
Applying compiler technology to solve generic

workflow problems

Paulo Jorge Matos

Departamento de Informática e Comunicações

Escola Superior de Tecnologia e de Gestão

Instituto Politécnico de Bragança

Mail: pmatos@ipb.pt

Pedro Rangel Henriques

Departamento de Informática

Universidade do Minho

Mail: prh@di.uminho.pt

Abstract

Compilers are tools that transform a high level programming languages into assem-

bly or binary code. The essential of the process is done by the interpretation and the

code generation steps, but nowadays most compilers have also a strong component

of code optimization, that explore as much as possible the potential of the computer

architectures to which the compiler must generate the code. These optimizations are

based on the information provided by several analysis processes. This paper present

some of these code analysis and optimizations, and shows how they can be used to

solve problems or improve the quality of solutions used at areas such as industrial

engineer and planning.

Keywords: workflow processes, flow graphs, code analysis, code optimization.

INTRODUCTION

The main goal of the compilation is to identify the operations described in some source
language (Fortran, Pascal, C/C++, ML, ...), and convert them into a list of assembly
or binary instructions (the output code), executable by the chosen processor (Pentium,
PowerPc, Sparc, ...). All this must be done without losing the semantics of the source
program, which means that the output code must do exactly what is described by the
source code.

The evolution of this technological area has increased the gap between the source lan-
guages and the output code. Programming languages have evolved, and nowadays they are
more abstract, syntactically more powerful, supporting paradigms that are quite different
from the one that is used by the assembly and the machine languages. This evolution
creates new problems to solve and requires, from the compiler developers, more powerful
solutions that, by one side, can solve efficiently these problems and, by the other side,
can take advantage of the evolution of the processors architecture.

To achieve a high performance output code the compiler must execute several code op-
timizations. Typically, each one is done in two steps: one that collects the information

1

(about the source program), necessary to execute the optimization; and the other that is
the code optimization itself. At the context of this paper we will designated the first step
by ”analysis” and the second step by ”optimization”.

Compilers typically contain analysis algorithms of distinct kinds, the most common deal
with control and data flow across the program or with data dependencies (but these are
not the only ones). In this paper we introduce some analysis processes that can be useful
to solve problems in different technological areas. The goal is not to solve directly the
problems but produce information about them that can lead to a solution or improve the
quality of an existent one. For each kind of analysis introduced (in the paper we deal with
two: CFA and DFA), we also discuss its importance in the compilers domain (presenting
code optimization routines that use the results provided by the analysis), and we illustrate
(using a case study) its applicability to problem solving in other technological areas.

Before continue, it is important to relate a compiler with the compiler developer and the
program developers, clarifying the role of each actor. Figure 1 shows at the center the
compiler itself, surrounded by: the compiler developer (left side), the program developer
(upper right corner) and the program users (lower right corner).

Front-End

Analysis

Optimizations

Back-End

Compiler

Developer

Source

Program
(C, Pascal,

Fortran, ...)

Compiler

Output Program
(Assembly/Machine

Code)

Program

Developer

Input
(Data, signals, ...)

Output
(Data, signals, ...)

Figure 1: Compiling, developing and execution processes.

Figure 1 also shows the principal components of the compiler: the front-end, analysis
and optimization routines, and back-end. All compilers must execute the tasks included
at the front and the back-end components. The first is responsible by the interpretation
of the source language and includes the lexical, syntactic and semantic analysis. The
last one is responsible by the output code generation and, typically, includes the register
allocation and the instruction selection. The analysis and optimizations components are
fundamental to improve the quality of the output code. Together they form the middle-
level of the compiler.

In the next two sections we explore two distinct kinds of analysis: the Control Flow Anal-
ysis (CFA) and the Data Flow Analysis (DFA). The last section presents the conclusions
and describes the future work.

2

It is important to notice that the examples used along the paper are intentionally small,
very simple and do not require special knowledge about compilation or even about pro-
gramming languages. The objective is to make easy the understanding of the subject, but
this does not mean that the real live examples are like these or that the code optimizations
are limited to these transformations.

CONTROL FLOW ANALYSIS

The compiler submits the textual representation of the source program to several transfor-
mations until obtain the output code. At the middle-level of the compilation process the
code representation contains, implicitly or explicitly, a huge graph, which is designated
by Control Flow Graph (CFG), and represents the control flow structure of the program
with all possible execution paths. Figure 2(a) shows an example of a CFG.

B1

B5

B2

B8

B9

B11

B0

B10

B4

B3

B6

B7

(a) An example of a CFG.

A

B

A

C

D

B

A

B

Block

Sequence

If ...Then

Else ...

Do ...

While ...
While ...

B

A

(b) Examples of regions that
can be recognized.

Figure 2: The CFG and some examples of regions.

The CFA is very important for many optimizations and even to the code generation
routines, for example, it allows to identify the vertices of the CFG that form a cyclic
structure or a conditional structure. Notice that this can be quite complex since a control
flow structure may contain inside others control flow structures.

The compiler get the desire information about the structure of the source program, build-
ing the Control Flow Tree (CFT), which is a tree where the root represents the full
program; each intermediate node represents a control flow structure; and the leafs are the
original vertices of the CFG (see figure 4).

The process is done by searching the CFG for predefined control flow structures, desig-
nated by ”regions”. When one is found, it is necessary to replace the vertices that belong
to that region by a single node. The process ends when the full program is reduced to a
single node. The CFT is built while the reduction process is done, by establish a relation
between each inserted vertex and the vertices that are replaced.

Figure 2(b) shows the regions that were defined to reduce the CFG of the figure 2(a).
The reduction process is illustrated at the figure 3 and figure 4 shows the final CFT.

At the figure 3, it is possible to observe that the reduction process can isolate parts
of the graph that do not correspond to any of the predefined regions. These parts are

3

B1

B2

B11

B0

B10

B6

B7Improper

Region

Do ...

While(...)

B1

B2

B11

B0

B10

Block

Squence

Block

Squence

B1

B11

B0

If ... Then

Else ...

B11

B0

While(...)

Block

Sequence

Figure 3: The reduction process of the graph of the figure 2(a).

classified has Improper or Proper regions, depends if they contain or not cyclic control
flow structures.

B5B4 B3

Improper

Region

B8 B9

Do...

While(...)
B6 B7

Block

Sequence

Block

Sequence

If ... Then

Else ...

B10

B1

While (...)B0 B11

Block

Sequence

B2

Figure 4: The CFT correspondent to the CFG of figure 2(a).

The type of solution proposed here to compute the CFT is designated by Structural

Analysis (Sharir, 1980), and is a very versatile solution that can deal with distinct types
of regions. The only required condition is that the regions must be accessed over a single
vertex, designated by the entry vertex of the region.

It is not our intention to explore in this paper the details about Structural Analysis. But
the main part of the algorithm is shown in figure 5. It is possible to find more details and
explanations in Muchnick (1997), or in Matos (1999).

CFA optimizations

There are many code optimizations, code generation tasks and even other forms of the
analysis (like the DFA) that use the results provided by the CFA. For example, using the
CFT is possible: to linearize the graph to obtain the sequence of operations, which is
fundamental for code generation; to determine the regions that can be computed concur-
rently; or to choose the regions that can be the target of specific optimizations, such as
the loop optimizations.

4

Procedure StructuralAnalysis(g :CFG) : CFT
reduction : boolean
rtype : RegionType
n, m, entry : Vertex
interval, ReachUnder, NonEntries : Set<Vertices>

entry := getRoot(g)
Repeat

reduction := false
NonEntries := ∅
While |SetVertices(g)| > 1 & !reduction do

n := pickOneVertice(g)
rtype := AcyclicRegionType(g, n, interval)
If rtype 6= nil then

Reduce(g, n, rtype, interval)
reduction := true

else
ReachUnder := {n}
For each m ∈ SetVertices(g) do

If Type(m)=BasicNode & Path(g,n,m) & PathBack(g,m,n) then
ReachUnder ∪= {m}

rtype := CyclicRegionType(g,n,ReachUnder)
If rtype 6= nil then

SetVertices(g) ∪= NonEntries
Reduce(g, n, rtype, ReachUnder)
reduction := true

else
SetVertices(g) -= {n}
NonEntries ∪= {n}

Until !reduction
return head(SetVertices(g))

End

Figure 5: The Structural Analysis algorithmic.

Probably the simplest example is the elimination of the jump operations between vertices.
Notice that if we have a sequence of vertices with only one antecessor, then it is possible
to join the operations contained in each one into a single vertex. Figure 6(a) shows part
of a CFT where this situation is easily detected and figure 6(b) shows the result obtained
after the optimization.

CFA case study

Our case study is a generic industrial process, represented in figure 7. Elements like Resi

are resources; elements like Bi are buffers; and the other elements denote various processes
(Weld, Pre or Pos-Assembly, Assembly, Test, Repair and Pack). The regions that we
want to recognize are represented at figure 8.

Figure 9 shows the correspondent CFT, obtained by applying the CFA to the process
graph. This one has several applications, for example:

• With a top-down, left-right, traversal of the CFT, it is possible to obtain the topo-
logical order of the CFG;

• It is easy to identify subsets of tasks that can be executed concurrently, by searching

5

B2 B3

Block

Sequence

While (...)B0 B4

Block

Sequence

B1

B2

(a) The CFT before the
control flow optimization.

Bt

While (...)B0 B4

Block

Sequence

B2

(b) The CFT after
the control flow opti-
mization.

Figure 6: An example of a control flow optimization.

for Region 1 nodes at the CFT. Each descendent is one of the concurrent set of tasks;

• As we will see in the next section, the CFT is very important to analyze the flow of
the data (product, information, control parameters, etc) along the CFG.

Res2

Res1

Initial

Node

B1 B2 A1

A2

T1

R1

P1

Final

Node

B3

Res3
Pr

A3

A4

T2

R2Res4

W1

W2

W3

W4

Po

32

2

2

2

5

4

3

1

1

1

6

4 3

2

5

2

5

2

5

2

1

P2

1

B3

0

Figure 7: A generic industrial process.

A1

An

...

...

Region 1 Region 2 Region 3

A1 An
A1

A2

Figure 8: The regions defined to be recognized.

DATA FLOW ANALYSIS

The Data Flow Analysis (Kam and Ullman, 1976; Muchnick, 1997; Nielson et al., 1999) is
responsible for collecting information that change along the execution paths of the graph
(flow sensitive information); that information is used later by the optimization routines
to minimize the code length or make its execution faster. To explain how this is done

6

Region 2

Region 1 B3
Final

Node

Region 1

Region 2

Region 3B3 Pr

Initial

Node

Region 1

Region 1 Region 3

Region 2A1 A2 R1 T1

Res2 B1

W1 W2 W3

A3 A4 R2 T2

W4Res3

Res4

Region 1

Region 2 Region 2

Region 1 B2 Region 1

Region 2Res1

Region 2

Po P1 P2

Figure 9: The final CFT of the process of figure 7.

and why this type of analysis is necessary, we will use the Common Sub-Expressions

Elimination optimization that identifies and removes duplicate expressions of the source
program.

Figure 10(a) shows a short fragment of a C program where the same sub-expression (i+1),
is computed several times (op2, op3, op4, op5, op7 and op8).

op1 ...
op2 a = i + 1;
op3 if(i+1>0){
op4 i = i + 1;
op5 b = i + 1;
op6 } else
op7 b = 2 * (i+1);
op8 c = (i+1)/2;
op9 ...

(a) Code before the optimization.

op1 ...
op2 a = i+1;
op3 if(a>0){
op4 i = a;
op5 b = i + 1;
op6 } else
op7 b = 2 * a;
op8 c = (i+1)/2;
op9 ...

(b) Code after the optimization.

Figure 10: The Common Sub-Expression Elimination optimization.

Unnecessary computations can be avoided if several occurrences of the same sub-expression
are replaced by the variable that holds the value obtained by the evaluation of the first
sub-expression (the only one that is not removed). This can be done if we have sure that
all replaced sub-expressions, compute the same value as the one that stay, no matter the
execution path.

Applying the Common Sub-Expressions Elimination strategy to the program of figure 10(a),
we obtain the program of figure 10(b). Notice that the occurrence of the sub-expression
i+1 at the operation op5 is not replaced, because at this position the value of the variable
i was already changed (by the operation op4). The same happens with its occurrence
at op8, but now because the sub-expression may have different values depending on the
actual execution path (it has a direct influence in the value of variable i when it reaches
operation op8). Since the compiler can not change the semantics of the source program,

7

a sub-expression should only be replaced when it is possible to determine that such oper-
ation is safe.

The optimization illustrated in the example above (figure 10) depends of the control flow
of the program, which means that the optimization routine must consider the several paths
that may occur during the execution of the program. The DFA comes to scene just to
solve this problem, feeding the system with information concerned with the computation
and propagation of values.

Notice that the DFA is the generic name of this type of analysis, a concrete example is the
Reach Definition Analysis (RDA) that is used to determine the available sub-expressions
at each position of the program. The RDA is used to support the Common Sub-Expression

Elimination.

Figure 11(a) shows a detailed CFG of the program of figure 10(a). Each expression inside a
program block is decomposed, independently from the others, into elementary operations
(including operands), and the result of each one is hold by a temporary variable (ti). The
list with all the available sub-expressions, so far obtained, is associated with the start
and the end of each block (vertex of the graph). Each element of this list contains a
list of temporary variables (one or more) and, between parentheses, the respective sub-
expression, according to the following rules:

List element → List Temp Variables ’(’ Sub-Expression ’)’

List Temp Variables → Temp Variable
| List Temp Variables ’,’ Temp Variable

It is assumed that the start list of the initial block is empty.

Figure 11(b) shows the effects of the Common Sub-Expression Elimination optimization
using the information provided by the analysis. For the moment, the important is to
observe that in fact this optimization (as consequence of the DFA performed) improved
significantly the quality of the output code.

Now we describe in detail how the analysis is done, considering just one node n of the
graph. Suppose that the list of available sub-expressions at the entry of n is Lentry(n), and
at the exit is Lexit(n). The goal is to compute Lexit(n) based on the values of Lentry(n)
and on the own contributions of node n. Initially Lexit(n) takes the value of the Lentry(n).
Then it is necessary to analyze, one by one, the sub-expressions of n (starting on the
first one), identifying the shape of the sub-expression. If it has the form ti = expr, it
is necessary to test if expr already exists in Lexit(n); if true, then ti is appended to the
list of temporary variables associated with expr; if false, then a new element, of the form
ti(expr), is append to Lexit(n). If the sub-expressions has the form var = tj, it is necessary
to remove all elements whose sub-expression contains one or more references to var.

Notice that when a variable varx is defined (a value is assigned to it), its previous value
will probably change; as consequence, all sub-expressions that were available at this point
of the program and that use the defined variable (varx), are no longer valid.

The description above can be formulated using equation 1, where the fexpr represents the
contributions of the sub-expression expr.

Lexit(expr) = fexpr(Lentry(expr)), where expr ∈ n (1)

8

 t
8

= 1

 t
9

= i

 t
10

= t
9
+t

8

 i = t
10

 t
14

= 1

 t
15

= i

 t
16

= t
15

+t
14

 t
17

= 2

 t
18

= t
17

*t
16

 b = t
18

 t
0

= 1

 t
1

= i

 t
2

= t
1
 + t

0

 a = t
2

 t
19

= 1

 t
20

= i

 t
21

= t
20

+t
19

 t
22

= 2

 t
23

= t
21

/t
22

 c = t
23

 ...

 t
11

= 1

 t
12

= i

 t
13

= t
12

+t
11

 b = t
13

...

t
0
(1)

t
1
(i)

t
2
(i+1)

 t
3

= 1

 t
4

= i

 t
5

= t
4
+t

3

 t
6

= 0

 t
7

= t
5
>t

6

 t
7

t
0
,t

3
,t

8
(1)

t
6
(0)

t
0
,t

3
(1)

t
1
,t

4
(i)

t
2
,t

5
(i+1)

t
6
(0)

t
7
(i+1>0)

t
0
,t

3
,t

8
,t

11
(1)

t
6
(0)

t
12

(i)

t
13

(i+1)

t
0
,t

3
,t

14
(1)

t
1
,t

4
,t

15
(i)

t
2
,t

5
,t

16
(i+1)

t
6
(0)

t
7
(i+1>0)

t
17

(2)

t
18

(2*(i+1))

t
0
,t

3
(1)

t
6
(0)

t
0
,t

3
,t

19
(1)

t
6
(0)

t
20

(i)

t
21

(i+1)

t
22

(2)

t
23

((i+1)/2)

t
0
,t

3
(1)

t
1
,t

4
(i)

t
2
,t

5
(i+1)

t
6
(0)

t
7
(i+1>0)

(a) CFG before the optimization.

 i = t
2

 t
17

= 2

 t
18

= t
17

*t
2

 b = t
18

 t
0

= 1

 t
1

= i

 t
2

= t
1
 + t

0

 a = t
2

 t
20

= i

 t
21

= t
20

+t
0

 t
22

= 2

 t
23

= t
21

/t
22

 c = t
23

 ...

 t
12

= i

 t
13

= t
12

+t
0

 b = t
13

...

t
0
(1)

t
1
(i)

t
2
(i+1)

t
6

= 0

t
7

= t
2
>t

6

 t
7

t
0
(1)

t
6
(0)

t
0
(1)

t
1
(i)

t
2
(i+1)

t
6
(0)

t
7
(i+1>0)

t
0
(1)

t
6
(0)

t
12

(i)

t
13

(i+1)

t
0
(1)

t
1
(i)

t
2
(i+1)

t
6
(0)

t
7
(i+1>0)

t
17

(2)

t
18

(2*(i+1))

t
0
(1)

t
6
(0)

t
0
(1)

t
6
(0)

t
20

(i)

t
21

(i+1)

t
22

(2)

t
23

((i+1)/2)

t
0
(1)

t
1
(i)

t
2
(i+1)

t
6
(0)

t
7
(i+1>0)

(b) CFG after the optimization.

Figure 11: A CFG with the result of Reaching Definition Analysis.

If we associate the Lentry(n) with the Lentry of the initial sub-expression of n, and Lexit(n)
with the Lexit of the last sub-expression of n, then it is possible to compute directly
Lexit(n) based on the Lentry(n), using the equation 2, where fn is the composition of the
fexpr() of all sub-expressions of n, starting on the last one.

Lexit(n) = fn(Lentry(n))
fn = fexprlast

◦ . . . ◦ fexprfirst

(2)

Now let us see how the analysis is done for the full graph. If n has only one predecessor,
m, then Lentry(n) takes the value of Lexit(m). If n has more than one predecessor, then
it is necessary to join the several Lexit of the predecessors of n to compute Lentry(n).
This corresponds to assign to Lentry(n) the elements that are common to all Lexit of the
predecessor nodes. This can be formulated using the equation 3, where Flow represents
the edges between nodes. It is important to notice that the edges that belong to Flow

have not to be the same ones that are used at the CFG; it depends on the direction of

9

the analysis that can be forward, if is done following the same direction of the edges of
the CFG, or backward if is done in the reverse direction. The symbol

⊔

represents the
join operation that defines how to combine the lists L() that reach a node.

Lentry(n) =
⊔

{Lexit(n
′) | (n′, n) ∈ Flow} (3)

Equation 3 can be redefined into equation 4 in such way that it is possible to have a
non-empty list, linitial, at the entry of the initial block of the graph.

Lentry(n) =

{

linitial n ∈ InitialNodes
⊔

{Lexit(n
′) | (n′, n) ∈ Flow} otherwise

(4)

Now that we know how to compute the values for the nodes of the graph, it is necessary to
determine the order by which they should be processed. The solution that we proposed
here is based on CFA, namely on the Structural Analysis (see the last section). It is
enough to traverse the CFT, starting by the root node, and apply the quations 2 and 4
considering the kind of region represented by each node. For example, to a If ... Then

... Else ... region, as the one showed at the figure 2(b), the problem is solved applying
the equation system 5. It is supposed that Lentry(IfThenElse) (the entry value of the
region) was already computed and that the goal is to obtain the Lexit(IfThenElse).

Lentry(A) = Lentry(IfThenElse)
Lexit(A) = FA(Lentry(A))
Lentry(B) = Lexit(A)
Lexit(B) = FB(Lentry(B))
Lentry(C) = Lexit(A)
Lexit(C) = FC(Lentry(C))
Lentry(D) = Lexit(B) t Lexit(C)
Lexit(D) = FD(Lentry(D))
Lexit(IfThenElse) = Lexit(D)

(5)

For cycle regions it is necessary to apply the equations more than once. The reason is
that the Lentry of the entry node may depend of the results of the others nodes of that
region.

If the transfer function is monotone, it is guarantee that the successive application of
the equations, sooner or later, will result on a stabilized values for all equations. The
first time that the equations are applied, the feed-back component that result from other
nodes of the region, is despised.

It is quite simple to generalize this DFA solution to solve similar problems (Dwyer, 1995;
Knoop and Ruthing, 1994). The algorithmic solution is the same one and the equations
1, 2, 3 and 4 are still valid. Essentially, it is only necessary to redefine the type of data
structure that should be associated with the nodes, formally designated by lattice values ;
the functions associated with the sub-expression (fexpr()); the join operator; and to each
type of region, the way how the order by equations should be computed.

10

DFA case study

The goal of our case study is to determine the lowest and the highest time need to assembly
a unit of the product to the process of the figure 7. This can be done associating a pair of
values (min, max), to the entry and exit of each node. The min holds the lowest time and
max the highest time. The cost of each task is given by the function Cost(X) that returns
the value associated to the element X of the figure 7, for example Cost(A1) = 6. The
Initial Node and the Final Node have both cost zero. The entry value of the Initial Node

is (0, 0). The analysis will follow the same direction of the flow of the process (forward

direction).

As stated by equation 1, Lexit(n) is obtained applying the transfer function of n to the
Lentry(n). Equation 6, below, defines the transfer function; in that case, its argument
is the node itself, and not the value at the entry of the node. So, equation 1 must be
rewritten as the equation 7 bellow.

ftransfer(n) = Lentry(n) + (Cost(n), Cost(n)) (6)

Lexit(n) = ftransfer(n) (7)

Lentry is obtained determining the minor of the lowest values of the incoming edges; and
the greater of the highest values of the incoming edges. Let lowest(L) and higest(L)
return, respectively, the lowest and the highest value of the lattice L. Lentry(n), and
implicitly the join operation, are defined by the equation 8.

Lentry(n) =

(0, 0) n = InitialNode

(Min({lowest(Lexit(n
′))|(n′, n) ∈ Flow}),

Max({highest(Lexit(n
′))|(n′, n) ∈ Flow})) otherwise

(8)

Notice that the lattice concept can be used to represent almost everything, for example:
numeric values, text, sets, abstract data structures, objects, etc.

The processes, to which we forecast, that is possible to apply the CFA and specially the
DFA, can be characterized as follows:

• The processes are quite big and hardly analyzed by hand;

• The processes can be modeled by a finite flow-graph, where the vertices represent
the entities that operate the information under analysis, and the edges describe the
information flow between operations;

• The information processed should be flow-sensitive;

• It should be possible to define a finite set of functions that describe how the entities
affect the information. These functions are designated by ”transfer functions” and
should be monotone;

• It should be possible to define the identity function (the one that has not any effect
over the information);

11

• It should be possible to define an algebraic data structure to represent the infor-
mation that forms a complete lattice (a partial ordered set that contains a top and
bottom value and for which are defined the meet and the join operators).

CONCLUSIONS AND FUTURE WORK

With this paper, we aimed at showing how it is possible to adapt the code analysis and

optimization techniques, implemented by most of the compilers, to solve different planning
and management problems in areas such as industrial, economical, governmental and
information systems.

Analysis such as the CFA and the DFA are quite common in the development of compilers
and play an important role in the quality of the output code. We believe that they can be
used to solve properly many other problems, and also that these problems are traditionally
solved using other solutions that might be interesting for compiler developers.

At this point, some people may ask: why other solutions those are much more complex
than those already available and maybe not so efficient? We believe these solutions have
some advantages:

• They are quite uniform and is easily adaptable;

• They can deal quite well with abstract information (not only with quantifiers);

• They work independently of the flow-graph topology, which means that a specific
analysis for each problem is not necessary, but only one for each class of problems.

The paper focus was CFA and DFA, but we have also in mind the idea of explore other
compiler techniques - more elaborated forms of DFA (like the Alias Analysis) and the
Dependency Analysis (used for instruction scheduling). We also expect to find out a
better set of case studies (we are looking for new ones) to demonstrate the potential of
this technology. Then, the next step will be the development of a tool/framework to
help the construction of the analysis and optimizations routines (Tjiang and Hennessy,
1992; Tjiang, 1993; Alt and Martin, 1995), which will be done based on a description of
some characteristics of the problem - like the specification of the join operation or the
definition of the transfer functions or even the description of region patterns - and not on
the description of the concrete problems.

References

Alt, M. and Martin, F. Generation of Efficient Interprocedural Analyzers with PAG . In
A. Mycroft, editor, SAS’95, Static Analysis Symposium, volume 983 of Lecture Notes

in Computer Science, pages 33–50. Springer, 1995.

Dwyer, M. Data Flow Analysis for Verifying Correctness Properties of Concurrent Pro-

grams . Ph.D. thesis, Amherst, MA, USA, 1995.

Kam, J. B. and Ullman, J. D. Global data flow analysis and iterative algorithms. Journal
of the ACM, 21(3), pages 158–171, 1976.

Knoop, J. and Ruthing, O. Optimal code motion: theory and pratice. Trans. on Progr.
Languages and Systems, 16(4), pages 1117–1155, 1994.

12

Matos, P. J. Estudo e desenvolvimento de sistemas de geração de back-ends do processo

de compilação. Master’s thesis, Universidade do Minho, Braga, Portugal, 1999.

Muchnick, S. Advanced Compiler Design and Implementation. Morgan Kaufmann Pub-
lishers, 1997.

Nielson, F., Nielson, H. and Hankin. Principles of Program Analysis . Springer Verlag,
1999. ISBN 3540654100.

Sharir, M. Structural analysis: A new approach to flow analysis in the optimizing com-

pilers . Computer Languages, 5(3–4), pages 715–728, 1980.

Tjiang, S. Automatic Generation of Data–flow Analyzers: A tool for building optimizers .
Ph.D. thesis, Stanford University, Computer Systems, Laboratory, 1993.

Tjiang, S. and Hennessy, J. Sharlit - a tool for building optimizers. In Proceedings on

Programming Language Design and Implementation, pages 82–93. 1992.

13

