

HUMANOID ROBOT SIMULATOR: A REALISTIC DYNAMICS APPROACH

José L. Lima, José C. Gonçalves, Paulo G. Costa, A. Paulo Moreira

Department of Electrical Engineering
Faculty of Engineering of University of Porto

jllima@ipb.pt, goncalves@ipb.pt, paco@fe.up.pt, amoreira@fe.up.pt

Abstract: This paper describes a humanoid robot simulator with realistic dynamics. As
simulation is a powerful tool for speeding up the control software development, the
suggested accurate simulator allows to accomplish this goal. The simulator, based on the
Open Dynamics Engine and GLScene graphics library, provides instant visual feedback
and allows the user to test any control strategy without damaging the real robot in the
early stages of the development. The proposed simulator also captures some
characteristics of the environment that are important and allows to test controllers without
access to the real hardware. Experimental results are shown that validate this approach.

Keywords: Computer simulation, Digital control, Computer graphics, Dynamic
behaviour, Kinematic control system.

1. INTRODUCTION

In recent years, studies of research in biped robots
have been developed rapidly and resulted in a variety
of prototypes that resemble the biological systems.
Legged robots have the ability to choose optional
landing points, an advantage to move in rugged
terrains. Especially, two legged robots are also able
to move in human environment since its structure is
almost same with humans. Thus, studies about biped
robots are very important (Suzuki, et al., 2006).
Furthermore, bipedal locomotion under influence of
external disturbances is a challenging task for a
humanoid robot. If disturbances are large enough, a
fall might become unavoidable. Postural reflexes
should minimize the number of falls (Renner, et al.,
2006). If a fall happens, the robot must be able to
detect it, to recognize its posture on the ground and
to get back into an upright posture (Stückler, et al.,
2006).
The simulator must also be able to measure the
consumed energy providing a good efficiency
planning. The planning for humanoid movements
should result in minimum energy consumption, like
it happens in the human body.

A screenshot of the developed simulator is shown in
Fig. 1, where 3D scene shows the robot human-like,
graphic shows the desired time variables and table
shows the angle, angular speed and torque for each
robot joint. There are several robot simulators, such
as Simspark, Webots, MURoSimF and ADAMS, that
provide a simulation capability. Meanwhile, the
developed simulator allows to build and to test the
low and high level controllers in a way that can be
mapped with the reality, although with a minimal
overhead (Browning, et al., 2003). Code migration
from general realistic simulators to real world
systems is the key for reducing development time of
robot control, localization and navigation software.
The motivation of developing a realistic humanoid
robot simulator is to produce a personalized and
versatile tool that will allow in the future the
production and validation of robot software reducing
considerably the development time. This simulator
deals with robot dynamics and how it reacts for
several controller strategies and styles. This paper
proposes a simulator for a humanoid robot and
compares it to the real robot. The proposed simulator
allows to design behaviours without access to the real
hardware in order to carry out research on robot

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153403993?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

control. This simulator is based on the Open
Dynamics Engine (Smith, 2000). It is very helpful to
design and develop movements which can be applied
to the real robot.

Fig. 1 Simulator screenshot.

The paper is organized as follows: Initially, the real
robot, where mechanical design, communication and
control application are described, is presented. Then,
section 3 presents the developed simulator and how it
can be programmed by user. A comparison between
the real and the simulated robot is presented further
in section 4. Finally, section 5 rounds up with
conclusions and future work.

2. REAL HUMANOID ROBOT

The commercially available Bioloid (Tribotix, 2004)
robot kit, from Robotis, is the basis of the presented
humanoid robot. The overview of the proposed biped
robot is shown in Fig. 2. It follows the dimensional
rules of RoboCup (2007) and Humanoid League
(2007).

Fig. 2 Real humanoid robot standing.

2.1 Mechanical design

The presented humanoid robot is driven by 19 servo
motors: 6 per leg, 3 in each arm and one in the head.
Three orthogonal servos set up the 3DOF (degree of
freedom) hip joint. Two orthogonal servos form the
2DOF ankle joint. One servo drives the head (a
vision camera holder). The shoulder is based on two
orthogonal servos allowing a 2DOF joint and elbow
has one servo allowing 1DOF. The total weight of
the robot (without camera and onboard computer) is
about 2kg and its height is 38 cm. The 3D modelled
system composed by 19 DOF is presented in Fig. 3
where left picture shows the front view and the right

one shows the back view. Each link has its weight at
the position of its COG (centre of gravity).

Fig. 3 Modelled robot.

This model, based on GLScene (GLScene, 2000) is
used just for visualization of the real robot and has
nothing to do with the dynamics simulation.
GLScene introduction is further presented in Section
3.

2.2 Communication architecture

Multiple layers that run on different time scales
contain behaviours of different complexity. The
lowest level of this hierarchy, the control loop within
the Dynamixel actuators (AX-12), has been
implemented by Robotis (Behnke, et al., 2006). Each
servo is able to be programmed with not only the
goal position, the moving speed, the maximum
torque, the temperature and voltage limits but also
with the control parameters. This communication
layer is based on a 1Mbps half-duplex serial bus
where individual servo can be addressed or a
broadcast can be sent.
At the next layer, an interface unity CM-5 module,
based on an Atmel ATMega128 microcontroller,
allows a communication interchange. It receives
messages from the upper layer and translates them to
the servos bus. Answers from servos are also
translated and sent back to the upper layer as
presented in Fig. 4.

Fig. 4 Interface layer.

At the next layer, target angles for the individual
joints are generated from a personal computer or
from an embedded system. The layers diagram is
presented in Fig. 5.

Fig. 5 Layers diagram.

tt1 t2tm

θ t

θ 2

θ 1

tt1 t2tm

 ω t

ω2ω1

ωm

Each broadcast communication takes about 12 ms.
Therefore, the fastest allowed control rate and
sampling servo motors states is about 83 Hz.

2.3 Behaviour and control

Perception assumes a major role in an autonomous
robot, and must be therefore reliable or abundant
(Santos, et al., 2006). For this robot, the following
perception was planned:
 1. Joint position.
 2. Joint speed.
 3. Joint motor torque.
As a future feature, the following perception support
was also planned:
 1. Body orientation based on accelerometers.
 2. Feet force sensing (Kagami, et al., 2004).
As a first approach, an open-loop system can be used
(accelerometers and feet force information disabled).
This can be done sending pre-programmed joint
angles and angular speeds for each joint. Walk and
stand up movements can be achieved. The closed
loop control can be done resorting to COG
estimation.

3. OPEN DYNAMICS ENGINE
SIMULATION

Design behaviour without real hardware is possible
due to a physics-based simulator implementation.
The physics engine is the key to make simulation
useful in terms of high performance robot control.
Although there are a number of open source
simulation engines available, most focus on
producing fast pseudo realistic simulations for use in
computer games. These engines are therefore fast,
but produce motions that look good as opposed to
being accurate. In contrast, there exist a number of
simulation engines for rigid body motion that are
unusable for simulating the mechanical interactions
of rigid parts (Browning, et al., 2003). For real-time
simulation, an accurate but fast simulation engine
must be used. ODE, Open Dynamics Engine (Smith,
2000), checks these requisites. As an open source
rigid body simulation engine, developed by Russell
Smith, has reached a maturity level ensuring that
produced code is stable. It is essentially a simulation
library that provides support for rigid body motion,
rotational inertia and collisions treatment where the
world to be simulated is built. It also allows to use
open GL (graphics library) routines to render the 3D
simulated environment. The open GL routines are
based on GLScene library. It provides visual
components and objects allowing description and
rendering of 3D scenes in an easy, no-hassle, yet
powerful manner. It has grown to become a set of
founding classes for a generic 3D engine with RAD
(Rapid Application Development) in mind
(GLScene, 2000).

3.1 Humanoid Construction
A complex humanoid model can be avoided due to
the ODE usage. Humanoid body simulator
construction is based in body masses and joint
connections. Each body mass imitates the servo

motors and connection pieces weights from the real
robot as presented in Fig. 6a). ODE joints, presented
in Fig. 6b) by cylinders, imitate the servo motors axis
movements and must be defined its types, angles and
torques limits. Joint types are typically a hinge that
allows both bodies to be connected and roll such as
arms and forearms, femur and leg. A more complex
joint must be introduced when there are two or more
degrees of freedom between two bodies. It happens
when two servo motors are physically combined. A
universal joint solves the problem allowing a two
bodies connection to roll on two axes. As example,
presented in the simulator, these joints connect trunk
and arms, trunk and legs, legs and feet. This
simulator has one more degree of freedom for each
arm than the real robot: its wrist. User can deactivate
this joint and it behaves like forearm prolongation.

a)

b)

Fig. 6 ODE and GLScene humanoid construction.

GLScene is used to render the 3D graphics
appearance enhancing visualization.

3.2 Humanoid low-level controller

This controller accepts, for each servo, angles and
angular speeds from a higher level, with a desired
period T (example: 1 second) that can be defined by
user. The main objective of this controller is to build
and to follow the trajectories established by angles
and angular speeds requirements. The low-level
controller finds the intermediate trajectories that take
joints to the desired states and follow them. Let
suppose that for t=t1 (actual time) it is measured
angle θ1 and angular speed ω1, and for t=t2 (next
period T) it is desired position θ2 and angular speed
ω2, as illustrated in Fig. 7 and Fig. 8, where some
examples of possible trajectories are shown. It is
necessary to calculate the angle equation that result
in the desired conditions.

Fig. 7 Joint angles
(actual θ1 and desired
θ2).

Fig. 8 Joint speed
(actual ω1 and desired
ω2).

Assuming a constant angular acceleration, angular
speed will follow a linear equation and the ωm (for tm
instant) must be determined. The tm instant is the
middle of t1 - t2 period, tm=½(t1+t2), as illustrated in
Fig. 8 as a first approach. As future work, tm can be
chosen having in mind maximum acceleration
minimization. By this way, angular reference and
angular speed equations can be found as a smooth
movement, following the desired conditions.
The angular speed equation ωA(t) for t1<t≤tm is
presented in (1) and the angular speed equation ωB(t)
for tm<t≤t2 is presented in (2).

ω ω ω · ω ω ω · (1)

ω ω ω · ω ω ω · (2)

The covered angle can be determined through the
integral of the angular speeds as presented in
equation (3).

ω ω (3)

Equation (3) gives the desired value for ωm presented
in equation (4).

ω ω ω · ·
·

 (4)

Then, angle reference equation, for each i joint, can
be described in equation (5) for t1<t≤tm and in
equation (6) for tm<t≤t2.

ω · · ω ω · (5)

 ω · · ω ω · (6)

The presented equations (1 to 6) define the T period
references generator.
The same equations can be applied in order to get a
closed loop system with a smaller period, T’ of 40
ms.

Fig. 9 Detailed joint angle low-level controller.

The initial and the final state are the calculated
references, . Having the desired equation of
angle and angular speed for each joint, a proportional
controller can be applied to follow θi(t) and ωi(t). In
the simulator, the low-level controller output is the
torque (Ti) to be applied on each i joint and can be
found by equation (7), where is calculated by
equations (5) and (6) and is calculated by
equations (1) and (2). Gains constants and
depend on each joint due to its submitted effort.

·

 · (7)

A high detailed graph (with a small angle scale),
presented in Fig. 9, shows how the low-level
controller follows the (t) (Ref controller) guiding
θi(t) (Measured angle) to the requested angle (Angle
ref.), based on equation (7).
The simulator closed loop control frequency is the
same of the real robot, but higher frequencies can be
tested once there is no RS-232 communication limits.
The simulator step frequency, fsim, is 4 kHz, the ODE
calculus frequency of physics movements. Closed
loop control frequency is lower than fsim and
synchronous with the 3D visualization updating
based on GLScene.
As robotics soccer is a challenge in a highly dynamic
environment, the robot controller must be updated as
fast as possible. As an example, if the ball has a
speed of 2 m/s and if the lag time is 100 ms, the ball
will travel a distance of 20 cm between two sampling
instants, compromising the controller performance
(Gonçalves, et al., 2007).
As a final result, presented in Fig. 10, the left arm
joint angle (Measured angle) follows the

(t) (Ref controller).

Fig. 10 Joint angle controller.

The Ref controller curve is overlapped by the
measured angle due to its proximity. Presented Angle
Ref to be followed is actualized every second.
The low-level controller if fully implemented in the
developed simulator, leaving a high level controller
freedom to calculate trajectories, joint angles, angular
speeds and finally perception listening.

3.3 High-level controller

A higher level controller generates the desired joint
states, similar to the real robot control loop, that
establish the robot simulator movements based in its
current position (and equilibrium when in closed
loop method). As first case, open loop, joint angles
and angular speeds should be sent to the robot. These
joint sequences can be saved in a file and shared with
the real robot. Walk and stand up routines can be
achieved. Furthermore, there are several related
works in literature on methods for walk pattern
planning. It can be applied on a slippery surface
(Park, et al., 2001), with two kinds of inverted
pendulums (Park, 1998), using Gravity-compensated
inverted pendulum mode (Suzuki, et al., 2006) or
Zero Moment Point (ZMP) pattern generation
(Kajita, et al., 2006). Perturbation analysis should
also be implemented such as joint measures
corrupted by noise or collisions applied to the robot
simulating a real crash between humanoid and an
object.
To maintain dynamic equilibrium during walk and
stand up movements, robot needs information about
contact force, its current and desired motion. The
solution to this problem relies on a major concept,
the ZMP as presented in next subsection. The COG
can be determined and hip angles controller allows to
guarantee the desired stability.

3.4 Zero Moment Point visualization

The Zero Moment Point (ZMP) specifies the point
with respect to which dynamic reaction force at the
contact of the foot with the ground does not produce
any moment, i.e. the point where total inertia force
equals zero. ZMP is important in order to guarantee
and measure the robot equilibrium.

a)

b)

c)

d)

Fig. 11 ZMP drawing.

The robot equilibrium is measured by the distance
between the centre of mass (CM) and the ZMP
convex hull. The simulator draws, in real-time, the
ZMP and the centre of mass. As examples presented
in Fig. 11, two body positions, push-up a) and
standing c) result in the ZMP drawn at the right side,
b) and d). ZMP can also be used to generate
movements patterns ZMP that allows a smooth and
soft motion (Kajita, et al., 2006).

4. SIMULATION AND REAL ROBOT
BEHAVIOUR RESULTS

This chapter presents, in a short way, a comparison
between simulator and real robot behaviour.
Stand-up movements were successfully tested and
shown in next subsection.

4.1 Getting back on two feet - movements

As robot posture depends on external disturbances
and on its equilibrium, a fall might occur. If it
happens, the robot must be able to recognize its
posture on the ground, usually supine or prone. A
stand up routine must be initialized in order to place
the robot standing (Stückler, et al., 2006).
The simulator and the real robot stand up movements
comparison is made in Fig. 12 and Fig. 13.

a)

b) c)

d)

e) f)

g)

h) i)

Fig. 12 Simulator stand-up movements.

a)

b)

c)

d) e)

f)

g)

h)

i)

Fig. 13 Real robot stand-up movements.

4.2 Getting back on two feet – current consumption

The humanoid robot is powered by onboard batteries
which restrict the available energy to a defined limit.
So, the planning for humanoid movements should
result in minimum energy consumption. Simulator
expects the consumed current, , based on the joints
torque efforts, , as presented in equation (8), where
N is the number of servo motors, is the supply
current of servo motors even with no torques,
is the supply current of control module and K is a
generic gain that can be found through some
experimental results.

· ∑ · (8)

As result, both currents consumptions, measured in
the real robot and estimated by the simulator during a
stand-up movement are presented in Fig. 14 and Fig.
15.

Fig. 14 Simulator stand-up estimated current

consumption.

The similar appearance of graphics hints the
accuracy of the simulator but clearly some tuning is
still required to achieve a better match.

Fig. 15 Real robot stand-up current consumption.

5. CONCLUSION AND FUTURE WORK

The presented results allow to validate the proposed
realistic simulator: the power consumption and
stand-up routines simulation were achieved
successfully in the robot simulator, making the
simulation very realistic.
As future work, walk and ball dribbling movements
should be developed, based on described simulator,
and migrated to the real robot with a minimum
overhead. Furthermore, the high level programming
can be made resorting to a text based script window
in order to allow users to create their own control
programs: a script window that accepts Pascal
language code should be developed. User can
implement several controllers and movements
planning where real-time results are presented.

REFERENCES

Behnke, S., Schreiber, M., Stuckler, J., Renner, R.

and Strasdat, H. (2006). See, Walk, and kick:
Humanoid robots start to play soccer.
International Conference on Humanoid
Robots. IEEE, Genova, Italy.

Browning, B. and Tryzelaar, E. (2003). Übersim: A
Multi-Robot Simulator for Robot Soccer
Autonomous Agents and Multi-Agent
Systems. - Australia.

GLScene (2000). http://glscene.sourceforge.net.
Gonçalves, J., Pinheiro, P., Lima, J., Costa, P.

(2007). Tutorial introdutório para as
competições de futebol robótico, IEEE
Latin-American Learning Technologies
Journal. Vol. 2, N 2, pp. 63-72.

Humanoid League (2007).
http://www.humanoidsoccer.org/.

Kagami, S., Takahashi, Y., Nishiwaki, K.,
Mochimaru, M. and Mizoguchi, H. (2004).
High-speed matrix pressure sensor for
humanoid robot by using thin force sensing
resistance rubber sheet, Proceedings of IEEE
Sensors, IEEE Xplore.

Kajita S., Morisawa, M., Harada, K., Kaneko, K.,
Kanehiro, F., Fujiwara, K., Hirukawa, H.
(2006). Biped Walking Pattern Generator
allowing Auxiliary ZMP Control,
International Conference on Intelligent
Robots and Systems, Beijing, China.

Park, J. and Ohung, K. (2001). Reflex Control of
Biped Robot Locomotion on a Slippery
Surface, IEEE International Conference on
Robotics & Automation, Seoul, Korea.

Park, J. and Kim, K. (1998). Biped Robot Walking
Using Gravity-Compensated Inverted
Pendulum Mode and Computed Torque
Control, IEEE International Conference on
Robotics & Automation, Leuven, Belgium.

Renner, R. and Behnke S. (2006). Instability
detection and fall avoidance for a humanoid
using attitude sensors and reflexes,
International Conference on Inteligent Robots
and Systems, Beijing, China.

Robocup, (2007). http://www.robocup.org/.
Santos, V. and Silva, F. (2006). Design and

Low-Level Control of a Humanoid Robot
Using a Distributed Architecture Approach,
Journal of Vibration and Control, SAGE
Publications, vol. 12, pp. 1431-1456.

Smith, R. (2000). Open Dynamics Engine
http://www.ode.org/.

Stückler, J., Schwenk J. and Behnke S. (2006).
Getting Back on Two Feet: Reliable
Standing-up Routines for a Humanoid Robot,
9th International Conference on Inteligent
Autonomous Systems, pp. 676-685, Tokyo,
Japan.

Suzuki, T. and Ohnishi, K. (2006). Trajectory
Planning of Biped Robot with Two Kinds of
Inverted Pendulums, 12th International
Power Electronics and Motion Control
Conference, Portoroz, Slovenia.

Tribotix (2004). http://www.tribotix.com/index.html.

