

A Uniform Resource Identifier Scheme for
SNMP

Rui Pedro Lopes
Polytechnic Institute of Braganc a, ESTiG

5300 Braganc a, Portugal
rlopes@ipb.pt

 Jose Luis Oliveira
 University of Aveiro, DET

 3810 Aveiro, Portugal
jlo@det.ua.pt

Abstract � One of the World Wide Web characteristics,

besides its omnipresence in computer systems, is the adoption of
a universal user interface that is used to access several different
services that were previously accessed individually by
independent applications. The Internet resources started to be
identified by URI schemes, a text string with specific syntax and
grammar. Although existing for several services such as http,
ftp, gopher and news, these identifiers are not used to identify
SNMP resources.

This paper proposes an URI scheme for identifying SNMP
resources and presents some practical scenarios where the
existence of such compact and complete identifying mechanism
increases flexibility and functionality of network management
applications.

Keywords: SNMP, URI, URL, Network Management.

I. INTRODUCTION
The information, services or any other kind of resource that
surface daily on the Internet has an associated naming space
partially based on DNS. The resource identification is
performed through text strings known as URI (Uniform
Resource Identifiers) [1]. This string has all the necessary
information to identify, to retrieve or, eventually, to update
the resource configuration.

Resources may have a physical nature, such as a processor,
memory or storage devices, or a logical type, such as Web
pages or network management agents. The resources are
identified through references that reveal its address and
nature. For example, an user mailbox is identified according
to the scheme mailto:<name>@<address>.

Despite the intrinsic differences that allow to catalogue
different resources, each identification follows common
concepts such as the resource name and address. This set of
characteristics allows using a common syntax to locate them
regardless of its nature.

The uniform representation of references allows using
identifiers for different resources in a common context. In the
Internet, for example, the resources FTP, HTTP or NEWS are
accessible by a common tool ‘ the Internet browser. The
resource is specified in the address field by the URI and,

according to its grammar, it calls the appropriate tool for its
processing and presentation.

Network and systems management has been largely
dependent on the SNMP framework [2] in which a typically
centralized management station is used to deal with the
information retrieved from, or delivered to, SNMP agents (the
resources modeling). SNMP services are typically made
available through specially designed APIs, which depend on a
set of arguments for management information identification
and on the required action. Besides the problem of different
APIs supporting different and incompatible interfaces, the
distinct versions of the SNMP usually require diverse
parameters. Such as in the Internet situation, it is useful to
integrate the tools, paradigms and models around a common
context.

In this paper we suggest using a specific URI scheme for
SNMP thus solving the parameters dispersion associated to
management operations. According to this view, the SNMP
management may be based on a common tool, where different
resources and operations are identified through particular URI
semantics.

The authors are using the SNMP URI scheme as an
informal tool (in the graphical user interfaces) for the
management of mobile agent platforms. Proprietary tools,
standard CORBA interfaces or SNMP are the usually
mechanisms for this goal. However, to deal with all these
different access schemes, we are using specific URLs to
differentiate them on a common context [3].

Recently, two more projects where found to share the same
concept. One of them, iosnmp [4], is a plug-in to the K
desktop environment [5] that, after registration, allows using
the konqueror browser as a MIB browser along with the file
system or HTML pages. This plug-in accepts URI schemes
such as snmp://v3user@host:port/initialMibNode/ and
supports only SNMPv3. At the security level it assumes the
authNoPriv solution. Other parameters, such as the timeout
and retries are not defined.

The Cricket application is another example and it consists
of a resource monitoring tool. It is configured by specific

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153403931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

URLs, such as snmp://community@host:port/source, where
the source stands for a managed object [6]. It supports only
the SNMPv1 e SNMPv2c versions and like the previous
example, it does not accept other parameters, such as timeout,
retries or others.

Despite individual limitations, these examples support the
need for the existence of URLs to describe SNMP resources
regardless of version, security parameters or services. This
universal syntax can be used transparently across different
applications.

On the other hand, these three examples [3][4][6] are
exclusively based in the manager side to provide access to
management information. In this paper we seek to extend the
SNMP URI formalism to the agent side as an identification
mechanism more powerful than the OID (Object Identifier) to
locate managed objects.

The paper structure is the following. Section II describes
the syntax and grammar to identify SNMP resources in an
URI compatible form which we designate SNMP URL. In
section III we present some practical scenarios. The first
introduces an URL-TARGET-MIB an alternative to the
SNMP-TARGET-MIB. The second shows how a SNMP URL
may be used to extend the Expression MIB [7] to accept
remote expression parameters, currently in research. The third
shows how it can be used to manage mobile agents [3].

II. A UNIFORM RESOURCE IDENTIFIER FOR SNMP
The URI concept was defined by the networks working

group of the IETF (Internet Engineering Task Force) as a
universal specification for physical or logical resources [1]. It
has a generic syntax, suitable for identifying a broad set of
resources namely web pages, email addresses, newsgroups
and books, among many others. Currently IANA has already
registered 36 URI schemes for as much services [8].

A. URI generic syntax
At the first and higher level an URI scheme is as follows:

[scheme:]scheme-specific-part[#fragment]
The symbols ’ [’ and ’]“ are delimiting optional sections and

the symbols ’ :“ e ’#“ stand for themselves and separate
different URI sections. An URI is absolute when its schema
exists and relative otherwise. A relative URI depends on an
absolute URI to get the missing information, such as the
scheme.

URIs may also be classified as a hierarchy. In this case, the
scheme specific part starts with the symbol ’ /“ and has the
following format:

[scheme:][//authority][path][?query][#fragment]
The authority may be represented according to a

hierarchical naming scheme (e.g.[user-info@]host[:port]).

The path contains information to identify a given resource
under the authority context. The section query has the
information to be passed to and processed by the resource.
Finally, the fragment has additional information to be used on
the client side after the operation completes successfully.
Theoretically, it does not belong to the URI since it is not
used in the communication but it is frequently associated to it
(for HTML bookmarks, for example).

The URI urn:isbn:096139210x, which corresponds to a
book, and mailto:pemz@mail.hosting.pt, which refers to an
email address, are non-hierarchical, or opaque according to
the standard taxonomy.

The URI http://www.ics.uci.edu/pub/ietf/uri/#Related is
both hierarchical and absolute because it has the scheme http
and the scheme specific part starts with the symbol ’ /“. The
authority represents an Internet name (www.ics.uci.edu) and
the path identifies the resource /pub/ietf/uri/, unique in this
server. The fragment ”Related„ is only used by the Internet
browser to automatically show the HTML page at this
position.

TABLE I. SOME URI EXAMPLES.

Model URI
HTTP http://www.det.ua.pt
FTP ftp://jprs@ftp.univ.pt/private/projectX/
XMLORG urn:xmlorg:objects:schema:xmlschema:xcatalog
NFS nfs://server/a/b
LDAP ldap://ldap.itd.umich.edu/o=U%20of%20Mich,c=US
MAIL mailto:rlopes@ipb.pt

B. SNMP parameters
The functionality associated with SNMP entities, according

to the SNMPv3 standard, is defined by grouping applications.
These may be of five kinds: command generators, notification
originators, command responders, notification receivers and
proxy forwarders. A management agent is thus based on a
command responder and a notification originator while a
management station contains a command generator and a
notification receiver.

SNMP entities are identified by a number ‘ the
snmpEngineID. Each entity may have several contexts, unique
for that entity. To identify each managed object they are
necessary four parameters: the SNMP engine identifier
(snmpEngineID), the context name (contextName), the object
identifier (OID ‘ ex. ifDescr) and the instance identifier (ex.
’1“). For SNMPv1 and SNMPv2c, queries require only the
OID and the instance, which is more simple but less flexible.

The communication between SNMP entities follows a set
of parameters, which identifies the communicating entities,
security and the message processing. One of the fundamental

aspects of the communication process is the security
parameters, which varies with the model version. For
SNMPv1 and SNMPv2c, privacy is inexistent and the
authentication is based on a community name. SNMPv3
already allows message encryption, which guarantees privacy
and user based authentication.

For communication to succeed, it is necessary to indicate
the protocol version. This is one of three choices: SNMPv1,
SNMPv2c and SNMPv3. Moreover, it is necessary to
associate with the protocol the destination address and the
security parameters. These may be a single parameter for the
first two versions ‘ the community name string ‘ or three
parameters for SNMPv3:

• Security model ‘ SNMPv1, SNMPv2c, USM (User
Security Model).

• Username ‘ character string.
• Security level ‘ no authentication and no privacy

(noAuthNoPriv), authentication and no privacy
(authNoPriv), authentication and privacy (authPriv).

Moreover, it is necessary to pass to the security module the
passwords or keys associated with the authentication and
privacy protocols.

The communication protocol may also require two more
parameters: a) the time to wait for an answer before failing
(timeout) and b) the number of attempts before giving up
(retry count).

Finally, to indicate the required resource it is necessary the
context name, OID and instance.

C. SNMP URL
The SNMP URL collects all the information required for

the communication between SNMP entities in a single
character string following the URI format. According to the
standard, a URI have restrictions in terms of symbols or
characters not shown in this paper because of its extension.
For further details, refer to [1].

Generically, the proposed syntax for the SNMP URL is:
snmpurl = scheme "://" [security "@"] [host_port] ["/"
 [resource]["?"[operation]["?" [version] ["?"
 [context]]]]] ["#" parameters]
scheme = "snmp"
security = [community] |
 [user [":" auth [":" privacy]]]
community = community - section 3.2.5 of [9]
user = user name - section 2.1 of [10]
auth = element_a ?("&" element_a)
element_a = "auth=" protocol_a | "pass=" key
privacy = element_p ?("&" element_p)
element_p = "priv=" protocol_p | "pass=" key
protocol_a = authentication protocol- sect. 1.4.2 of [10]
protocol_p = privacy protocol - section 1.4.3 of [10]
key = character string
host_port = host [":" port]
host = IP address or associated Internet name

port = integer
resource = OID ["/" instance]
OID = ’.� separated integers | associated name
instance = ’.� separated integers
operation = "op=" op_name [op_params]
op_name = name of the SNMP operation. For now:
 ("get" | "getNext" | "set" | "trap" |
 "response" | "getBulk" | "inform" |
 "trap2")
op_params = op_param *("&" op_param)
op_param = ("value=" value | "maxrep=" value |
 "nonrep=" value)
value = character string
version = "v1" | "v2c" | "v3"
context = context - section 3.3.1 of [11]
parameters = parameter *("&" parameter)
parameter = "timeout=" integer | "retries=" integer

Based on this syntax we can specify management
information and services invocation in compact string as the
following examples.

For SNMPv1:

snmp://private@sw1.estig.ipb.pt/sysContact/0?op=set&value
=Rui

snmp://public@nms.estig.ipb.pt:161/sysUpTime?op=getNext

For SNMPv2c:

snmp://private@sw1.estig.ipb.pt/sysContact/0?op=set&value
=Rui?v2c

snmp://public@nms.estig.ipb.pt:161/sysUpTime?op=getNext
?v2c

For SNMPv3:

snmp://rlopes@sw1.estig.ipb.pt/sysContact/0?op=set&value=
Rui?v3

snmp://guest@nms.estig.ipb.pt:161/sysUpTime?op=getNext?
v3?router

The prefix ’%“ is used to represent special characters. The
combination ”%20„ corresponds to the space character.

Note that although allowing keys and other security
parameters in SNMP URLs, this procedure is not
recommended because it relies on clear text. This
inconvenient may be solved by direct interaction with the user
(requesting specific security information on a separate
window, for example) or, when there is no interaction with
the user, storing the sensible information on separate
encrypted files. This last choice is used in some SNMPv3
applications in the agent role [12].

III. APPLICATION SCENARIOS FOR SNMP URL
The first consequential shift related to SNMP URL usage

happens at the API level. Usually, SNMP stacks require a
large set of functions and a larger combination of function
parameters. This varies with the version and with the product.
For SNMPv3, for example, it is necessary to explicitly pass

the message processing model (associated with the protocol
version), the security model, the security name, the security
level, engine ID, context name, operation, and associated
parameters. A single SNMP URL contains all this
information.

As a consequence, it allows normalizing API function
calling through different versions and different stacks.
Moreover, it allows using different schemes to achieve
higher-level protocol switching, such as HTTP or other.

To better understand and illustrate the previous concept we
will discuss a set of practical usage scenarios. The first two
show how they can be used on the agent side while the last
shows an example for the manager side.

A. URL-TARGET-MIB
SNMP applications may contact other applications,

possible remote, to retrieve some data or to send notifications.
The SNMP architecture defines the SNMP-TARGET-MIB
module to gather all the parameters necessary to the
communication procedure and associates a tag list to them
[13]. The application uses a tag to get the parameters from the
SNMP-TARGET-MIB.

In other words, the SNMP-TARGET-MIB associates a list
of names to a set of parameters that specify the host, port,
protocol, security features and other information. For
example, it may store the following information: to contact
” router1„ or ”coreBridge„ use the protocol=SNMPv3,
timeout=5, retry count=3, user=„senior„, security
model=”USM„ and security level=„authNoPriv„. These
parameters are retrieved by the SNMP application by using a

name, or tag, belonging to the previously referred tag list, in
this case, ” router1„ or ”coreBridge„.

The other approach suggested in this paper is to associate a
similar tag list to URLs in a single table, thus resolving
individual tags to a single URI character string. This method,
which we designate as URL-TARGET-MIB, allows
complementing or even replacing the SNMP-TARGET MIB
module (Fig. 1).

The main different between the modules is the extension.
The use of URL-TARGET-MIB allows developing agents
with less managed objects. Other advantage is to store OIDs
and other URL schemes in the same MIB, which does not
happen with the SNMP-TARGET-MIB.

B. Expression MIB modifications
The DISMAN charter defined under the IETF [14], a set of

MIB modules to decentralize, by a set of distributed
managers, some tasks traditionally associated with the central
management station. From the agent point of view, these
elements have the manager role and from the managers“ point
of view, these elements act as agents. In the latter, the
management information deals with the configuration of
management tasks. This model allows creating hierarchical
management ” islands„ to increase the system robustness by
introducing redundancy, scalability and by allowing operation
in offline conditions.

One of the modules is the Expression MIB. It was defined
to allow the definition of managed objects which where not
considered during the definition of other modules [15]. It
allows specifying expression based on existing managed

Fig. 1. SNMP-TARGET-MIB vs. URL-TARGET-MIB.

objects and it allows the construction of chaining expression,
i.e., defining expressions which depend on other expressions
results.

An expression is composed of operators, functions and
values. The values may be constants or variables, the latter
being associated with OIDs that refer to the correspondent
value. A string defines each expression.

The possibility of using variables in expressions is,
simultaneously, the strength and the weakness of the
Expression MIB. As currently proposed, the MIB does not
allow retrieving values from remote agents restricting the
expression evaluation to local objects. This limits the
possibility of creating some expressions, for example, when
they use values from different sources.

The variables are defined in a separate table that contains a
column with an OID, lacking other parameters necessary to
communicate with remote agents, namely, the host address,
port, version, security parameters and context. Any
expression is defined according to the following generic
format:

x = Expression(oid1, oid2, ... oidn)

The usage of SNMP URLs instead of OIDs in the referred
column allows giving the possibility to the Expression MIB to
obtain values from remote agents thus increasing its
flexibility and capability. It is than possible to use expressions
like:

x = Expression(url1, url2, ... urln)

This association may be performed in two ways. The first,
just like in the Event MIB [16], adopts a specific MIB to store
and index URLs. In this way, the expression variables are
defined as URL references. The advantage of this approach is
the compatibility with the SNMP-TARGET-MIB, defined to
the SNMPv3 but requires an additional MIB module. The
second, simpler approach, goes through replacing the OID
column by a URL column, which allows replacing only the
column data type.

C. Management of Mobile Agents
Mobile Agent technology is a paradigm mostly inherited

from artificial intelligence ”manuals„. The novelty of this
new paradigm is mainly associated with conception and
abstraction more than the implementation technology.
Basically, agents are software entities with the ability to
perform actions on behalf of other programs, a person or an
organization (the agent authority) [17]. A mobile agent is a
specialization of these software agents that has the particular
ability to migrate across several hosts. Mobile agents travel
from node to node along the network carrying its state, so that
they can maintain useful information when migrating to the
next host. However, besides adding flexibility and the

possibility to improve management efficiency it also brings
some dilemmas, namely, it increases the agent management
difficulty [18] and also introduces some kind of usability
challenges and possibly threats [19].

This kind of programs or processes requires a platform,
which provides the runtime environment and resources to
individual agents. The diversity of currently available mobile
agent platforms, coming from different vendors and
supporting different languages, leads to the fact that mobile
agents also need to be managed through a uniform way. The
Mobile Agent Facility (MAF) specification is a CORBA
based proposal from the OMG (Object Management Group),
and it is a first attempt to standardize actions aiming at the
interoperability between different vendors“ agent systems
[20]. Moreover, it provides yet some management facilities
over mobile agents and allows a mobile agent to move
between agent platforms with similar profile (sharing the
language, authentication mechanism and serialization
encoding). Fundamentally performed by proprietary tools,
mobile agents“ management may be thus performed in a
standard, cross platform way.

In previous work, the authors have already proposed a
MAF-MIB to convert between SNMP commands and MAF
interfaces calls making possible to manage MAF compatible
platforms in SNMP and MAF simultaneously [21].

In this context, we developed a prototype of a GUI tool for
the management of mobile agents supporting two
simultaneous access methods in a single interface: SNMP and
CORBA (Fig. 2).

Fig. 2. URI based mobile agent management tool.

Just as for SNMP URLs, we defined a MAF URL with the
format maf://<name service host address>:<port>/<context>.
The common syntax, although semantically different, allows

defining a list of URLs (bookmarks or favorites) regardless of
the management model. According to the URL scheme, the
tool loads the appropriate module and proceeds along with the
user commands.

The previous figure shows a tree view of the mobile
agents“ platform resources and was built after setting the URL
in the address field (upper right corner). If the user sets an
SNMP URL, the tree is modified according to the information
from the SNMP agent.

IV. FUTURE WORK
This concept, although simple, may have some impact on

existing management tools. A guideline for future work is to
study the impact that it may cause in existing MIB modules
other than the Expression MIB. The Event MIB, Schedule
MIB and RMON MIB, for example, look like perfect
candidates to benefit from using SNMP URLs.

Another line of work, already in research by the authors, is
the extension of the Expression MIB to allow URLs with
different schemes. The possibilities for this approach are
limitless because it would allow defining more functions as
CGIs (or servlets or server side scripts), using different nature
values and resources. The new function parameters may be
passed by HTTP GET or POST operations and the value can
be returned in MIME encoding. Moreover, it would allow
defining expressions with values from different application
fields, for example, relating the number of pages dispensed by
an HTTP server with the available bandwidth.

In the Event MIB, it would than be possible to monitor
resources directly, for example, LDAP, HTTP or FTP servers
without needing intermediate SNMP agents. There is still a
lot of work to be done, but the possibilities look immense.

V. CONCLUSIONS
The URI and URL concepts, although used frequently to

identify and locate Internet resources do not have been used
extensively in network management systems.

This paper suggests a URI scheme to identify SNMPv1,
SNMPv2c and SNMPv3 resources. This approach, which we
call SNMP URL, allows specifying in a single line of text all
the parameters necessary for two SNMP entities to
communicate, regardless of the version and the security
model.

To validate the SNMP URL we also present some practical
scenarios. The first example is an alternative approach to the
SNMP-TARGET-MIB, using URLs to identify local or
remote managed objects. Another example is an extension to
the Expression MIB that allows evaluating expressions with
any combination of objects from several agents. Just as for
Internet browsers, it is also suggested the use of SNMP URLs
in management stations to distinguish the service to use.

REFERENCES
[1] T. Berners-Lee, R. Fielding, U.C. Irvine, L. Masinter, ”Uniform

Resource Identifiers (URI): Generic Syntax„, Internet Request for
Comments 2396, August 1998.

[2] J. Case, R. Mundy, D. Partain, B. Stewart, ” Introduction to Version 3 of
the Internet-standard Network Management Framework„, Internet
Request for Comments 2570, April 1999.

[3] R. Lopes, J. Oliveira, ”SNMP Management of MASIF Platforms„,
Proc. of the IFIP/IEEE International Symposium on Integrated
Management ’ IM	2001, Seattle, May 2001.

[4] iosnmp (http://www.opensnmp.org/).
[5] KDE (http://www.kde.org/).
[6] Cricket (http://cricket.sourceforge.net/).
[7] R. Lopes, J. Oliveira, ”Distributed Management: Implementation

issues„, Proc. of the International Conference on Advances in
Infrastructure for Electronic Business, Science, and Education on the
Internet ’ SSGRR	2000, l“Aquila, Roma, Italia, August 2000.

[8] Uniform Resource Identifier (URI) SCHEMES
(http://www.iana.org/assignments/uri-schemes).

[9] J. Case, M. Fedor, M. Schoffstall, J. Davin, ”A Simple Network
Management Protocol (SNMP)„, Internet Request for Comments 1157,
May 1990.

[10] U. Blumenthal, B. Wijnen, ”User-based Security Model (USM) for
version 3 of the Simple Network Management Protocol (SNMPv3)„,
Internet Request for Comments 2574, April 1999.

[11] D. Harrington, R. Presuhn, B. Wijnen, ”An Architecture for Describing
SNMP Management Frameworks„, Internet Request for Comments
2571, April 1999.

[12] The NET-SNMP Project (http://www.net-snmp.org/).
[13] D. Levi, P. Meyer, B. Stewart, ”SNMP Applications„, Internet Request

for Comments 2573, April 1999.
[14] DISMAN Charter (http://www.ietf.org/html.charters/disman-

charter.html).
[15] R. Kavasseri, B. Stewart, ”Distributed Management Expression MIB„,

Internet Request for Comments 2982, October 2000.
[16] R. Kavasseri, B. Stewart, ”Event MIB„, Internet Request for Comments

2981, October 2000.
[17] Pham V., Karmouch A., ”Mobile Software Agents: An Overview„,

IEEE Communications, Vol. 36, No. 7 (1998) pp. 26-37.
[18] M. Breugst, S. Choy, ”Management of Mobile Agent Based Services„,

Proc. of the 6th International Conference on Intelligence in Services
and Networks, IS&N	99, Barcelona, Spain, 1999.

[19] E. Kaasinen, ”Usability Challenges in Agent Based Services„, Proc. of
the 6th International Conference on Intelligence in Services and
Networks, IS&N“99, Barcelona, Spain, 1999.

[20] Mobile Agent Facility Specification, Object Management Group, 00-
01-02.pdf (ftp://ftp.omg.org/pub/docs/formal/00-01-02.pdf).

[21] R. Lopes, J. Oliveira, ”Descric a o e Implementac a o de uma MIB para
Sistemas MASIF„, Proc. of the 3rd Conference in Computer Networks ’
CRC2000, E vora, Portugal, November 2000.

