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Abstract. 

The compiler process, the one that transforms a program in a high level language into assembly or 
binary code, is a much elaborated process that mixes several powerful technologies, some of them 
developed specifically for this area. Nowadays, compilers are highly developed systems that can 
analyze and improve quite efficiently the source code, profiting from all the potential of the new 
processor architectures. This paper introduces a common type of analysis - the Data Flow Analysis – 
that is used to compute flow-sensitive information about programs, whose results are essential to 
produce many code optimizations. It is also argued that the problem of analyzing the data flow in 
software programs has many similarities with the problems found in industrial engineering; planning 
and management. As consequence, it is possible to apply analysis and optimization techniques used 
by compilers in these areas. 
 
Keywords: Data Flow Analysis, flowgraphs, techniques for industrial engineering. 

1 Introduction 

The main goal of a compiler is to identify the operations described in some high-level programming 
language (the source or input, language) - like Fortran, Pascal, C/C++, ML, etc - and convert them 
into a list of assembly or binary instructions (the target, or output, code) executable by the chosen 
processor (Pentium, PowerPc, Sparc, ...). This translation must be done without losing the program 
semantics, which means that the output code must do exactly what is described by the source code. 
 
The theoretical development in computer sciences, namely in the area of (formal) programming 
methods, has increased the distance between the source languages and the machine code languages. 
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The languages have evolved, and nowadays they are more abstract, syntactically more complex, 
semantically more powerful, supporting programming paradigms that are quite different from the 
one that is actually available at the processors level (corresponding to the imperative style of the 
assembly or machine languages). This evolution requires, from the compiler developers, more 
powerful solutions that, by one side, solve efficiently the new syntactic and semantic problems and, 
by the other side, obtain the total gain of the evolution occurred at the processors architecture, 
generating optimal code (as shorter and faster as possible). 
 
The first tasks executed by a compiler are concerned with the analysis of the source language (lexical, 
syntactic and semantic), in order to recognize the meaning of the program; this phase inevitably 
produces an intermediate representation of the program that is more or less similar to the output code. 
At this intermediate level, the program is submitted to several optimizations to improve the output 
code quality. The subject of this paper is to show how some technical solutions used at this level of 
the compilation process, namely the Data Flow Analysis – DFA – (Kam and Ullman, 1976; 
Muchnick, 1997; Nielson et al., 1999; Hecht, 1977) and the respective code optimizations, can be 
adapted to solve problems of other areas. This type of analysis does not produce any kind of 
transformation over the source program, but is responsible for collecting information, essential to 
some optimization strategies. 
 
Figure 1 shows the use of a compiler, emphasizing its internal phases. The Program Developer is the 
person that writes the Source Program and submits it to the Compiler to obtain the Output Program 
(executable file). So, the function of the compiler is to recognize the source program (a sequence of 
characters that obey to the grammar rules of the source language), and then generate the output code. 
The interpretation is done by the lexical, syntactic and semantic analyzers, which form the front-end 
(FE) of the compiler (the FE groups the components that are dependent of the source language); the 
code generation consists essentially of two processes - the register allocation and the instruction 
selection - that constitutes the back-end (BE) of the compiler (the BE gathers the components that are 
dependent of the computer architecture). 
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Figure 1 - Compiling and developing processes. 

It is also normal to have a middle-part that contains all components that are independent of the 
characteristics of the source language and the computer architecture (which turn easier their reuse 



 

when developing new compilers). The components commonly implemented at the middle-part are 
the several types of flow analysis (data or code), and many code optimization routines. 
 
In this paper, we are mainly concerned with Data Flow Analysis, whose goal is to obtain information 
about the use of variables and values, that are sensitive to the execution flow of the program. To 
implement this analysis, the information is typically represented as a flow-graph, where the edges 
correspond to the execution flow of the program, and the vertices to the operations that directly or 
indirectly manipulate variables and values. 
 
Notice that any imperative source language contains the necessary elements to build easily this type 
of representation: 

• The flow-graph is directly extracted from the control structures of the language (sequential, 
conditional and loop statements); 

• The operations that produced and manipulated data are well-defined (load/store, read/write, 
arithmetic, logical, …). 

But the DFA is not restricted to imperative languages, since the compilation process can produce the 
same imperative intermediate representation even from languages of other programming paradigms. 
 
The next section shows an example of code optimization that requires the execution of data flow 
analysis. It is demonstrated the benefits of this kind of optimization; explained how this analysis can 
be implemented and how the solution can be generalized for any type of information. In section three, 
it is demonstrated that the elements used for code representation, specially at the intermediate and 
low levels, have some similarities with the ones that are required for the representation of 
engineering and management problems. It is also explained how the approach followed in 
compilation can be applied to solve these problems. The last section presents the conclusions and 
describes the future work. 
 
It is important to notice that the examples used along the paper are purposely small, very simple and 
do not require special knowledge about compilation or even about programming languages. The 
objective is to facilitate the understanding of the subject; however this does not mean that the real 
examples are so easy like these or that the code optimizations are limited to these transformations. 

2 Data Flow Analysis 

As was already told, Data Flow Analysis is responsible for collecting information about definition 
and use of variables and values (data handling) along a given source program; that information is 
then used by the optimization routines to minimize the code length or make its execution faster. To 
explain how this is done and why this type of analysis is necessary, we will present one example 
where the Common Sub-Expressions Elimination technique is applied. This optimization identifies 
and removes expressions that are duplicated in the source program. 
 
The first example, shown in Figure 2(a), is a short fragment of a C program where the same sub-
expression, i+1, is computed several times (op2, op3, op4, op5, op7,op8). 
 
 



 

Unnecessary computations can be avoided if every time that the same sub-expression appears, 
computing exactly the same value, is replaced by a variable holding that value obtained the first time 
that the sub-expression was evaluated. 
 
Applying the Common Sub-Expressions Elimination strategy to the program of Figure 2(a), we 
obtain the program of Figure 2(b). Notice that the occurrence op5 of the sub-expression i+1 is not 
replaced, because at this position the value of the variable i was already changed (by the operation 
op4). The same happens with its occurrence at op8, but now because the sub-expression may have 
different values depending on the actual execution path (it has a direct influence in the value of 
variable i when it reaches operation op8). As the compiler can not change the semantics of the source 
program, a sub-expression should only be replaced when it is possible to determine that such 
operation is safe. 
 

op1 …  op1 … 
op2 a = i + 1;  op2 a = i + 1; 
op3 if(i+1>0){  op3 if(a>0){ 
op4    i = i + 1;  op4    i = a; 
op5    b = i +1;  op5    b = i + 1 
op6 }else  op6 } else 
op7    b = 2*(i+1);  op7    b = 2 * a; 
op8 c = (i+1)/2;  op8 c = (i+1)/2; 
op9 …  op9 … 
     
(a) Code before the optimization.  (b) Code after the optimization 

Figure 2 - The Common Sub-Expression Elimination optimization. 

The optimization illustrated in the example above (Figure 2) dependents on the control of the 
program flow, which means that the optimization routine must consider the several paths that may 
occur during the execution of the program. The DFA comes to scene just to solve this problem, 
feeding the system with information concerned with the computation and propagation of values. 
Moreover, the DFA (that is the generic name of this type of analysis) is intended to work over the 
intermediate representation in order to keep the algorithms independent of the source language. In 
the present case, Common Sub-Expression Elimination technique, the Reaching Definition Analysis 
is used to know which sub-expressions are available at each position of the program.  
 
Figure 3(a) shows a graphical representation, the Control Flow Graph (CFG), of the program of 
Figure 2(a), with more detailed information. Each expression inside a program block is decomposed, 
independently from the others, into elementary operations (including operands), and the result of 
each one is hold by a temporary variable (ti). The list with all the available sub-expressions, so far 
obtained, is associated with the start and the end of each block (vertex of the graph). Each element of 
this list contains a list of temporary variables (one or more) and, between parentheses, the respective 
sub-expression, according to the following rules: 
 
List_element � List_Temp_Variables ‘(‘ Sub-Expression ‘)’  

List_Temp_Variables � Temp_Variable | List_Temp_Variables ‘,’ Temp_Variable 

 
It is assumed that the start list of the initial block is empty. 
 



 

Figure 3(b) shows the effects of the Common Sub-Expression Elimination strategy using the 
information provided by the analysis. For the moment, the important is to observe that in fact this 
optimization (as consequence of the DFA performed) improved significantly the quality of the output 
code. 

 t
8 

= 1

 t
9 

= i

 t
10 

= t
9
+t

8

 i = t
10

 t
14 

= 1

 t
15 

= i

 t
16 

= t
15

+t
14

 t
17 

= 2

 t
18 

= t
17

*t
16

 b = t
18

 t
0 

= 1

 t
1 

= i

 t
2 

= t
1
 + t

0

 a = t
2

 t
19 

= 1

 t
20 

= i

 t
21 

= t
20

+t
19

 t
22 

= 2

 t
23 

= t
21

/t
22

 c = t
23

   ...

 t
11 

= 1

 t
12 

= i

 t
13 

= t
12

+t
11

 b = t
13

...

t
0
(1)

t
1
(i)

t
2
(i+1)

 t
3 

= 1

 t
4 

= i

 t
5 

= t
4
+t

3

 t
6 

= 0

 t
7 

= t
5
>t

6

     t
7

t
0
,t

3
,t

8
(1)

t
6
(0)

t
0
,t

3
(1)

t
1
,t

4
(i)

t
2
,t

5
(i+1)

t
6
(0)

t
7
(i+1>0)

t
0
,t

3
,t

8
,t

11
(1)

t
6
(0)

t
12

(i)

t
13

(i+1)

t
0
,t

3
,t

14
(1)

t
1
,t

4
,t

15
(i)

t
2
,t

5
,t

16
(i+1)

t
6
(0)

t
7
(i+1>0)

t
17

(2)

t
18

(2*(i+1))

t
0
,t

3
(1)

t
6
(0)

t
0
,t

3
,t

19
(1)

t
6
(0)

t
20

(i)

t
21

(i+1)

t
22

(2)

t
23

((i+1)/2)

t
0
,t

3
(1)

t
1
,t

4
(i)

t
2
,t

5
(i+1)

t
6
(0)

t
7
(i+1>0)

 

 i = t
2

 t
17 

= 2

 t
18 

= t
17

*t
2

 b = t
18

 t
0 

= 1

 t
1 

= i

 t
2 

= t
1
 + t

0

 a = t
2

 t
20 

= i

 t
21 

= t
20

+t
0

 t
22 

= 2

 t
23 

= t
21

/t
22

 c = t
23

   ...

 t
12 

= i

 t
13 

= t
12

+t
0

 b = t
13

...

t
0
(1)

t
1
(i)

t
2
(i+1)

t
6 

= 0

t
7 

= t
2
>t

6

     t
7

t
0
(1)

t
6
(0)

t
0
(1)

t
1
(i)

t
2
(i+1)

t
6
(0)

t
7
(i+1>0)

t
0
(1)

t
6
(0)

t
12

(i)

t
13

(i+1)

t
0
(1)

t
1
(i)

t
2
(i+1)

t
6
(0)

t
7
(i+1>0)

t
17

(2)

t
18

(2*(i+1))

t
0
(1)

t
6
(0)

t
0
(1)

t
6
(0)

t
20

(i)

t
21

(i+1)

t
22

(2)

t
23

((i+1)/2)

t
0
(1)

t
1
(i)

t
2
(i+1)

t
6
(0)

t
7
(i+1>0)

 

(a) CFG before the optimization.    (b) CFG after the optimization. 

Figure 3 - A CFG with the result of Reaching Definition Analysis. 

Now we describe in detail how the analysis is done, considering just one node n of the graph. 
Suppose that the list of available sub-expressions at the entry of n is Lentry(n), and at the exit is Lexit(n). 
The goal is to compute Lexit(n) based on the values of Lentry(n) and on the own contributions of node n. 
Initially Lexit(n) takes the value of the Lentry(n). Then it is necessary to analyze, one by one, the sub-
expressions of n (starting on the first one), identifying the shape of the sub-expression. If it has the 
form ti = expr, it is necessary to test if expr already exists in Lexit(n); if true, then ti is appended to the 
list of temporary variables associated with expr; if false, then a new element, of the form ti(expr), is 



 

append to Lexit(n). If the sub-expressions has the form var = tj, it is necessary to remove all elements 
whose sub-expression contains one or more references to var. 
 
Notice that when a variable is defined (a value is assigned to it), its previous value will probably 
change; as consequence, all sub-expressions using that variable, that were available at this point of 
the program, are no longer valid. 
 
The description above can be formulated using equation 1, where the fexpr represents the 
contributions of the sub-expression expr. 

(expr)),((expr) exp entryrexit LfL =  where expr ∈ n (1) 

If we associate the Lentry(n) with the Lentry of the initial sub-expression of n, and Lexit(n) with the Lexit 
of the last sub-expression of n, then it is possible to compute directly Lexit(n) based on the Lentry(n), 
using the equation 2, where fn is the composition of the fexpr() of all sub-expressions of n, starting on 
the last one. 

)),(()( nLfnL entrynexit =  
firstlast rrn fff expexp ...oo=  (2) 

Now let us see how the analysis is done for the full graph. If n has only one predecessor, m, then 
Lentry(n) takes the value of Lexit(m). If n has more than one predecessor, then it is necessary to join the 
several Lexit of the predecessors of n to compute Lentry(n). This corresponds to assign to Lentry(n) the 
elements that are common to all Lexit of the predecessor nodes. It is possible to formulate this using 
equation 3, where Flow represents the edges between nodes. 
 
It is important to notice that the edges that belong to Flow have not to be the same ones that are used 
at the flow-graph; it depends on the direction of the analysis that can be forward, if is done following 
the same direction of the edges of the flow-graph, or backward if is done in the reverse direction. 

The symbol C represents the join operation that defines how to combine the lists L() that reach a 

node. 

C }),'(|)'({)( FlownnnLnL exitentry ∈=  (3) 

Equation 3 can be redefined into equation 4 in such way that it is possible to have a non-empty list, 
linitial,, at the entry of the initial block of the graph. 
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Now that we know how to compute the values for the nodes of the graph, it is still necessary to 
determine the order by which they should be processed. The solution that is proposed here is not the 
most efficient but the most versatile, which is essential for the subject of this paper: we suggest the 
use of an Iterative Data Flow Algorithm (IDFA), shown in Figure 4, that applies the equations, over 
and over, until no more changes occur at the lists associated with the nodes of the graph. The 
algorithm receives as input just one parameter, the flow-graph g, and returns as output a dictionary 
mapping nodes to lists of sub-expressions available at the entry of the nodes (the lists of sub-
expressions available at the exit of the nodes can be easily computed using equation 2). 



 

 
It is quite simple to generalize this DFA solution to solve similar problems (Dwyer, 1995; Knoop, 
Ruthing and Steffen, 1994). The algorithmic solution is the same one and the equations 1, 2, 3 and 4 
are still valid. Essentially, it is only necessary to redefine the type of data structure that should be 
associated with the nodes, the functions associated with the sub-expression (fexpr( )), and the join 
operator. 
 

Procedure IDFA( g : FlowGraph) : Dictionary(Node,List) 
n, n' : Nodes 
joinresult : List 
Worklist : Set(Node) 
Lentry, lexit : Dictionary(Node,List) 
Begin 
 Lentry(g.InitialBlock ) = linitial 
 Worklist := g.Nodes - g.InitialBlock 

 For each n ∈ g.Nodes do 
  Lentry(n) := <> 

 While Worklist ≠ ∅ 
  n := first(Worklist) 
  Worklist -= {n} 
  joinresult := <> 

  For each n' ∈ Predecessor(n) do 
   lexit(n') := fn'(Lentry(n')) 

   joinresult ∪ = lexit(n') 

  If Lentry(n) ≠ joinresult then 
   Lentry(n) := joinresult 

   Worklist ∪ = {n} 
 return Lentry 
End 

Figure 4 - The Iterative DFA Algorithm. 

3 Applying DFA to another problems 

This section is intended to demonstrate our proposal of extending the Data Flow Analysis to solve 
problems in areas not directly related to compilation. The first part of the section characterizes the set 
of processes to which we can apply the approach; the second part discusses two possible applications. 
 
The processes, for which we forecast a possible application of the DFA, can be characterized as 
follows: 

• They are quite big and hardly analyzed by hand; 

• They can be modeled by a finite flow-graph, where the vertices represent the entities that operate 
the information under analysis, and the edges describe the information flow between operations; 

• The information that is analyzed by the DFA should be flow-sensitive; 

• It should be possible to define an algebraic data structure to represent the information, which 
form a complete lattice (see Appendix A); 



 

• It should exist a finite set of functions that describe how the entities affect the information. These 
functions are designated by "transfer functions" and should be monotone (see Appendix A); 

• It should be possible to define the identity function (the one that has not any effects over the 
information). 

Figure 5 shows a flow-graph describing a generic industrial process complying with the 
characteristics above. The two DFA application examples that will be discussed in the rest of the 
section are both based on that model. 
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Figure 5 - A generic industrial process. 

The original node Factory X was split into two new nodes Factory X1 and Factory X2, because it had 
two different outputs and in our model each node should have always the same exit value. To satisfy 
the formal aspects of the DFA technique, it is also necessary to introduce two extra nodes: the Initial 

Node and the End Node (see Appendix A). 

3.1 Example 1 

In the first case, we want to determine the resources that are present at each point of the process. This 
can be done using a set associated with the entry and the exit of each node, respectively Resentry and 
Resexit. The entry value for the Initial Node is the empty set, and the exit value for the End Node is 
the set with all resources available (it is expected that all resources are used by this industrial 
transformation). The analysis will follow the same direction of the flow of the process (forward 
direction). 
 
As stated by equation 1, Resexit(n) is obtained applying the transfer function of n to the Resentry(n). 
Equation 5, below, defines the transfer function; in that case, its argument is the node itself, and not 
the set of the available resources at the entry of the node. So, equation 1 can be rewritten as the 
equation 6 bellow. 
 
Resentry is obtained applying the join operator to the sets of resources available at the exit point of the 
incoming edges. The join operation is the union of the resources provided by the predecessors of the 
node, as shown in equation 7. 
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3.2 Example 2 

The goal of the second case is to determine, at each point of the process, the cost of one production 
unit. One solution is to solve the problem by a conventional equation system, but it is also possible to 
use the DFA solution, even being a little more complex. Notice that in the DFA formulation, it is 
needed to represent the information at the entry of the node using just one data structure. This 
corresponds to have available the cost of each production unit at the entry of the node and not at 
correspondent input edges. So, it is necessary a data structure to hold information like: at the entry of 
node X2 we have B at 50$/unit, and the output product of node Y at costy/unit. This can be done by 
using a dictionary mapping products to cost/unit1, which will be represented as Costsentry and is 
computed applying an equation similar to 7, where the join operator is the union of the dictionaries 
of the predecessor nodes. 
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1 Since each node as only one output product, this one keeps the designation of the node. 



 

At the exit of each node exists only one product (except for the Initial and End nodes). As 
consequence, the dictionary (Costexit) has only one element; for instance, the exit dictionary 

associated with node X2 contains only the value (X2, 
2XCost ). The value of 

2XCost  is the result of 

applying the equation that quantifies the resources need to produce one unit of X2 (2*B+Y), plus the 
cost of production of node X2 (75/Unit). This operation is defined by the transfer function of the 
equation 8. 

4 Conclusion 

This is the first of a set of papers that we intend to publish about the adaptation of the code analysis 

and optimization techniques, implemented by most of the compilers, to solve different planning and 
management problems appearing in industrial, economical, governmental and information systems. 
 
As explained along the paper, DFA is intensively applied at the development of compilers to support 
the code optimizations techniques. We believe that this kind of analysis can be used to solve many 
other problems with good results, and also that these problems probably are solved using other 
solutions that might be interesting for compiler developers. 
 
At this point, some people may ask: why another solution that is much more complex than those 
already available and maybe not so efficient? We believe this solution has some advantages: 

• The DFA solution is quite uniform and is easily adaptable; 

• This approach can deal quite well with abstract information (not only with quantifiers); 

• The solution works independently of the flow-graph topology, which means that it is not 
necessary a specific DFA for each problem, but only one for each class of problems (that 
determines the same type of information, using the same transfer function and the same join 
operator); 

• Using the structural analysis resolution, instead of the IDFA algorithm of Figure 4, it is possible 
to modify the flow-graph and obtain the DFA results without have to compute all values again. 

The focus of this paper is the Data Flow Analysis, but we have also in mind the idea of explore other 
compiler techniques - more elaborated forms of DFA (like the Alias Analysis), the Dependency 
Analysis (used for instruction scheduling), and Control Flow Analysis. We also expect to find out a 
better set of case studies (we are looking for new ones) to demonstrate the potential of this 
technology. Then, the next step will be the development of a tool/framework (Tjiang, 1993) to help 
the construction of the analysis and optimizations routines. This will be done based on a description 
of some characteristics of the problem - like the specification of the join operation or the definition 
of the transfer functions - and not on the description of the concrete problems. 
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Appendix A 

The DFA uses an algebraic structure, the complete lattice, to represent abstract proprieties of the 
variables, expressions or any other program constructor. The complete lattice is a special case of a 

partially ordered set, represented as (L, ⊑), where: 

• L is the set of values; 

• ⊑ is the partial ordering relation2 ⊑:L x L�{true, false}, that is: 

o reflexive (i.e. ∀ l : l ⊑ l), 

o transitive (i.e. ∀ l1, l2, l3 : l1 ⊑ l2 ∧ l2 ⊑ l3 ⇒ l1 ⊑ l3), 

o and anti-symmetric (i.e. ∀ l1, l2 : l1 ⊑ l2 ∧ l2 ⊑ l1 ⇒ l1 = l2). 

To explain what a complete lattice is, it is necessary to define some more concepts. So, let L be a 
partially ordered set and Y a non empty subset of L, then: 

• l ∈ L is a upper bound of Y if ∀ l' ∈ Y: l' ⊑ l; 

• l ∈ L is a lower bound of Y if ∀ l' ∈ Y: l ⊑ l'; 

• l ∈ L is Least Upper Bound (LUB) of Y, if l is a upper bound of Y and l ⊑ l0, whenever l0 is any 

other upper bound of Y; 

• l ∈ L is Greatest Lower Bound (GLB) of Y, if l is a lower bound of Y and l0 ⊑ l, whenever l0 is 

any other lower bound of Y. 

It is not binding that Y has a LUB or a GLB, but when they exist they are unique and are denoted, 

respectively, as ∐Y and ∏Y. The ∐Y and the ∏Y are, respectively, the join and meet operators, which 

satisfy the next proprieties: 

• Closure : ∀ x, y ∈ L, there is a unique z and w ∈ L, such that x ∏ y = z ∧ x ∐ y = w; 

• Commutativity : ∀ x, y ∈ L, x ∏ y = y ∏ x ∧ x ∐ y = y ∐ x; 

• Associativity : ∀ x, y, z ∈ L, (x ∏ y) ∏ z = x ∏ ( y ∏ z) ∧ (x ∐ y) ∐ z = x ∐ ( y ∐ z). 

A lattice is a partially ordered set (L, ⊑) where the operators ∐ and ∏ are always defined. A lattice is 

fully represented by the tuple L = (L, ⊑, ∐, ∏). A complete lattice is a lattice for which all non empty 

subset Y of L, have a LUB and GLB. As consequence a complete lattice has: 

• A unique element ⊥ ∈ L, designate by bottom, such that ⊥ = ∐ ∅ = ∏ L; 

• And a unique element ⊺ ∈ L, designate by top, such that ⊺ = ∏ ∅ = ∐ L. 

The complete lattice can be represented by the tuple L = (L, ⊑,∐,∏,⊥,⊺). 

 

                                                 
2 It is considered a partial ordering relation in opposition to a total ordering relation where ∀ x, y ∈ L, x ⊑ y ∨ y ⊑ x. 



 

It is also important that the transfer functions used at the DFA satisfy the next conditions: 

• All transfer functions should be monotone: l ⊑ l' ⇒ fb(l) ⊑ fb(l'). This means that an increase of 

the knowledge on l produced by fb(l) must give raise to an increase of knowledge on l' (fb(l')); 

• The set of all transfer functions, represented by F, should contain the identity functions (for the 

blocks that have not effects over the lattice values); 

• The set F should be closed under the composition of functions. 


