desired conditions:
the ωm and tm, assuming a constant angular acceleration
that allows angular speed to follow a piece-wise linear
equation: the angular speed is linear by parts, and

Figure 7. Real and simulator servo motors
response to a step input.

tt1 t2tm

θ(t)
θ 2

θ 1 tt1 t2tm

 ω(t)

ω2ω1

ωm

ω 1
(t)

ω
2 (t)

Figure 6. Developed simulator screenshot.

angular acceleration is constant by parts. The ωm (for tm

instant) must be determined and depends on the adopted
method: acceleration, speed or energy can be minimized
as presented in next subsections. By this way, angular
reference and angular speed equations can be found as a
smooth movement, following the desired conditions.
There are several solutions for tm, for the same initial and
final conditions as presented in next equations. The
covered angle (θ2-θ1) can be expressed by the triangle
areas (AI, AII and AIII) presented in Figure 9 and equation
1. Equation 2 allows to find the linear function ωm=f(tm),
represented by L2 line in Figure 9.

 (1)

(2)

In fact, equation 2 is a linear function of tm and its slope
(derivative function) can be found by (ω2-ω1)/(t2-t1), the
same slope as L1 line. These lines, L1 and L2 are
deviated by h that depends on the covered angle and it
can be found by equation 3.

(3)

So, the h value can be determined by equation 4.

(4)

The angle equation, θref(t), can be found resorting to
the formula of uniform linear accelerated movement for
each time interval [t1,tm] and [tm,t2] as presented in

equations 5 and 6. By this way, tm can be placed in [t1,t2]
interval, according to equation 2, that allows to cover the
desired angle. Next subsections discusses tm positioning
from the point of view of acceleration, speed and energy
consumption.

(5)

(6)

4.3. Acceleration minimization controller method
During the [t1,tm] interval, the joint angular

acceleration a1 can be expressed in equation 7, whereas
during the [tm,t2] interval, a2 can be expressed in
equation 8 as presented in Figure 10.

(7)

(8)

It can be shown that if tm moves from t1 to t2, a1

becomes lower and, otherwise, a2 becomes higher. The
optimal tm can be found when both accelerations
modules match, as presented in equation 9.

 (9)

Equation 9 allows to find the tm=f(ωm(t)) function for
a desired ωm as presented in equation 10, having in mind
the particular case of accelerations minimization a1 and
a2.

(10)tm
Amin=

m−t2−t11t 22 t1

12−2m

Figure 9. ωm position freedom.

tt1 t2tm

 ω(t)
ω2

ω1

ωm

h
A

I

A
II

A
III

L2

L1

m=
2 2−1−

tm− t1

2
1−

t2−tm

2
2

t 2−t 1

h=2
2−1

t 2−t 1
−2−1

a2=
2−m
t2−tm

∣a1∣=∣a2∣h=mt 1−1

Figure 10. Acceleration minimization.

tt1 t2tm

 ω(t)
ω2

ω1

ωm
L2

a 1

a
2

a1=
m−1
tm−t 1

2−1=AI−AII−AIII=

mt 2−t 1−m−1
tm−t 1

2
−

m−2
t 2−tm

2

Ref t =11t−t1
1
2
m−1

tm−t1
t−t1

2

Ref t =Ref t=tmm t−tm

1
2
2−m

t 2−tm
t−tmt

2

The (tm,ωm) point can be found by equation 2 for the
tm

Amin timing, calculated in equation 10, that results
the desired ωm presented in equation 11.

(11)

The valid ω(t) solution is the one that takes tm into the
[t1,t2] time window. The trajectory references θ(t) and
ω(t), which minimize both accelerations a1 and a2, can
now be drawn.

As result, presented in Figure 11, a Matlab function
draws the expressed equations for this example:

● θ1=0 deg
● θ2=27 deg
● ω1=20 deg/s
● ω2=30 deg/s
● t1=3 s
● t2=4 s.

The maximum reached acceleration is about 14.77
deg/s2.

4.4. Speed minimization controller method
The way to minimize the speed is to reach the L2 line

as fast as possible while keeping the maximum
acceleration limits.

From all the feasible solutions, the one that minimizes
the joint speed is presented in Figure 12 where amax is the
servo motor maximum acceleration.
The tm instant can now be determined by L2 and L3
intersection as expressed in equation 12. Equation 2
allows to find the ωm value for the desired instant tm.

(12)

As result, presented in Figure 13, a Matlab function
draws the expressed equations for the same desired
conditions as presented in previous subsection and an
acceleration of 200 deg/s2.

The maximum reached speed is 30 deg/s (the desired
final speed ω2).

4.5. Energy consumption minimization controller
method

As humanoid robot is powered by on-board batteries,
energy consumption must be reduced as much as
possible. Trajectories design task should care energy
consumption and minimize it.

Assuming that the instant power consumption by
servo motor can be determined as the torque and the
angular speed ω product (P=k.I.a.ω), where I is the
moment of inertia, k a scalar gain and a the angular
acceleration, it is possible to place tm in the energy
minimization instant as described in this subsection. The
moment of inertia depends on each joint and robot
posture but can be considered constant in energy
minimization timing achieve for simplicity As example,
an extended arm that measures approximately 0.2 m and

m=tm=
1
2
21h

±1
2 2

2−2211
2h2

Figure 11. Joint trajectory - minimum
acceleration.

Figure 13. Joint trajectory - minimum
speed.

Figure 12. Joint trajectory (ωmax

minimized).

tt1 t2tm

 ω(t)
ω2

ω1

ωm
L2

a m
a
x

L3

t m=
h

amax−
2−1

t 2− t1

t 1

weights 0.174 kg has an moment of inertia of
0.00232 kg.m2 (I=mL2/3, where m is the mass, and L the
body length). The k value allows the conversion from
deg/s to S.I. units expressed as 4π2/3602.
For the first time part (where t ∈ [t1,tm]) there is an
angular speed ω1(t) with an acceleration a1 and for the
second time part (where t ∈ [tm,t2]) there is an angular
speed ω2(t) with an acceleration a2. The instant power
consumption can be described by equation 13 where a1

and a2 depend on tm instant and the total energy can be
described by the power integral as presented in equation
14.

(13)

(14)

The minimum energy consumption tm instant can be
found when its first derivative equals zero as presented
in equation 15 that allows to find the tm instant presented
in equation 16. Equation 2 allows to find the ωm value
for the desired instant tm.

(15)

(16)

As result, presented in Figure 14, a Matlab function
draws the expressed equations for the same desired
conditions as presented in previous subsections. The
consumed energy is 0.1767 mJ, following the previous
presented conditions.

Minimum energy consumption function from t1 to t2
timing is also illustrated in Figure 15 that shows the
optimal tm value at 3.6 seconds. If the optimal tm timing
is outside [t1,t2] interval, maximum acceleration should
be done at t1 if tm < t1 or to t2 if tm > t2.

4.6. Trajectory planning methods comparison
In order to compare the effectiveness of the presented

trajectory planning methods, table 1 presents the tm

instant, the ωm value, the maximum acceleration amax and
the energy consumption Econs for each method
(Amin-minimum acceleration, ωmin-minimum speed and
Emin-minimum energy consumption). Notice that ωm for
the ωmin method is lower than the requested angle (30
deg/s).

Table 1. Trajectories planning comparison.

Method
tm
(s)

ωm

(deg/s)
|amax|

(deg/s2)
Econs

(mJ)
Econs

(%)

Amin 3.84 32.39 14.77 0.1807 2.26

ωmin 3.02
24.21
(30)

200.0 0.2004 13.41

Emin 3.6 30 16.67 0.1767 -

The shown results allow to validate the presented
methods. Energy consumption saving in the presented
examples is about 13 percent and can be done withou
any hardware change. With this, Emin method is the most
suitable having in mind the energy efficiency as battery
energy is a limited resource. On the other hand,
accelerations minimization method also allows to
decrease the energy spent and can be sometimes adopted
to minimize joints efforts on the robot.

P1t =k I a11t
P2t =k I a22t

ETot=∫t1

tm P1t ∫tm

t2 P2t dt

d ETot

d t
=0

tm=
w1t 1−2 w2 t 2−2122w2 t1

−w2w1

Figure 15. Energy consumption in [t1,t2]
interval.

Figure 14. Joint trajectory - minimum
energy consumption.

5. Experimental Results

This chapter presents, in a short way, the results that
simulator can achieve when the conditions previously
presented are applied. The energy consumption and
acceleration minimizations are tested with successful
results. As example, the same conditions were applied to
the neck joint. The angle and reference angle are
presented in Figure 16 where, at the left side, user can
add which robot, joint and variables are requested to
appear in the graphic at the right side.

In the presented example, neck joint angle follows the
reference from 0 to 27 degrees in 1 second using the
minimum energy consumption trajectory. Other example
can be shown in Figure 17 where neck joint follows the
reference array [0, 45, 90, -45, -90] degrees with
minimum acceleration control method.

6. Conclusion and Future Work

In this paper a humanoid simulator, based on a
dynamics engine and a 3D visualization engine, is
presented. The real robot limitations, such as servo
motors angular speed and accelerations are taken into
account. A low level trajectories controller that allows to

minimize energy consumption is presented. The
presented results allow to validate the simulator and
show the realistic simulation. The whole body controller
was implemented and humanoid simulator behaves like
real robot.

As future work, more control strategies will be
implemented and tested using the high level
programming based on a Pascal script dialect that allows
users to create their own control programs while results
are real-time presented.

Enhancing the simulator with realistic sensors, such
as accelerometers and gyroscopes, is also a future step.

References

[1] T. Suzuki, K. Ohnishi, "Trajectory Planning of
Biped Robot with Two Kinds of Inverted
Pendulums", Proceedings of 12th International
Power Electronics and Motion Control Conference,
2006.

[2] R. Renner, S. Behnke, "Instability detection and
fall avoidance for a humanoid using attitude
sensors and reflexes", Proceedings of International
Conference on Inteligent Robots and Systems,
2006.

[3] J. Stückler, J. Schwenk, S. Behnke, "Getting Back
on Two Feet: Reliable Standing-up Routines for a
Humanoid Robot", Proceedings of 9th
International Conference on Inteligent Autonomous
Systems, 2006.

[4] B. Browning, E. Tryzelaar, "UberSim: A Realistic
Simulation Engine for RobotSoccer", Proceedings
of Autonomous Agents and Multi-Agent Systems,
2003.

[5] Russell Smith, Open Dynamics Engine,
http://www.ode.org, 2000.

[6] Tribotix, http://www.tribotix.com/index.html, 2004.
[7] Robocup, http://www.robocup.org/, 2007.
[8] Humanoid League,

http://www.humanoidsoccer.org/, 2007.
[9] S. Behnke, M. Schreiber, J. Stückler, R. Renner, H.

Strasdat, "See, Walk, and kick: Humanoid robots
start to play soccer", Proceedings of International
Conference on Humanoid Robots, 2006.

[10] V. Santos, F. Silva, "Design and Low-Level
Control of a Humanoid Robot Using a Distributed
Architecture Approach", Journal of Vibration and
Control, Vol., pp. 1431-1456, 2006.

[11] S. Kagami, Y. Takahashi, K. Nishiwaki, M.
Mochimaru, H. Mizoguchi,"High-speed matrix
pressure sensor for humanoid robot by using thin
force sensing resistance rubber sheet", Proceedings
of IEEE Sensors Conference, 2004

[12] GLScene, http://glscene.sourceforge.net, 2000.
[13] E. Harold and W. Means, XML in a Nutshell,

O'Reilly, 2004.

Figure 16. Neck joint minimum consumption
energy test.

Figure 17. Neck joint minimum
acceleration test.

	1. Introduction
	2. Real Humanoid Robot
	2.1. Mechanical Design
	2.2. Communication Architecture
	2.3. Behaviour and Control

	3. Open Dynamics Engine Simulation
	3.1. Humanoid Construction
	3.2. XML model description

	4. Humanoid Joint Trajectory Controller
	4.1. Servo-Motor model
	4.2.Trajectory planning
	4.3. Acceleration minimization controller method
	4.4. Speed minimization controller method
	4.5. Energy consumption minimization controller method
	4.6. Trajectory planning methods comparison

	5. Experimental Results
	6. Conclusion and Future Work

