
A framework to optimize compilation task

Paulo Jorge Matos

Instituto Politécnico de Bragança
Departamento de Informática e Comunicações

Campus de Santa Apolónia,
5300 Bragança, Portugal

Abstract. Nowadays, compiler construction is supported by several tools,
many of them are based on frameworks, composed by several components
that can be combined or instantiated to build new components or even
entire compilers. This paper is a software engineering exercise applied to
the compiler construction tools. It is used a concrete framework for com-
pilers development - the Dolphin, that supplies several components that
work over a single code representation model, to show that the simple
composition of such components is not enough. It raises serious obstacles
that make the compilers construction more arduous.

The exercise evolves for a reformulation of the framework, resulting on an
independent architecture that could be adapted to similar frameworks.
Defining the behaviour and the relationship of several elements of the
framework, this architecture allows to surpass most of the obstacles, but
also releases the compilers developer from some duties, making the con-
struction of compilers more accessible. It also promotes the development
of compilers that are more stable and efficient that is, they can run faster
using fewer resources.

1 Introduction

The compilation process, that converts a program written in a high-level pro-
gramming language (source language) into assembly or machine code (output
language), is more and more a complex problem. Nowadays, the source lan-
guages are quite more powerful and distant from the syntax and the paradigm
of the output language, which raises more difficulties for the translation of the
source language; and the computational architectures (target machine + oper-
ating system), are more elaborated and demanding, making the generation of
the output code more difficult. Even the software development process is much
more tolerant and flexible, trusting on the compiler to compensate the faults
and inexperience of the programmers, requiring elaborated error detection and
error handling mechanisms, but also complex code optimizations.

The different stages of the compilation process use very distinct solutions,
requiring simultaneously a strong knowledge about conception of programming
languages (syntax and semantics), but also about microprocessor architectures.
Attending to the complexity inherent to the compilers development, many tools
appeared to help on this task. Most of them perform a very nice job, specially the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153403906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ones that are dedicated to the development of a single compilation task; it is the
case of the Lex [4], Yacc [17], BURG [1], NJMCT [5], and many others. But it is
much harder to conceive and implement a tool that supports the full development
of compilers. The compilation process evolves many different techniques and
solutions. Create a tool that can accomplish all these techniques and solutions
is a very complicated task. But there are some successful examples, like: SUIF
Compilers System [3], GENTLE [15], and some others.

There are two main approaches used on the implementation of such tools:

Generation of components: Using a specification language, the user describes
the variants of the compilation task. The solution is generated by the tool,
based on the information supplied by the specification;

Code reuse: The solution (component) is obtained, extending or simply reusing
pre implemented components.

Dolphin [6] is an example of tool that makes use of both approaches. Es-
sentially, it is a data centric framework that was conceived to build modular
compilers. It is composed by several ready to use components that work based
on a single model of code representation. But also supplies some generation tools,
to develop components, like the ones related with the source language or with
the computer architecture. These generated components could be integrated into
the framework and used with the native components to produce full compilers.
The native components are normally used to implement the middle-level tasks,
the ones that are independent the source language and the computer architec-
ture characteristics. It is also important to explain that a single component could
accomplish several compilations tasks.

Dolphin is a data centric framework since all components work over a sin-
gle form of code representation, designated by intermediate code representation
(ICR). It is the Dolphin Internal Representation - DIR [10] that defines the type
of elements used on the ICR. DIR is based on the Register Transfer Language
and more precisely on the model used by the RTL System [13] (another frame-
work for compilers development). Conceptually, is a specification of some generic
elements that can be found on the ICR (where the code is purportedly indepen-
dent of the details of the source language and the compiler target architecture).
In practice, consists on a set of C++ classes used to build the ICR.

DIR classes supply several interfaces that permit different levels of control
over the ICR. Many of these classes are sets or aggregations of other classes, as
consequence, the construction of the ICR results on a hierarchic data structure
(a tree), where the intermediate elements are abstract entities that represent
parts of the program. The root is typically an object of type Program or DIR,
that encapsulates the whole code submitted to the compiler. The lowest levels
are represented by objects derived from Expression and DT classes, that are
strongly related with the output code (assembly or binary). In the middle, there
are objects like Function, used to represent functions or procedures; or like CFG,
used to represent the Control Flow Graph. The use of different levels of abstrac-
tion allows to choose the one that is more adequate for the implementation and
execution of each component.



Dolphin framework contains five categories of components: Front-End ’s,
that translate the source code and build the ICR, instantiating objects from
DIR; Back-End ’s, that convert the ICR into other code formats, like C, assembly,
binary code or even XML [7]; Analysis, that compute extra data about the ICR
used to support some code optimizations and back-end tasks; Optimizations,
that transform the ICR normally to improve the quality of the output code; and
the Measure or Inspection components, which compute several parameters that
are used to infer about the efficiency of the compilation process.

Notice that the Front-End and the Back-End components include several
compilation tasks. Dolphin framework does not supply tools to implement the
Front-End components, since there are lots of good solutions that can be used
to build the lexical, syntactic and semantic analyzers (like Lex [4], Yacc [17],
Eli [12], JavaCC [14]. But Dolphin framework supplies an integrated tool to
build Back-End components capable to generate assembly code. These compo-
nents include an optimal instruction selector and a register allocator (user might
choose between local or global allocation).

ICR is the mechanism used to pass the information among the components.
It behaves like a pipeline, over which the components work. To use a component,
it is only necessary to perform two, eventually, three steps:

– Get an instance of the component (components are implemented as C++
classes);

– Make the registry of ICR into the component (instance). This could be done
during the instantiation of the component or later using the bool setElem(
DObject*) method;

– Execute the component (instance).

As it is possible to confirm by the Fig. 1, it is very simple to build a compiler
reusing the components of Dolphin framework. Of course, that the framework
does not supply all the components that user might need. So, sometimes user
will have to implement their own components which could be done using the
tools supplied with the framework or even using external tools.

This very brief description intends to show that Dolphin framework is con-
ceptually a very simple solution, based on the notion of components and code
reuse, implemented as a data centric framework.

This is the starting point to show that the solution used by Dolphin frame-
work, which is apparently simple and functional, presents several drawbacks that
complicate substantially the development of compilers, namely when is impor-
tant (and is always important) to implement efficient compilers. The damage will
not be on the code generated by the compilers, but on the compilation process
that will be less efficient (slower and requiring more resources).

This paper shows the obstacles that users must surpass to implement efficient
compilers and then proposes an architecture (set of solutions), that defines the
behaviour and the relationship of several elements of the framework. This archi-
tecture allows to surpass most of the obstacles, but also releases the compilers
developer from some duties, making the construction of compilers even more



Fig. 1. Specification of a hypothetical compiler built with Dolphin framework.

accessible. It also promotes the development of compilers that are more stable
and efficient that is, they can run faster using fewer resources.

The next section exposes the problems that are subjacent to solutions like
Dolphin framework that are based on components reuse. Section 3, describes
the proposed architecture, explaining the type of interactions that occur among
components and presenting the interfaces and protocols defined to guarantee the
correct function of the framework. At section 4, the conclusion is drawn.

2 Using Dolphin framework

A compiler produced using the Dolphin, typically contains one Front-End and
one or more components from other types, that may include several Back-End ’s
and even, several times the same component. Many components have common
proceedings, that are typically used to accomplish some requirements, but also to
execute other tasks (before, during and after the execution of the main process).
As it is natural on good practice of software engineering, many of these proceed-
ings are implemented apart, to be reused. At Dolphin they are implemented as
components of the framework. They will be designated here generically by sup-
port components. Components that make use of the support components will be
designated by main components. And, of course, there is a relation of dependency
between them, which will be designated by a functional dependency.

The decomposition of a solution into several components, aims to minimize
the quantity of code and, as consequence, the potential source of errors and the
costs of maintenance. In some cases, simplifies the implementation of the com-
ponents, since it is possible to reuse other components to implement new ones.
And also makes possible to implement more elaborated components. However,
this solution of decompose a solution into several components, that apparently
is very simple and inconsequent, in practice raises some problems, namely to
implement efficient compilers.



2.1 Components reuse

If a component is implemented without reuse other components, then it will be
independent and its execution obeys only to the sequence of the compilation
process. The restrictions to use the component are essentially structural. For
example, the execution of a Front-End component must be done before the
other components.

The decomposition of the solutions into several components creates func-
tional dependencies, which means that the execution of a main component might
depend of the execution of one or more support components. The support com-
ponents could be executed before, during or after the main component.

This kind of dependency, that results from the fact of a solution be de-
composed into several components, does not raise big problems. If each main
component includes the necessary support components, everything will work ex-
actly the same way (like an independent component). In this case, we say that
the support component is implicitly used, since it is inserted into the compiler
by a component and not by the compiler developer.

The implicit inclusion of the components has the advantage of hide the sup-
port components from the users (compilers developer), simplifying the compilers
specification (type and sequence of the components used to build a compiler).
Example 1 shows the use of this form of inclusion.

Example 1

The Single Static Assignment (SSA) form is used on the ICR to make the im-
plementation of the components more accessible, namely the code analysis and
optimizations routines. Dolphin framework supplies a component to convert from
the normal form to the SSA form, the cnv2SSA. This component reuses other com-
ponents, like it is represented at Fig. 2. If the support components are included
implicitly by the cnv2SSA, the user does not have to know nothing about them,
namely how to use them. It is enough to instantiate and execute the cnv2SSA as it
is showed at Fig. 3.∮

It is possible to observe by Fig. 2 that some components are used to support
more than one component, for example DFrontiers supports cvn2SSA but also
IDFrontiers. Using the implicit inclusion means that there are two instances of
DFrontiers: one that supports cnv2SSA; and other that supports IDFrontiers.

The implicit inclusion of the components is particularly severe for the compi-
lation process. The problem is that we are reusing the code, but not the process
executed by the code, as consequence, some components will have more than
one instance, that will be executed at least once. And this contributes directly
to deteriorate the compilation time.

The compilation process gets even worse, when the support components aim
to compute and supply data about the ICR (Analysis components). The data
is computed, held and maintained by the support component. It is that data



Fig. 2. cnv2SSA and the support components.

Fig. 3. Partial specification of a compiler using components implicit inclusion.

that will be used by the other components (and not the component itself). So,
replicate instances of these components, means replicate the data computed by
them. The consequence is a compilation process that will waste more resources
(memory).

This situation can be illustrated by the example of Fig. 2. cnv2SSA converts
the ICR from the normal to the SSA form. It gets the ICR (at the normal form),
processes it, and puts at the output again the ICR (now at the SSA form). No
information is held by the component. But the same does not happen for the
support components. Each instance of the support components, will get the ICR
and compute the data processing the ICR (without change it). For example,
Dominators uses the ICR to build a dictionary that contains, for each node n
of the control flow graph, the set of nodes that dominate n [18]. So, for each
instance of Dominators, there will be a dictionary with exactly the same data of
the other instances of that component (that are applied over the same element
of ICR).

We designate this kind of dependency, where the main component depends
on the information computed by the support component, as a data dependency
between components.

One way of improving the compilation process is to include explicitly the
components into the compilers specification. But this means that the compiler
developer has the responsibility of instantiate and execute all components (main
and support components), avoiding the replication of the component instances.



But even this solution presents several drawbacks.

Fig. 4. Partial specification of a compiler using the explicit inclusion of the components.

By the examples of Fig. 3 and 4 is easy to understand that, for exactly the
same operation (conversion from the normal to the SSA form), the specification
of a compiler using the explicit inclusion of the components is substantially more
complex and larger that the one that is done using the implicit inclusion. The
explicit inclusion also requires more knowledge about the components, namely:
the way how they are implemented; which are the support components; by which
sequence should they be executed; how to use them; which are the effects of
the support components; etc. And notice that all these questions will appear
recursively for the support components.

2.2 Components association

In the examples presented until now, like the one at Fig. 3, the components work
exclusively over an object of type DIR. This was done to simplify the examples,
but in practice each component uses the ICR element that is more adequate for
its implementation and execution. So, to make the registry of the ICR element
into the component, user must “navigating over the ICR to get the required
element and this can only be done if the user has enough knowledge about DIR
and the way how the ICR was built. Notice that at the explicit inclusion the
navigation is done by the component user (the one that intends to build the
compiler); at the implicit inclusion the navigation is done by the components
developer.

It is also important to emphasize that a program submitted to the com-
piler has a single object of type DIR and Program, some dozens of objects like



Function’s and CFG ’s, but most probably thousands of low level objects, like
Expression and DT. So, the components that use low level elements could have
thousands of instances. Managing all these instances and the correspondent de-
pendencies is a very complex task. With the implicit inclusion, the problem stays
limited to the implementation context of the components and the one that has
to manage several instances and correspondent dependencies is the component
developer. But with the explicit inclusion, it is necessary to deal simultaneously
with thousands of instances which is done by the user of the components (the
one that most probably does not know or does not want to know nothing about
the implementation of the components).

Imagine for example, that the ICR contains several elements of type A and
B (A0, . . . , An, B0, . . . , Bm), that component CA is applied over the elements
of type A (CA0 , . . . , CAn

) and component CB is applied over elements of type B
(CB0 , . . . , CBm

), and that the instances of component CA support the instances
of the component CB on a relation of one to one. The question is to know how
associate the instances of CA with the instances of CB?

To answer this question, it is necessary to understand how the ICR elements
are related. For example, to execute CBi

is necessary the previous execution of
the support component (CAj

). To get CAj
from CBi

, it is necessary to get Bi,
then get the correspondent element of type A (Aj). Both operations are possible
and easy to do, it is enough to know DIR and the way how the ICR was built.
But is necessary one last operation, get the instance of component CA applied to
Aj (CAj

) and this is not possible using just the native mechanism of Dolphin
framework. It is the users that must create and manage a dictionary that gives
all the components applied to each ICR element.

2.3 Data consistency

Suppose that the registry of the components is already solved. The next question
is: Has the main component guaranteed that is safe to use the support compo-
nent? Since this question is particularly relevant when there is a data dependency
between the two components, it should be reformulated to: Can the main compo-
nent reuse safely the data computed by the support component? Notice, that we
are not doubting of the implementation of the support component. The problem
is to know if the data computed by the support component is still coherent with
the ICR when is used by the main component. Imagine that at line eighteen of
Fig. 4 is executed one or more components that aim to optimize the control flow
of the program submitted to the compiler, like the elimJumpChains component
of Dolphin framework. This is a very simple component that eliminates chains
of unconditional jumps, joining nodes of the control flow graph. But it is enough
to make useless the data computed by components like: Dominators, IDomi-
nator, DFrontiers or IDFrontiers. Their data, most porbably, will no longer be
coherent with the ICR. The user has three alternatives:

– Always forces the execution of the support components before use them (no
reuse is done);



– Executes the support components immediately before the main component,
minimizing the possibilities that they became incoherent;

– With a deep knowledge about the way of work and effects of all components
and controlling all instances, the user could avoid the reuse of incoherent
components.

The first two alternatives are not satisfactory and the third is not humanly
feasible neither desirable. Many components of frameworks like Dolphin, are
implemented by external collaborators, so it is not guarantee that users have
access to the code or to the internal details of components implementation.

3 Design of the architecture

Once presented the most relevant problems of a framework like Dolphin, it is
time to think on solutions that solve these problems. There were identified three
main problems for which are necessary new or better solutions:

Components association: It is necessary a more practical and efficient solu-
tion to associate dependent components;

Components reuse: It is necessary a solution that allows an easy and efficient
reuse of the components;

Data coherence: It is necessary a solution that guarantees the coherence of
the data computed by the support components, but that also minimizes the
number of times that each instance is recomputed.

Besides these problems, it is also important to make the whole solution easy
to use and capable to support the development of efficient compilers.

The next sections describe the solutions found for these problems. The inte-
gration of these solutions results on an architecture. It was conceived for Dol-
phin framework, but it is enough generic to be used on similar tools.

3.1 Components association

As already was explained, each component is associated with an ICR element.
This association is established when the ICR is registered into the component
(instance). With this very simple mechanism, it is possible to the component
access the ICR element. However it is not feasible to obtain a component from
the ICR element. But this relation would be useful to associate dependent com-
ponents. The solution proposed before was to delegate into the user the respon-
sibility of create and manage a dictionary that allows to know which are the
components associated to each ICR element. But this solution is only feasible
with the explicit inclusion of the components. But this kind of inclusion contains
severe disadvantages and it could be impracticable (remember that the number
of instances could be huge).

This problem was solved with a very simple solution that does not change the
native proceedings of Dolphin framework. When the ICR element is registered



into the component, the component is also registered into the ICR element. This
one maintains a set with the registry of all components.

The implementation of this solution was done defining two interfaces (C++
classes): one for the code representation elements, designated by compManager ;
and other for the components, designated by Component. Figure 5 shows the
UML representation of these two interfaces, with the methods necessary to the
registry, but also with the methods introduced to solve other problems.

Fig. 5. Interfaces of Component and compManager.

Component interface defines four public methods, but only the setElem(. . .)
is fundamental for the association of the components. Is the one that lets to make
the registry of the ICR element into the component, but also the registry of the
component into the ICR element. The method execute() forces the execution of
the component and the method update() forces the execution if the component is
outdated, which is part of the solution to solve data coherence of the components
(see section 3.3). The maintenance and the management of the components is
done by compManager, using a set that holds the addresses of the components.

Fig. 6 shows the code implemented on the constructor and on the setElem(. . .)
method of the Component interface, to make the registry.

3.2 Components reuse

Once defined the way how to associate dependent components and establish the
relation between components and the ICR elements, it is time to forward to the
next problem: conceive a solution that allows an efficient reuse of the compo-
nents. The solution proposed on last section contains already all the necessary
features to reuse efficiently and easily the support components.

The example of Fig. 7 helps to explain how this is done. E1 and E2 are ICR
elements (that are someway associated). C2 is an instance of Component2 that
works over E2. C2 also requires some data about E1, that are computed by
components of type Component1. To execute, C2 has to access to E1 (via E2)



Fig. 6. Proceedings for the component registry.

and using the getComp(char*) method, get access to C1. If E1 does not contain
any instance of Component1, then getComp(char*) return null. In this case, E2

can request a new instance of Component1 and makes its registry into E1.

Fig. 7. Registry of dependent components.

Notice that, except for the regComp(...) method, all the other methods of
compManager identify the component by a string (char* ). It could be used any
other mechanism that identifies the components by the type (and not by the
instance). This is fundamental, since C2 only knows the type of the support
component and not the exact instance. So, when C2 requests an instance of
Component1 to E1, it makes use of the component identifier, because it doesn’t
know the address or even if there is any instance of Component1 registered into
E1.

Fig. 8 uses the cnv2SSA to show (partially) how a component implements
the Component interface. It is given a special emphasis to the bool execute()
method, where are executed the proceedings for reuse the support components.



The example makes use of the real ICR elements used by the evolved components.

Fig. 8. Implementation of the Component interface.

With this very simple solution, that defines the relation between components
and ICR elements, was possible to simultaneously associate the components and
supply a nice and efficient solution to reuse them. But this solution supplies
other advantages, namely:

– Makes use of loosely couple association between components, that allows to
dynamically replace, couple and decouple the components. For example, it
is possible to:
• Instantiate the support components only when they are effectively nec-

essary;
• Release the support components as soon as they became useless, but

maintaining the main component.
– Still use exactly the same proceedings of the native framework, nothing

change for the framework user;
– Support components could be included by the component developer (implic-

itly). The component user does not have to know nothing about them;
– The specification of the compilers is so simple as the one that uses the

implicit inclusion of the components;
– The user does not have the responsibility of control and manage the depen-

dencies between the components;
– Ans, as is showed at next section, this solution makes a better job for the

reuse of the components than the explicit inclusion of the components.



3.3 Data coherence of the components

There is still one problem to solve, that is visible by the example of Fig 8. At line
fourteen, it is used the getComp(...) method to get access to the instance of ID-
Frontiers, that is registered into the cfg element. If such instance does not exist
then a new one is created, registered and executed by the main component (the
cnv2SSA). The problem occurs if the cfg already contains an instance of ID-
Frontiers. The instance of cnv2SSA does not know if the instance of IDFrontiers
is or is not coherent with the ICR.

Essentially, it is necessary to control the state of the components, which could
be updated or outdated. To get the state of a component, it is used the getState()
method of the interface Component.

The solution was implemented using the Observer design pattern that de-
fines the way to solve problems that have “a one-to-many dependency between
objects, so that when one object changes state, all its dependents are notified and
updated , page 293 of [2], which is basically the problem that must be solved:
components that should be notified and updated whenever the state of a ICR el-
ement changes. Fig. 9 shows the structure of the Observer design pattern and the
adaptation to the present situation. The Observer interface defines the methods
that should be implemented by the observers (components that want to be no-
tified). The Observed interface defines the methods that should be implemented
by the observable objects (ICR elements).

Fig. 9. Observer design pattern and its application to Dolphin framework.

To be notified, each component should make a registry into the correspondent
ICR element (using the regObs()). When a ICR element suffers a change, as
consequence of the execution of other component, like an code optimization,
sends a notification to all observers (components). The components receive the
notification with the identification of the ICR element that was changed and
their state is set to outdated. Now the main component has a mechanism to
know if the data computed by the support component is or is not coherent with
the ICR. With this mechanism the main component could avoid an unecessary
recomputation of the support components.

Besides the solutions proposed at this paper, Dolphin framework has other
solutions to optimize the recomputation of the support components, supplying



information about the methods used to change the state of the support compo-
nents and information about its previous state.

4 Conclusion

Using essentially four interfaces (Component, compManager, Observer, and Ob-
served), it was possible to design the architecture able to solve most of the
problems of Dolphin framework. Amazingly, with this architecture the compi-
lation time was improved between 30% and 90% and the number of instances
required was reduced between 20% and 40% (see [11]).

The use of the framework is now even more accessible, the users does not
need a deep knowledge about the framework to safely use it and produce efficient
compilers. For example, it is not necessary to know:

– How the components are implemented;
– Which are the pre-conditions to use it;
– Which are the support components;
– If it is or is not safe to use a component;
– If the use of the component is or is not redundant.

Besides that, the architecture presents other important advantages, such as:

– Reinforces the implementation of modular compilers;
– Reduces the framework redundant code and, as consequence, the sources of

error and maintenance costs;
– Minimizes the implementation effort of new components (reinforcing the

reuse of the components);
– Reduces the inconsistencies among components and between components

and CR;
– Reduces the execution time and the resources required by the compilation

process.

It is also important to emphasize that the architecture is generic enough to
be applied to other frameworks with similar benefits. For example, the project
that is used as reference to appraise our work is the SUIF Compiler System. It is
a huge project that contains lots of tools, wonderful solutions, and lots of other
things. But amazingly, they did not deal with problems like data coherence of
the components. The SUIF ICR aggregates all the information. Even the data
computed by the components (modules) is attached to the ICR as annotations.
But no mechanism is supplied to control the state of the data, neither to minimize
its re-computation. So, even on a huge system like SUIF, this architecture could
be a surplus value.



References

1. C. Fraser, R. Henry and T. Proebsting. BURG - Fast optimal instruction selection
and tree parsing. SIGPLAN Notices, (1991), 68–76.

2. E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns - Elements of
reusable object-orient software. Addison-Wesley, (1995)

3. G. Aigner, et. al. An overview of the SUIF2 compiler infrastructure. Technical Re-
port Computer System Laboratory, University of Stanford, Portland (2000).

4. M. E. Lesk. A Lexical Analyzer Generator Computer Science Technical Report, Bell
Laboratories, (1975).

5. N. Ramsey and M .Fernndez: The New Jersey Machine-Code Toolkit. USENIX
Technical Conference, ACM SIGPLAN, New Orleans, USA, (1995), 289–302.

6. Paulo Matos. DOLPHIN framework. Technical Report, University of Minho (2002).
7. P. Matos and P. Henriques. DOLPHIN-FEW: An example of a Web system to

analyze and study compilers behavior. IADIS International Conference e-Society,
Lisbon, Portugal, (2003), 66–970.

8. P. Matos. DOLPHIN: A system for compilers development, teach and use. Simpsio
Doutoral do Departamento de Informtica da Universidade do Minho, Universidade
do Minho, Braga, Portugal, (2003)

9. P. Matos and P. Henriques. A solution to dynamically build an interactive visual-
ization system to the DOLPHIN-FEW. International Conference on Visualization,
Imaging, and Image Processing, Benalmdena, Spain, (2003), 868–873.

10. P. Matos and P. Henriques. DIR - A code representation approach for compilers.
IADIS International Conference on Applied Computing,Lisbon, Portugal, (2004),
518–526.

11. P. Matos. Um modelo arquitectnico para desenvolvimento de compiladores: aplicao
framework Dolphin. PhD Thesis, Universidade do Minho, Braga, Portugal, (2005).

12. R. Gray, et. al. Eli: A complete, flexible compiler construction system. Research
Report, University of Colorado, (1990).

13. R. Johnson, C. McConnell and J. M. Lake. The RTL System: A framework for code
optimization. In Proceedings of the International Workshop on Code Generation,
Dagstuhl, Germany, (1991), 255–274.

14. S. Sankar, et. al. Java Compiler Compiler (JavaCC).
15. Friedrich Wilhelm Schroer. The Gentle Compiler Construction System manual.

(1997).
16. Richard Stallman. Using and porting the GNU Compiler Collection GCC. iUni-

verse.com, Inc, (2000)
17. Steven C. Johnson. Yacc: Yet Another Compiler Compiler. UNIX Programmer’s

Manual, vol. 2, New York, USA, (1979), 353–387.
18. T. Lengauer and R. Tarjan. A fast algorithm for finding dominators in a flowgraph.

ACM TOPLAS, (1979), 121–141.

This article was processed using the LATEX macro package with LLNCS style


