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Abstract. This paper describes an approach for integrating motion es-
timation and region clustering techniques with the purpose of obtaining
precise multiple motion segmentation. Motivated by the good results ob-
tained in static segmentation we propose a hybrid approach where mo-
tion segmentation is achieved within a region-based clustering approach
taken the initial result of a spatial pre-segmentation and extended to
include motion information. Motion vectors are first estimated with a
multiscale variational method applied directly over the input images and
then refined by incorporating segmentation results into a region-based
warping scheme. The complete algorithm facilitates obtaining spatially
continuous segmentation maps which are closely related to actual object
boundaries. A comparative study is made with some of the best known
motion segmentation algorithms.

1 Introduction

Motion segmentation is basically defined as grouping pixels that are associated
with a smooth and uniform motion profile. The segmentation of an image se-
quence based on motion is a problem that is loosely defined and ambiguous in
certain ways. Though the definition says that regions with coherent motion are
to be grouped, the resulting segments may not conform to meaningful object
regions in the image. Recent applications such as content-based image/video
retrieval, like MPEG-7 [5], and image/video composition, require that the seg-
mented objects are semantically meaningful. Indeed, the multimedia standard
MPEG-4 [9] specifies that a video is composed of meaningful video objects. In
order to obtain a content-based representation, an image sequence must be seg-
mented into an appropriate set of semantically shaped objects or video object
planes. Although the human visual system can easily distinguish semantic video
objects, automatic video segmentation is one of the most challenging issues.

There is a strong interdependence between the definition of the spatial sup-
port of a region and of its motion estimation. On one hand, estimation of the
motion information of the region depends on the region of support. Therefore,
a careful segmentation of the regions is needed in order to estimate the motion
accurately. On the other hand, a moving region is characterized by coherent mo-
tion characteristics over its entire surface (assuming that only rigid motion is
permitted). Therefore, an accurate estimation of the motion is required in order
to obtain an accurate segmentation of the region.
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In this paper, a hybrid framework is proposed to integrate a differential opti-
cal flow approach and a region-based spatial segmentation approach to obtain an
accurate object motion. Motion information will be initially represented through
a dense motion vector field. For the task at hand we adopt a high accuracy opti-
cal flow estimation based on a coarse-to-fine warping strategy proposed by Brox
et al. [3] which can provide dense optical flow information. This method acceler-
ates convergence by allowing global motion features to be detected immediately,
but it also improves the accuracy of flow estimation because it provides better
approximation of image gradients via warping.

To partitioning each frame into a set of homogeneous regions we used a vari-
ation of the rainfalling watershed implementation [7]. The proposed method
performs rainfall only within the regions of interest in which a pixel shows vari-
ation in gradient magnitude. The set of neighbour pixels with constant gradient
magnitude, i.e. within a flat region, are desert regions where rain rarely falls or,
to be more precise, where only a raindrop falls.

Handling spatial and temporal information in a unified approach is appealing
as it could solve some of the well known problems in grouping schemes based
on motion information alone [14, 15]. Brightness cues can help to segment un-
textured regions for which the motion cues are ambiguous and contour cues can
impose sharp boundaries where optical flow algorithms tend to extend along
background regions. Graph based segmentation is an effective approach for cut-
ting (grouping) sets of nodes and its extension to integrate motion information is
just a matter of adding a proper similarity measure between nodes. The assign-
ment of motion to regions allows the elimination of optical flow errors (outliers).

The remainder of this paper is organized as follows: in Section 2, motion
estimation algorithm is presented. In Section 3, we build the region-based motion
graph. The proposed motion segmentation algorithm is presented in Section 4.
In Section 5, experimental results are analysed and discussed. In Section 6, a
comparative study is made, and, finally, conclusions are drawn in Section 7.

2 Variational Methods

Optical flow is defined as the 2-D vector that matches a pixel in one image to
the warped pixel in the other image. In other words, optical flow estimation
tries to assign to each pixel of the current frame a two-component velocity vec-
tor indicating the position of the same pixel in the reference frame. Given two
successive images of a sequence I (x, y, t) and I (x, y, t + 1) we seek at each pixel
x := (x, y, t)T the flow vector v (x) := (vx, vy, 1)T that describes the motion of
the pixel at x to its new location (x + vx, y + vy, t + 1) in the next frame.

Differential methods, and in particular variational methods based on the early
approach of Horn and Schunck [6] are among the best performing techniques for
computing the optical flow [3, 4, 10]. Such methods determine the desired dis-
placement field as the minimiser of a suitable energy functional, where variations
from model assumptions are penalised. In general, this energy functional consists
of two terms: a data term and a smoothness term. While the data term represents



Region and Graph-Based Motion Segmentation 611

the assumption that certain image features do not change over time and thus al-
low for a retrieval of corresponding objects in subsequent frames, the smoothness
term stands for the assumption that neighbouring pixels most probably belong to
the same object and thus undergo a similar type of motion. Due to the smooth-
ness constraint which propagates information from textured areas to nearby non-
textured areas the resulting flow field is dense i.e. there is an optical flow estimate
(vector) available for each pixel in the image. Brox et al. [3] proposed a variational
method that combines brightness constancy with gradient constancy assumptions
and a discontinuity-preserving temporal smoothness constraint. In order to al-
low for large displacements, this technique implements a coarse-to-fine warping
strategy. Applying non-quadratic penaliser functions to both the data and the
smoothness term and also integrating the gradient constancy assumption, results
in the optical flow model described by the following functional:

E (vx, vy) = ED (vx, vy) + αES (vx, vy) , (1)

where α is some positive regularisation parameter which balances the data term
ED with the smoothness term ES : Larger values for α result in a stronger pe-
nalisation of large flow gradients and lead to smoother flow fields.

The minimization of E (vx, vy) is an iterative process, with external and inter-
nal iterations [3]. The external iterations are with respect to scale. The internal
iterations are used to linearise the Euler-Lagrange equations and solve the re-
sulting linear set of equations. The reader is referred to Thomas Brox’s PhD
thesis [2] for a solution to minimize this functional.

3 Building the Region-Based Motion Graph

The definition of the region similarity which involves not only motion information
but also spatial characteristics is a challenging issue. All the available information
should be put to work in order to robustly define the objects present in the scene.
We propose a region similarity measure that exploits both spatial similarity
ws (i, j) and motion similarity wm (i, j):

W (i, j) = ϕ · wm (i, j) + (1 − ϕ) · ws (i, j) , (2)

where ϕ is a regularisation term that reflects the importance of each measure.
Spatial similarity measure is obtained by

ws (i, j) = wic (i, j) · wI (i, j) , (3)

with wic as the similarity obtained by intervening contours and wI as the inten-
sity similarity described in [7]. The role of ws is only to be a refinement measure.
Therefore, in our experiments ϕ was set to 0.95.

3.1 Motion Similarity Measure

Using atomic regions implicitly resolves the problems identified earlier which
requires smoothing of the optical flow field since the spatial (static) segmentation
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process will group together neighbouring pixels of similar intensity, so that all the
pixels in a area of smooth intensity grouped in the same region will be labelled
with the same motion. We thereby presume two basic assumptions: i) all pixels
inside a region of homogeneous intensity follow the same motion model, and ii)
motion discontinuities coincide with the boundaries of those regions.

For region-based motion segmentation, we assign a unique motion vector to
each region given by the peak in the optical flow histogram distribution. The
idea here is to represent a motion vector v = (vx, vy) in a (Ux, Uy) plane with
radius ρ and the argument θ given by:

ρ (v) = log
(

1 + β
(
v2

x + v2
y

)1/2)
θ (v) = tan−1

(
vy/vx

)
, (4)

where β is a positive parameter included to reflect the variation in the similarity
judgement of motion from person to person.

The motion information of each region are computed in reference to different
points - the centroids of the regions. We define a motion distance dm (i, j) ex-
pressing the degree of similarity between the motion fields of two regions Ri and
Rj in reference to the centroid of Ri which can be expressed as:

dm (i, j) =
√

(Δ2Ux + Δ2Uy) , (5)

with ΔUx = ρi cos θi − ρj cos θj and ΔUy = ρi sin θi − ρj sin θj , where ρi, ρj , θi

and θj are calculated by (4). In fact, this motion distance expresses how well the
motion model of region Rj can also fit the motion of region Ri.

As the distance measures have their own range it is desirable to normalize
their values. The parameter σm in (6) is used to normalize the distance measure
to a range [0, 1].

wm (i, j) = exp
(
−dm (i, j)2

/
σ2

m

)
. (6)

4 Motion Segmentation Algorithm

In this section, we describe the fusion of spatial segmentation and motion in-
formation for high quality motion segmentation. If it is true that, for synthetic
sequences, flow field values can be computed exactly, that is not the typical
scenario where flow field is estimated from a sequence of images. Then, our ap-
proach should be robust against inaccuracies in the motion information. We used
the implementation of Brox et al. [3] which produces results that are among the
best of all the currently available methods for optical flow estimation [3, 4, 10].

We assume that a region of uniform motion (rigid motion) will be composed
of one or more atomic regions each of which possessing uniform intensity. Con-
sequently, the motion boundaries will be a subset of the intensity boundaries
determined at this stage. We refer to this assumption as segmentation assump-
tion. Our choice of this assumption is supported by the following fact: the atomic
regions resulting from the spatial pre-segmentation are usually small enough to
justify the assumption of piecewise constant intensity and motion.



Region and Graph-Based Motion Segmentation 613

The proposed algorithm can be summarized in the following steps:

Step 1: Spatial pre-segmentation: frames are partitioned into homogeneous
atomic regions based on their brightness and gradient properties (watershed).

Step 2: Motion estimation: estimates the dense optical flow field with the
variational scheme proposed by Brox et al. [3].

Step 3: Region motion extraction: extracts the highly reliable optical flows
for each atomic region. It selects from the dense flow field the dominant
motion vector according to the directions and magnitudes of the optical
flows. This step eliminates the influence of noise and outliers.

Step 5: Region-based motion graph: builds the region-based motion graph
where the nodes correspond to regions.

Step 6: Graph partitioning: multiclass spectral based graph partitioning us-
ing the normalized cut approach [8].

Figure 1 illustrates the intermediate and final results of the method. The input
is represented by two consecutive frames of the Ettlinger Tor sequence (avail-
able at http://i2iwww.ira.uka.de/image_sequences/ ). The sequence consists of
50 frames of size 512 × 512 and depicts a variety of moving cars (up to 6 pixels

(a) (b) (c)

(d) (e) (f)

Fig. 1. Illustration of the proposed motion segmentation algorithm. (a)-(b) Frame 5
and 6 of the Ettlinger Tor sequence. (c) Atomic regions. (d) Region-based vector field
scaled by a factor of 2. (e) Motion segmentation. (f) Moving regions.
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per frame). Thereby five groups of cars can be formed according to their velocity
and direction: 1) a bus and a car in the foreground are moving fast to the right;
2) in the middle area three cars are moving in a similar direction of group 1 but
slower; 3) two cars on the left are moving to the left; 4) in the upper middle
area three cars are moving slowly to the left; 5) on the upper right area a car is
moving up.

In the first step, an initial segmentation of the frames is achieved with
watershed-based segmentation. The result is a fine partition of the image into
regions with similar intensity where region size is kept small. Motion estimation
between the frames is obtained with the variational method described in Section
2. In the following, a dominant motion vector is associated with each region pro-
duced in step 1. Figure 1.d) shows the resultant flow vectors scaled by a factor of
2. Figure 1.e) shows the result of the motion segmentation where different kind
of motions are represented by different grey-scale intensities in accordance with
the five groups upper referenced.

Using spatial information reduce the "halo" originated by the smoothness
term used in the motion estimation process allowing to obtain a more accurate
segmentation. Even more, the segmentation effectively separates the groups of
cars according to their type of motion.

The area under the bus was labelled as belonging to group 2 and not to group
1 as a consequence of the brightness similarity between the bottom of the bus
and the ground. In other words, since the smoothness term expands the optical
flow along areas of homogeneous intensity it has also expanded the bus motion to
the ground. However, the optical flow of the ground has a lower magnitude which
makes it more similar to the motion of the cars in group 2 than to the motion of
the bus. This shows the accuracy of the motion segmentation algorithm which
separates the ground region from the bus.

5 Experimental Results

The motion segmentation algorithm was tested using several benchmark test
sequences: Salesman and Flower Garden. These two are among the sequences
widely used by authors for testing video segmentation and coding applications.
Figure 2 shows the segmentation result with the Salesman sequence.

The Salesman sequence does not possess any global motion, but the motion
of the non-rigid object (salesman) is significant in this sequence, especially in
respect to the arm movements. It can be seen in Figure 2.e) that our proposed al-
gorithm yields satisfactory multiple motion segmentation where different colours
represent different movements. Regions such as the arm of the Salesman and his
hand, which moves with motion involving rotation, are correctly segmented. Also
the shirt, that is divided in two by the arm, is correctly merged.

Figure 3 shows the segmentation result with the Flower Garden with Car se-
quence. In this experiment a moving car was included in the scene. The sequence
was shot by a camera placed on a driving car, and the image motion is related to
distance from the camera. Thus the tree, which is closest to the camera moves
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Salesman sequence. (a)-(b) Frames 14 and 15. (c) Computed dense optical
flow. (d) Region-based vector field. (e) Motion segmentation. (f) Moving objects.

fastest. The inter-frame difference detects motion at every image pixels. Flower
Garden sequence contains many depth discontinuities, not only at the boundaries
of the tree but also in the background. In this sequence, the camera captures
a flower garden with a tree in the centre. Also, the flower bed gradually slopes
toward the horizon showing the sky and far objects. Semantically, this sequence
has four layers: the tree, the flower bed, the house and the sky.

Although the tree divides the flower bed the algorithm merges the two parts
in one only segment. This happens also in the house layer. Note that in the area
that contains the tree’s branches, only one segment is chosen since the sky area
has no brightness variation. From Fig. 3.d) it looks like as the bottom of the
flower bed, the tree and the sky have the same motion information. However,
the segmentation algorithm making use of the intensity information, correctly
divides these parts. The region-based approach extracts the tree’s edges accu-
rately along major part of the trunk, even in similar textured area of the flower
bed, but less well in other areas. The fine detail of the small branches cannot be
well represented by image regions, and these are segmented poorly.

6 Comparative Results

As demonstrated by the results shown in this paper, motion segmentation is a
difficult task. It is also difficult to assess, in quantitative terms, the accuracy of
a segmentation. It is therefore instructive to compare the results generated by
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Flower Garden with Car sequence. (a)-(b) Frames 5 and 6. (c) Computed
dense optical flow. (d) Region-based vector field scaled by a factor of 2. (e) Motion
segmentation. (f) Tree segment.

this region-based system with work published by other authors over recent years;
this gives an indication of the relative success of the region-based approach.

A comparison with a number of authors who have also analysed the Flower
Garden sequence is realised in Fig. 4. In this comparison we analyse the accu-
racy of the resulting tree segment. The results are extracted from the published
papers. Although each author displays their results differently it is not difficult
to compare them. Again, with no accepted quantitative measure of segmentation
performance, a qualitative comparison is made between results.

Wang and Adelson [14] used this sequence in their paper introducing the lay-
ered representation. The use of normalized cuts for motion segmentation was
introduced in [11], in which graph cutting techniques are used to obtain a mo-
tion related set of patches in the image sequence. Comparisons with Ayer and
Sawhney [1], Vasconcelos and Lippman [13] and Weiss and Adelson [15] are also
presented in Fig. 4. These authors’ results show some outlying pixels or regions
that are absent in our approach which gives the system presented in this paper a
more pleasing appearance. Figure 4.c) shows the result of the edge-based motion
segmentation scheme from Smith [12]. The area at the bottom of the tree is cor-
rectly segmented only in our approach and in the method of Ayer and Sawhney
and in the method of Smith.

The segmentation of the tree in the Wang and Adelson estimate is to be too
wide, while the edge-based approach of Smith and the method of Shi and Malik
misses a few sections. Ayer and Sawhney, and Vasconcelos and Lippman are
better outline, but there is more noise in the background.
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Fig. 4. Comparative results with the Flower Garden sequence. Results presented by (a)
Ayer and Sawhney in [1], (b) Shi and Malik in [11], (c) Smith in [12], (d) Vasconcelos
and Lippman in [13], (e) Wang and Adelson in [14], (f) Weiss and Adelson in [15].

7 Conclusion

A method for multiple motion segmentation was presented, relying on a com-
bined region-based segmentation scheme. The spatial pre-segmentation of the
frames in homogeneous intensity regions by the watershed algorithm results in
an oversegmented partition. A grouping step is the performed using a region-
based motion graph built on the partition obtained in the pre-segmentation
stage. The derivation of a motion-based partition of the images was achieved
through a graph labelling process in a spectral-based clustering approach. To
achieve this aim an appropriate similarity function (energy function) was defined.
Links weights now denote a similarity measure in terms of both spatial (intensity
and gradient) and temporal (flow fields) features. To compute the flow field we
use a high accuracy optical flow method based on a variational approach. The
region-based graph-labelling principle provides advantages over classical merging
methods which by operating a graph reduction imply irreversibility of merging.
Moreover, spectral-based approach avoids critical dependency in the order in
which regions are merged. The proposed approach successfully reduces compu-
tational cost, while enforcing spatial continuity of the segmentation map without
invoking costly Markov random field models. By simultaneously making use of
both static cues and dynamic cues we are able to find coherent groups within a
variety of video sequences. The experimental results presented in this paper show
that the proposed method provides satisfactory results in motion segmentation
from image sequences.
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