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Summary 

In this work, the Stretched Simulated Annealing Method was applied to identify the stationary points of the 
tangent plane distance function defined for the Gibbs energy. The classic excess Gibbs energy Non Random Two 
Liquid model was used for these studies in several multicomponent mixtures, for which specific numerical 
difficulties were shown. The results obtained by applying the methodology developed in this work were very 
satisfactory. 
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1 Introduction 
The multilocal optimization problem consists of finding all the local solutions of the following minimization 
problem reduce  
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where nf :  is a given multimodal objective function, n
i :g  for all i ,   and   are two sets 

of indices. Consider the feasible set  , the set of all points that satisfy the constraints, that is 
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So, our purpose is to find all points *x  such that    xfxf),x(Vx **   . 

This type of problem appears in many practical situations, for example, in ride comfort optimization [1] and in 
some areas of the chemical engineering (such as process synthesis, design and control) [2]. Reduction methods 
for solving semi-infinite programming problems also require multilocal optimizers [3]. 

To solve this problem we propose the penalty method combined with the 1l  exact penalty function, defined as 
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where    )x(g,)x(g ii 0 max  for all i  [4]. 

So, in iteration l , we have to solve the minimization problem 
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 ),x(P)x(P ll min  (4) 

 

where   1l
l  is a decreasing sequence of positive values, updated using  maxl ,c  0max , where 10  c  

and 0  is a positive value. For each l  the minima are obtained by the Stretched Simulated Annealing Method 

(SSA). 

The most used methods for solving a multilocal and unconstrained optimization problem rely on, for example, 
evolutionary algorithms [5], the particle swarm optimization algorithm [6] and variants of the multi-start 
algorithm (clustering, domain elimination, zooming, repulsion) [7]. Other contributions can be found in [8-10]. 

In this work, a new variant of the SSA method is proposed to solve constrained optimization problems obtained 
from the tangent plane distance function defined for the Gibbs energy. 

This paper is organized as follows. In section 2, the stretched simulated annealing method is described and in 
section 3, the application of this method to several phase equilibria stability problems is shown. Finally, the last 
section presents the main conclusions and future work. 

2 Stretched simulated annealing method 
The Stretched Simulated Annealing method combines simulated annealing algorithm with local applications of 
the function stretching technique.  

In this section, the simulated annealing method is described as well as its most known variant. Then, the 
stretched technique is presented and, finally, the details of the SSA algorithm are shown.  

2.1 Simulated annealing method 

The simulated annealing, proposed in 1983 by Kirkpatrick, Gelatt and Vecchi [11], and in 1985 by Cërny [12], 
appeared as a method to solve combinatorial optimization problems. Since then, the simulated annealing method 
has been applied in many areas such as the graph partitioning, graph coloring, number partitioning, circuit 
design, composite structural design, data analysis, image reconstruction, neural networks, biology, geophysics 
and finance [13-14].  

The main characteristic of this method is the fact that it does not require any derivative information or specific 
conditions on the objective function. Furthermore, the asymptotical convergence to a global solution is 
guaranteed. 

The main phases of the simulated annealing method are the following: the generation of a new candidate point, 
the acceptance criterion, the reduction of the control parameters and the stopping criterion. 

One of the most known variants of this method is Adaptive Simulated Annealing (ASA) method. In this variant, 
the generation of a new candidate point is crucial as it should provide a good exploration of the search region as 

well as a feasible point. A generating probability density function,  k
Gyx

cf k , is used to find a new point y  based 

on the current approximation, kx , see [13, 15-18]. 

The acceptance criterion allows the ASA algorithm to avoid getting stuck in local solutions when searching for a 
global one. For that matter, the process accepts points whenever an increase of the objective function is verified. 

The acceptance criterion is described as 
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where kx  is the current approximation to the global minimum, y  is the new candidate point,   is a random 

number drawn from  1 0,U  and k
Ac  is a positive control parameter. 

This criterion accepts all points where the objective function value decreases, i.e.,    yPxP lkl  . However, if 

   yPxP lkl  , the point y  might be accepted with some probability. During the iterative process, the 

probability of ascendant movements decreases slowly to zero. Different acceptance criteria can be proposed [13, 

18]. The control parameter k
Ac , also known as temperature or cooling schedule, must be updated in order to 

define a positive decreasing sequence slowly reduced to zero. 
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When k
Ac  is high, the minimization searches in the whole feasible region, looking up for promising regions to 

find the global minimum. As the algorithm develops, k
Ac  is slowly reduced and the algorithm computes better 

precision approximations to the optimum. For a good performance of the algorithm, the initial control parameter 
must be sufficiently high (to search for promising regions) but not extremely high because the algorithm 
becomes too slow. To solve this dilemma, some authors suggested that a preliminary analysis of the problem 
should be done in order to find an appropriate value. For more details see [13, 16, 19]. 

In ASA, the control parameter k
Ac  is updated by 
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for an initial value 0
Ac . 

Similarly, k
Gc parameters are updated by  
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where 0

iGc  is the initial value of the control parameter 
iGc ,  is defined by  
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 , for positive values 

of   and N , for more details see [19].  

To speed up the search process, the variant of the ASA algorithm also considers the reannealing of the process. 
This means that the control parameters are redefined during the iterative process. More details are available in 
[19]. 

The stopping criteria of ASA is based on the idea that the algorithm should terminate when no further changes 
occur. The usual stopping criterion limits the number of function evaluations, or defines a lower limit for the 
value of the control parameter. See [13, 16] for different alternatives. 

For details on the algorithm convergence analysis, see [13, 20]. 

2.2 Stretching technique  

For multimodal functions, some global optimization algorithms converge prematurely to local solutions. This is 
the case with the simplest versions of the particle swarm optimization algorithm. To overcome this problem, 
Parsopoulos et al. [21] proposed a function stretching technique that provides a way to escape from local optima 
when the particle swarm optimization convergence stagnates, driving the search to a global solution. This 
technique works in the following way. When a local minimizer x  is detected, a two-stage transformation of the 
original objective function is carried out as follows: 
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where 1 , 2  and   are positive constants and sgn defines the well-known sign function. 

At points x  that verify    xPxP ll  , the transformation defined in (8) increases the original objective function 

values by xx 1 . The second transformation (9) emphasizes the increase of the penalty function by making a 

substantial growth on the function values. 

For all points x  such that    xPxP ll  , the penalty function values remain unchanged, so allowing the 

location of the global minimizer. When applying the global algorithm to the function lP
~

, the method is capable 
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of finding other local solutions, x~ , that satisfy    xPx~P ll  . If another local (non-global) solution is found, the 

process is repeated until the global minimum is encountered. 

2.3 SSA algorithm 

This method is capable of locating some local solutions of problem (3) that satisfy the following condition 

 

 ML*lll )x(PxP -)(  (10) 

 

where )*l x(P is the global minimum of problem (3). 

Assume now that the following assumption is verified. 

Assumption 1: All local solutions of problem (3) that satisfy condition (5) are isolated points. 

At each iteration k , the SSA algorithm solves, using the ASA algorithm, the following global optimization 
problem: 
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where the function  xwl  is defined as 
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and  m,...,,ixi 21  denotes a previously found global minimizer.  ixV  represents a neighbourhood of ix , 

with ray  , m  is the number of previously found global solutions of (3) and lP
~

 is the function defined in (9). 

The SSA algorithm solves a sequence of global optimization problems whose objective functions are the original 
lP , in the first iteration, and the transformed lw  in the subsequent iterations [19]. 

3 Computational results 
One constrained optimization problem is the determination of phase stability using tangent plane analysis [22-
25]. For a given temperature, pressure and feed composition, the phase is stable if the tangent plane distance 
function  xD  is non negative for any composition x . This function can be written as [25]: 
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Where  xm  is the molar Gibbs energy of mixing, nc  is the number of components and z  is the feed 

composition. To verify if function  xD  is ever negative, it can be minimized subject to the restriction 
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The classic NRTL model was chosen to describe phase equilibria of several multicomponent mixtures. For this 
particular thermodynamic model,  xm is given by 

 

III Conferência Nacional em Mecânica de Fluidos, Termodinâmica e Energia (MEFTE - BRAGANÇA 09)

4



 

    











 nc

i
iik

nc

i
iikiknc

k
k

nc

i
ii

xG

xG

xxxxm

1

1

11

ln


 (15) 

So the constrained optimization problem can be defined as 
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Several phase stability problems were solved by applying the stretched simulated annealing method. These 
examples were selected in order to test the robustness of the optimization method for especially difficult phase 
equilibria systems [25]. Two systems were selected: system I comprises a mixture of three components (n-
propanol, n-butanol and water) and system II includes a mixture of four components (n-propanol, n-butanol, 
benzene and water). The correspondent NRTL parameters ikG  and ik  used in this work are presented on Tables 

1 and 2.  

 
Table 1. NRTL parameters for system I [26] 

ijG  1 2 3 

1 1.0 1.2017478x100 1.0216786x100

2 8.066060x10-1 1.0 6.490629x10-1

3 4.392221x10-1 1.852084x10-1 1.0 

ij  1 2 3 

1 0.0 -6.1259x10-1 -7.149x10-2 
2 7.1640x10-1 0.0 9.0047x10-1 
3 2.7425x100 3.51307x100 0.0 

 
Table 2. NRTL parameters for system II [27] 

ijG  1 2 3 4 

1 1.0 3.4320x10-1 9.3449x10-1 9.6384x10-1 
2 1.80967x100 1.0 1.02932x100 9.3623x10-1 
3 5.6132x10-1 5.9659x10-1 1.0 3.2322x10-1 
4 5.1986x10-1 2.2649x10-1 3.1656x10-1 1.0 

ij  1 2 3 4 

1 0.0 2.16486x100 2.3689x10-1 1.3060x10-1 
2 -1.2007x100 0.0 -9.730x10-2 1.9154x10-1 
3 2.01911x100 1.73912x100 0.0 4.01932x100 
4 2.31985x100 4.31706x100 4.09334x100 0.0 

 

The SSA method was implemented in C programming language on a Pentium II, Celeron 466 MHz with 64 Mb 
of RAM. 

The following constants are fixed: 1001  , 12  , 310 , 0500 . , 05 max , 50.ML  , 110c , 

10   and 410max . 

As a complement, the “fminunc” routine from the optimization toolbox of the commercial software MATLAB 
was used to improve the precision of the solutions found by the SSA method. This routine is based on the BFGS 
Quasi-Newton method with a cubic line search procedure [28]. It should be mentioned that this method, used 
without the SSA method, only finds one local solution. 
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The stationary points for the tangent plane distance function were calculated for two different systems and 
several feed compositions. The results are presented on Tables 3 and 4. 

 

Table 3. Stationary points for system I using the NRTL model and several feed compositions 
System I. n-propanol (1) + n-butanol (2) + water (3)  

Feed composition 
 21 z,z  

Stationary points 
 21 x,x  

Tangent plane distance 
function 

(1.48×10-1, 5.20×10-2) 
(1.48×10-1, 5.20×10-2) 
(1.14×10-1, 3.60×10-2) 

1.3726×10-13 
-9.9851×10-6 

(1.20×10-1, 8.00×10-2) 
(1.20×10-1, 8.00×10-2) 
(1.30×10-1, 8.91×10-2) 
(5.97×10-2, 2.82×10-2) 

1.3323×10-17 

-3.0693×10-6 

-7.4818×10-4 

(1.30×10-1, 7.00×10-2) 
(1.30×10-1, 7.00×10-2) 
(1.38×10-1, 7.56×10-2) 
(7.38×10-2, 3.03×10-2,) 

1.44329×10-17 
-8.6268×10-7 

-3.2762×10-4 

(1.20×10-1, 5.00×10-2) 
(1.58×10-1, 7.29×10-2) 
(9.40×10-2, 3.49×10-2) 

-5.7360×10-5 

-3.0888×10-5 

 

Table 4. Stationary points for system II using the NRTL model and several feed compositions 
System II. n-propanol (1) + n-butanol (2) + benzene (3) + water (4)  

Feed composition 
 321 z,z,z  

Stationary points 
 321 x,x,x  

Tangent plane distance 
function 

(1.48×10-1, 5.20×10-2, 6.00×10-1) (1.81×10-2, 6.20×10-4, 4.48×10-3) -3.3982×10-1 

(2.50×10-1, 2.50×10-1, 2.50×10-1) (2.50×10-1, 2.50×10-1, 2.50×10-1) 0.0000 

(1.48×10-1, 5.20×10-2, 7.00×10-1) (2.41×10-2, 7.86×10-4, 4.74×10-3) -3.1097×10-1 

(2.50×10-1, 1.50×10-1, 4.00×10-1) 
(2.50×10-1, 1.50×10-1, 4.00×10-1) 
(3.67×10-2, 2.98×10-3, 7.37×10-3) 

2.3831×10-13 
-3.867×10-2 

(2.50×10-1, 1.50×10-1, 3.50×10-1) 
(2.50×10-1, 1.50×10-1, 3.50×10-1) 
(3.32×10-2, 2.69×10-3, 6.71×10-3) 

0.0000 
-7.363×10-2 

 

The most important result is that the SSA method combined with the “fminunc” routine is always able to find the 
global minimum known in the literature [25] which allows concluding about phase stability. 

From the numerical results, it is possible to verify that all the tested feed compositions are unstable with the 
exception of the second feed of system II (Table 4). This is in agreement with the results presented by Tessier et 
al. [25]. 

Furthermore, in some cases, other stationary points are found. To find all the stationary points, the values of the 
constants must be adjusted to each problem using a preliminary analysis. 

4 Conclusions 
In this work, a new variant of the stretched simulated annealing method was developed to solve constrained 
optimization problems, based on penalty method, simulated annealing method and stretching technique. The 
resulting method was satisfactorily applied to solve phase stability problems, by finding all the correspondent 
global solutions.  

It should be mentioned that the mathematical methodology herein described for the NRTL model can be 
straightforwardly extended to other thermodynamic models. 

As future work, we intend to combine SSA with derivative information in order to locate a better candidate point 
to the solution of the optimization problem. 
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