

Data Flow Analysis applied to optimize generic workflow

problems

Paulo Jorge Matos
Departamento de Informática e Comunicações
Escola Superior de Tecnologia e de Gestão
Instituto Politécnico de Bragança
Campus de Santa Apolónia
5300 Bragança, Portugal
Mail: pmatos@ipb.pt
Phone: +351 273303082
Fax: +351 273313051

Pedro Rangel Henriques
Departamento de Informática
Universidade do Minho
Gualtar
4710 Braga, Portugal
Mail: prh@di.uminho.pt
Phone: +351 253604470
Fax: +351 253604471

Abstract.

The compiler process, the one that transforms a program in a high level language into assembly or
binary code, is a much elaborated process that mixes several powerful technologies, some of them
developed specifically for this area. Nowadays, compilers are highly developed systems that can
analyze and improve quite efficiently the source code, profiting from all the potential of the new
processor architectures. This paper introduces a common type of analysis - the Data Flow Analysis –
that is used to compute flow-sensitive information about programs, whose results are essential to
produce many code optimizations. It is also argued that the problem of analyzing the data flow in
software programs has many similarities with the problems found in industrial engineering; planning
and management. As consequence, it is possible to apply analysis and optimization techniques used
by compilers in these areas.

Keywords: Data Flow Analysis, flowgraphs, techniques for industrial engineering.

1 Introduction

The main goal of a compiler is to identify the operations described in some high-level programming
language (the source or input, language) - like Fortran, Pascal, C/C++, ML, etc - and convert them
into a list of assembly or binary instructions (the target, or output, code) executable by the chosen
processor (Pentium, PowerPc, Sparc, ...). This translation must be done without losing the program
semantics, which means that the output code must do exactly what is described by the source code.

The theoretical development in computer sciences, namely in the area of (formal) programming
methods, has increased the distance between the source languages and the machine code languages.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153403872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The languages have evolved, and nowadays they are more abstract, syntactically more complex,
semantically more powerful, supporting programming paradigms that are quite different from the
one that is actually available at the processors level (corresponding to the imperative style of the
assembly or machine languages). This evolution requires, from the compiler developers, more
powerful solutions that, by one side, solve efficiently the new syntactic and semantic problems and,
by the other side, obtain the total gain of the evolution occurred at the processors architecture,
generating optimal code (as shorter and faster as possible).

The first tasks executed by a compiler are concerned with the analysis of the source language (lexical,
syntactic and semantic), in order to recognize the meaning of the program; this phase inevitably
produces an intermediate representation of the program that is more or less similar to the output code.
At this intermediate level, the program is submitted to several optimizations to improve the output
code quality. The subject of this paper is to show how some technical solutions used at this level of
the compilation process, namely the Data Flow Analysis – DFA – (Kam and Ullman, 1976;
Muchnick, 1997; Nielson et al., 1999; Hecht, 1977) and the respective code optimizations, can be
adapted to solve problems of other areas. This type of analysis does not produce any kind of
transformation over the source program, but is responsible for collecting information, essential to
some optimization strategies.

Figure 1 shows the use of a compiler, emphasizing its internal phases. The Program Developer is the
person that writes the Source Program and submits it to the Compiler to obtain the Output Program
(executable file). So, the function of the compiler is to recognize the source program (a sequence of
characters that obey to the grammar rules of the source language), and then generate the output code.
The interpretation is done by the lexical, syntactic and semantic analyzers, which form the front-end
(FE) of the compiler (the FE groups the components that are dependent of the source language); the
code generation consists essentially of two processes - the register allocation and the instruction
selection - that constitutes the back-end (BE) of the compiler (the BE gathers the components that are
dependent of the computer architecture).

Program

Developer

Source

Program
(C, Pascal,

Fortran, ...)

Compiler

Developer

Compiler

Output Program
(Assembly/Machine

Code)

Input
(Data, signals, ...)

Output
(Data, signals, ...)

Front-End

Analysis

Optimizations

Back-End

Figure 1 - Compiling and developing processes.

It is also normal to have a middle-part that contains all components that are independent of the
characteristics of the source language and the computer architecture (which turn easier their reuse

when developing new compilers). The components commonly implemented at the middle-part are
the several types of flow analysis (data or code), and many code optimization routines.

In this paper, we are mainly concerned with Data Flow Analysis, whose goal is to obtain information
about the use of variables and values, that are sensitive to the execution flow of the program. To
implement this analysis, the information is typically represented as a flow-graph, where the edges
correspond to the execution flow of the program, and the vertices to the operations that directly or
indirectly manipulate variables and values.

Notice that any imperative source language contains the necessary elements to build easily this type
of representation:

• The flow-graph is directly extracted from the control structures of the language (sequential,
conditional and loop statements);

• The operations that produced and manipulated data are well-defined (load/store, read/write,
arithmetic, logical, …).

But the DFA is not restricted to imperative languages, since the compilation process can produce the
same imperative intermediate representation even from languages of other programming paradigms.

The next section shows an example of code optimization that requires the execution of data flow
analysis. It is demonstrated the benefits of this kind of optimization; explained how this analysis can
be implemented and how the solution can be generalized for any type of information. In section three,
it is demonstrated that the elements used for code representation, specially at the intermediate and
low levels, have some similarities with the ones that are required for the representation of
engineering and management problems. It is also explained how the approach followed in
compilation can be applied to solve these problems. The last section presents the conclusions and
describes the future work.

It is important to notice that the examples used along the paper are purposely small, very simple and
do not require special knowledge about compilation or even about programming languages. The
objective is to facilitate the understanding of the subject; however this does not mean that the real
examples are so easy like these or that the code optimizations are limited to these transformations.

2 Data Flow Analysis

As was already told, Data Flow Analysis is responsible for collecting information about definition
and use of variables and values (data handling) along a given source program; that information is
then used by the optimization routines to minimize the code length or make its execution faster. To
explain how this is done and why this type of analysis is necessary, we will present one example
where the Common Sub-Expressions Elimination technique is applied. This optimization identifies
and removes expressions that are duplicated in the source program.

The first example, shown in Figure 2(a), is a short fragment of a C program where the same sub-
expression, i+1, is computed several times (op2, op3, op4, op5, op7,op8).

Unnecessary computations can be avoided if every time that the same sub-expression appears,
computing exactly the same value, is replaced by a variable holding that value obtained the first time
that the sub-expression was evaluated.

Applying the Common Sub-Expressions Elimination strategy to the program of Figure 2(a), we
obtain the program of Figure 2(b). Notice that the occurrence op5 of the sub-expression i+1 is not
replaced, because at this position the value of the variable i was already changed (by the operation
op4). The same happens with its occurrence at op8, but now because the sub-expression may have
different values depending on the actual execution path (it has a direct influence in the value of
variable i when it reaches operation op8). As the compiler can not change the semantics of the source
program, a sub-expression should only be replaced when it is possible to determine that such
operation is safe.

op1 … op1 …
op2 a = i + 1; op2 a = i + 1;
op3 if(i+1>0){ op3 if(a>0){
op4 i = i + 1; op4 i = a;
op5 b = i +1; op5 b = i + 1
op6 }else op6 } else
op7 b = 2*(i+1); op7 b = 2 * a;
op8 c = (i+1)/2; op8 c = (i+1)/2;
op9 … op9 …

(a) Code before the optimization. (b) Code after the optimization

Figure 2 - The Common Sub-Expression Elimination optimization.

The optimization illustrated in the example above (Figure 2) dependents on the control of the
program flow, which means that the optimization routine must consider the several paths that may
occur during the execution of the program. The DFA comes to scene just to solve this problem,
feeding the system with information concerned with the computation and propagation of values.
Moreover, the DFA (that is the generic name of this type of analysis) is intended to work over the
intermediate representation in order to keep the algorithms independent of the source language. In
the present case, Common Sub-Expression Elimination technique, the Reaching Definition Analysis
is used to know which sub-expressions are available at each position of the program.

Figure 3(a) shows a graphical representation, the Control Flow Graph (CFG), of the program of
Figure 2(a), with more detailed information. Each expression inside a program block is decomposed,
independently from the others, into elementary operations (including operands), and the result of
each one is hold by a temporary variable (ti). The list with all the available sub-expressions, so far
obtained, is associated with the start and the end of each block (vertex of the graph). Each element of
this list contains a list of temporary variables (one or more) and, between parentheses, the respective
sub-expression, according to the following rules:

List_element � List_Temp_Variables ‘(‘ Sub-Expression ‘)’

List_Temp_Variables � Temp_Variable | List_Temp_Variables ‘,’ Temp_Variable

It is assumed that the start list of the initial block is empty.

Figure 3(b) shows the effects of the Common Sub-Expression Elimination strategy using the
information provided by the analysis. For the moment, the important is to observe that in fact this
optimization (as consequence of the DFA performed) improved significantly the quality of the output
code.

 t
8

= 1

 t
9

= i

 t
10

= t
9
+t

8

 i = t
10

 t
14

= 1

 t
15

= i

 t
16

= t
15

+t
14

 t
17

= 2

 t
18

= t
17

*t
16

 b = t
18

 t
0

= 1

 t
1

= i

 t
2

= t
1
 + t

0

 a = t
2

 t
19

= 1

 t
20

= i

 t
21

= t
20

+t
19

 t
22

= 2

 t
23

= t
21

/t
22

 c = t
23

 ...

 t
11

= 1

 t
12

= i

 t
13

= t
12

+t
11

 b = t
13

...

t
0
(1)

t
1
(i)

t
2
(i+1)

 t
3

= 1

 t
4

= i

 t
5

= t
4
+t

3

 t
6

= 0

 t
7

= t
5
>t

6

 t
7

t
0
,t

3
,t

8
(1)

t
6
(0)

t
0
,t

3
(1)

t
1
,t

4
(i)

t
2
,t

5
(i+1)

t
6
(0)

t
7
(i+1>0)

t
0
,t

3
,t

8
,t

11
(1)

t
6
(0)

t
12

(i)

t
13

(i+1)

t
0
,t

3
,t

14
(1)

t
1
,t

4
,t

15
(i)

t
2
,t

5
,t

16
(i+1)

t
6
(0)

t
7
(i+1>0)

t
17

(2)

t
18

(2*(i+1))

t
0
,t

3
(1)

t
6
(0)

t
0
,t

3
,t

19
(1)

t
6
(0)

t
20

(i)

t
21

(i+1)

t
22

(2)

t
23

((i+1)/2)

t
0
,t

3
(1)

t
1
,t

4
(i)

t
2
,t

5
(i+1)

t
6
(0)

t
7
(i+1>0)

 i = t
2

 t
17

= 2

 t
18

= t
17

*t
2

 b = t
18

 t
0

= 1

 t
1

= i

 t
2

= t
1
 + t

0

 a = t
2

 t
20

= i

 t
21

= t
20

+t
0

 t
22

= 2

 t
23

= t
21

/t
22

 c = t
23

 ...

 t
12

= i

 t
13

= t
12

+t
0

 b = t
13

...

t
0
(1)

t
1
(i)

t
2
(i+1)

t
6

= 0

t
7

= t
2
>t

6

 t
7

t
0
(1)

t
6
(0)

t
0
(1)

t
1
(i)

t
2
(i+1)

t
6
(0)

t
7
(i+1>0)

t
0
(1)

t
6
(0)

t
12

(i)

t
13

(i+1)

t
0
(1)

t
1
(i)

t
2
(i+1)

t
6
(0)

t
7
(i+1>0)

t
17

(2)

t
18

(2*(i+1))

t
0
(1)

t
6
(0)

t
0
(1)

t
6
(0)

t
20

(i)

t
21

(i+1)

t
22

(2)

t
23

((i+1)/2)

t
0
(1)

t
1
(i)

t
2
(i+1)

t
6
(0)

t
7
(i+1>0)

(a) CFG before the optimization. (b) CFG after the optimization.

Figure 3 - A CFG with the result of Reaching Definition Analysis.

Now we describe in detail how the analysis is done, considering just one node n of the graph.
Suppose that the list of available sub-expressions at the entry of n is Lentry(n), and at the exit is Lexit(n).
The goal is to compute Lexit(n) based on the values of Lentry(n) and on the own contributions of node n.
Initially Lexit(n) takes the value of the Lentry(n). Then it is necessary to analyze, one by one, the sub-
expressions of n (starting on the first one), identifying the shape of the sub-expression. If it has the
form ti = expr, it is necessary to test if expr already exists in Lexit(n); if true, then ti is appended to the
list of temporary variables associated with expr; if false, then a new element, of the form ti(expr), is

append to Lexit(n). If the sub-expressions has the form var = tj, it is necessary to remove all elements
whose sub-expression contains one or more references to var.

Notice that when a variable is defined (a value is assigned to it), its previous value will probably
change; as consequence, all sub-expressions using that variable, that were available at this point of
the program, are no longer valid.

The description above can be formulated using equation 1, where the fexpr represents the
contributions of the sub-expression expr.

(expr)),((expr) exp entryrexit LfL = where expr ∈ n (1)

If we associate the Lentry(n) with the Lentry of the initial sub-expression of n, and Lexit(n) with the Lexit
of the last sub-expression of n, then it is possible to compute directly Lexit(n) based on the Lentry(n),
using the equation 2, where fn is the composition of the fexpr() of all sub-expressions of n, starting on
the last one.

)),(()(nLfnL entrynexit =
firstlast rrn fff expexp ...oo= (2)

Now let us see how the analysis is done for the full graph. If n has only one predecessor, m, then
Lentry(n) takes the value of Lexit(m). If n has more than one predecessor, then it is necessary to join the
several Lexit of the predecessors of n to compute Lentry(n). This corresponds to assign to Lentry(n) the
elements that are common to all Lexit of the predecessor nodes. It is possible to formulate this using
equation 3, where Flow represents the edges between nodes.

It is important to notice that the edges that belong to Flow have not to be the same ones that are used
at the flow-graph; it depends on the direction of the analysis that can be forward, if is done following
the same direction of the edges of the flow-graph, or backward if is done in the reverse direction.

The symbol C represents the join operation that defines how to combine the lists L() that reach a

node.

C }),'(|)'({)(FlownnnLnL exitentry ∈= (3)

Equation 3 can be redefined into equation 4 in such way that it is possible to have a non-empty list,
linitial,, at the entry of the initial block of the graph.





∈

∈
=

Otherwise}),'(|)'({L

)(

exitC Flownnn

desInitial Nonl
nL

initial

entry (4)

Now that we know how to compute the values for the nodes of the graph, it is still necessary to
determine the order by which they should be processed. The solution that is proposed here is not the
most efficient but the most versatile, which is essential for the subject of this paper: we suggest the
use of an Iterative Data Flow Algorithm (IDFA), shown in Figure 4, that applies the equations, over
and over, until no more changes occur at the lists associated with the nodes of the graph. The
algorithm receives as input just one parameter, the flow-graph g, and returns as output a dictionary
mapping nodes to lists of sub-expressions available at the entry of the nodes (the lists of sub-
expressions available at the exit of the nodes can be easily computed using equation 2).

It is quite simple to generalize this DFA solution to solve similar problems (Dwyer, 1995; Knoop,
Ruthing and Steffen, 1994). The algorithmic solution is the same one and the equations 1, 2, 3 and 4
are still valid. Essentially, it is only necessary to redefine the type of data structure that should be
associated with the nodes, the functions associated with the sub-expression (fexpr()), and the join
operator.

Procedure IDFA(g : FlowGraph) : Dictionary(Node,List)
n, n' : Nodes
joinresult : List
Worklist : Set(Node)
Lentry, lexit : Dictionary(Node,List)
Begin
 Lentry(g.InitialBlock) = linitial
 Worklist := g.Nodes - g.InitialBlock

 For each n ∈ g.Nodes do
 Lentry(n) := <>

 While Worklist ≠ ∅
 n := first(Worklist)
 Worklist -= {n}
 joinresult := <>

 For each n' ∈ Predecessor(n) do
 lexit(n') := fn'(Lentry(n'))

 joinresult ∪ = lexit(n')

 If Lentry(n) ≠ joinresult then
 Lentry(n) := joinresult

 Worklist ∪ = {n}
 return Lentry
End

Figure 4 - The Iterative DFA Algorithm.

3 Applying DFA to another problems

This section is intended to demonstrate our proposal of extending the Data Flow Analysis to solve
problems in areas not directly related to compilation. The first part of the section characterizes the set
of processes to which we can apply the approach; the second part discusses two possible applications.

The processes, for which we forecast a possible application of the DFA, can be characterized as
follows:

• They are quite big and hardly analyzed by hand;

• They can be modeled by a finite flow-graph, where the vertices represent the entities that operate
the information under analysis, and the edges describe the information flow between operations;

• The information that is analyzed by the DFA should be flow-sensitive;

• It should be possible to define an algebraic data structure to represent the information, which
form a complete lattice (see Appendix A);

• It should exist a finite set of functions that describe how the entities affect the information. These
functions are designated by "transfer functions" and should be monotone (see Appendix A);

• It should be possible to define the identity function (the one that has not any effects over the
information).

Figure 5 shows a flow-graph describing a generic industrial process complying with the
characteristics above. The two DFA application examples that will be discussed in the rest of the
section are both based on that model.

Factory

W
Resource

A

Resource

B

Resource

C

Factory

X
2

Factory

Y

Factory

Z

Product
1

Product
2

2*A+X
1

2*B

(€200/Unit)

2*B+Y

(€75/Unit)

2*C

(€10/Unit)

(€50/Unit)

(€20/Unit) 2*C

(€20/Unit)

(€20/Unit)

(€20/Unit)

Resource

D

Initial

Node

End

Node

(€50/Unit)

X
2
+Y+D

(€25/Unit)

Factory

X
1

X

Figure 5 - A generic industrial process.

The original node Factory X was split into two new nodes Factory X1 and Factory X2, because it had
two different outputs and in our model each node should have always the same exit value. To satisfy
the formal aspects of the DFA technique, it is also necessary to introduce two extra nodes: the Initial

Node and the End Node (see Appendix A).

3.1 Example 1

In the first case, we want to determine the resources that are present at each point of the process. This
can be done using a set associated with the entry and the exit of each node, respectively Resentry and
Resexit. The entry value for the Initial Node is the empty set, and the exit value for the End Node is
the set with all resources available (it is expected that all resources are used by this industrial
transformation). The analysis will follow the same direction of the flow of the process (forward
direction).

As stated by equation 1, Resexit(n) is obtained applying the transfer function of n to the Resentry(n).
Equation 5, below, defines the transfer function; in that case, its argument is the node itself, and not
the set of the available resources at the entry of the node. So, equation 1 can be rewritten as the
equation 6 bellow.

Resentry is obtained applying the join operator to the sets of resources available at the exit point of the
incoming edges. The join operation is the union of the resources provided by the predecessors of the
node, as shown in equation 7.
















=

=

=

=

∈∅

=

otherwise)(

)(

nRes

DnD

CnC

BnB

AnA

desInitial Non

nf

entry

transfer (5)

)()(nfnRes transferexit = (6)





∈

∈∅
=

otherwiseFlownnn

desInitial Non
n

exit

entry

C }),'(|)'({Res
)(Res (7)

3.2 Example 2

The goal of the second case is to determine, at each point of the process, the cost of one production
unit. One solution is to solve the problem by a conventional equation system, but it is also possible to
use the DFA solution, even being a little more complex. Notice that in the DFA formulation, it is
needed to represent the information at the entry of the node using just one data structure. This
corresponds to have available the cost of each production unit at the entry of the node and not at
correspondent input edges. So, it is necessary a data structure to hold information like: at the entry of
node X2 we have B at 50$/unit, and the output product of node Y at costy/unit. This can be done by
using a dictionary mapping products to cost/unit1, which will be represented as Costsentry and is
computed applying an equation similar to 7, where the join operator is the union of the dictionaries
of the predecessor nodes.



























=+

=

=

=+++

=+

=++

=+

=++

=

=

=

=

∈∅

=

End NodenProductProductEnd Node

ProductnWProduct

ProductnZProduct

ZnDYXZ

YnCY

XnYBX

XnBX

WnXAW

DnD

CnC

BnB

AnA

desInitial Non

nf

2

1

transfer

),(

),(

),(

)25,(

)20*2,(

)75*2,(

)50*2,(

)200*2,(

)20,(

)20,(

)50,(

)10,(

)(

21

2

1

2

22

11

1

 (8)

1 Since each node as only one output product, this one keeps the designation of the node.

At the exit of each node exists only one product (except for the Initial and End nodes). As
consequence, the dictionary (Costexit) has only one element; for instance, the exit dictionary

associated with node X2 contains only the value (X2,
2XCost). The value of

2XCost is the result of

applying the equation that quantifies the resources need to produce one unit of X2 (2*B+Y), plus the
cost of production of node X2 (75/Unit). This operation is defined by the transfer function of the
equation 8.

4 Conclusion

This is the first of a set of papers that we intend to publish about the adaptation of the code analysis

and optimization techniques, implemented by most of the compilers, to solve different planning and
management problems appearing in industrial, economical, governmental and information systems.

As explained along the paper, DFA is intensively applied at the development of compilers to support
the code optimizations techniques. We believe that this kind of analysis can be used to solve many
other problems with good results, and also that these problems probably are solved using other
solutions that might be interesting for compiler developers.

At this point, some people may ask: why another solution that is much more complex than those
already available and maybe not so efficient? We believe this solution has some advantages:

• The DFA solution is quite uniform and is easily adaptable;

• This approach can deal quite well with abstract information (not only with quantifiers);

• The solution works independently of the flow-graph topology, which means that it is not
necessary a specific DFA for each problem, but only one for each class of problems (that
determines the same type of information, using the same transfer function and the same join
operator);

• Using the structural analysis resolution, instead of the IDFA algorithm of Figure 4, it is possible
to modify the flow-graph and obtain the DFA results without have to compute all values again.

The focus of this paper is the Data Flow Analysis, but we have also in mind the idea of explore other
compiler techniques - more elaborated forms of DFA (like the Alias Analysis), the Dependency
Analysis (used for instruction scheduling), and Control Flow Analysis. We also expect to find out a
better set of case studies (we are looking for new ones) to demonstrate the potential of this
technology. Then, the next step will be the development of a tool/framework (Tjiang, 1993) to help
the construction of the analysis and optimizations routines. This will be done based on a description
of some characteristics of the problem - like the specification of the join operation or the definition
of the transfer functions - and not on the description of the concrete problems.

References

Dwyer, M. (1995). Data Flow Analysis for Verifying Correctness Properties of Concurrent Programs.
PhD Thesis, Amherst, MA, USA.

Hecht, M. S. (1977). Flow analysis of computer programs. Elsevier North-Holland.

Kam, J. B. and Ullman, J. D. (1976). Global data flow analysis and iterative algorithms. Journal of
the ACM, vol. 21, nº 3, pp. 158-171.

Knoop, J., Ruthing, O. and Steffen, B. (1994). Optimal Code Motion: Theory and Practice. ACM
Transactions on Programming Languages and Systems, Vol. 16, 4, pp. 1117-1155.

Muchnick, S. (1997). Advanced Compiler Design and Implementation. Chapter 8, Morgan
Kaufmann Publishers; ISBN: 1558603204.

Nielson, F., Nielson, H. and Hankin, (1999). Principles of Program Analysis. Chapter 2, Springer
Verlag; ISBN: 3540654100.

Proctor, T. (1999). Creative Problem Solving for Managers, Routledge, London.

Tarjan , R. E. (1981). Fast algorithms for solving path problems. Journal of the Association for
Computing Machinery, Vol. 28, n. 3, pp. 594-614.

Tjiang, S. (1993). Automatic Generation of Data-flow Analyzers: A tool for building optimizers.
PhD Thesis, Stanford University, Computer Systems, Laboratory.

Appendix A

The DFA uses an algebraic structure, the complete lattice, to represent abstract proprieties of the
variables, expressions or any other program constructor. The complete lattice is a special case of a

partially ordered set, represented as (L, ⊑), where:

• L is the set of values;

• ⊑ is the partial ordering relation2 ⊑:L x L�{true, false}, that is:

o reflexive (i.e. ∀ l : l ⊑ l),

o transitive (i.e. ∀ l1, l2, l3 : l1 ⊑ l2 ∧ l2 ⊑ l3 ⇒ l1 ⊑ l3),

o and anti-symmetric (i.e. ∀ l1, l2 : l1 ⊑ l2 ∧ l2 ⊑ l1 ⇒ l1 = l2).

To explain what a complete lattice is, it is necessary to define some more concepts. So, let L be a
partially ordered set and Y a non empty subset of L, then:

• l ∈ L is a upper bound of Y if ∀ l' ∈ Y: l' ⊑ l;

• l ∈ L is a lower bound of Y if ∀ l' ∈ Y: l ⊑ l';

• l ∈ L is Least Upper Bound (LUB) of Y, if l is a upper bound of Y and l ⊑ l0, whenever l0 is any

other upper bound of Y;

• l ∈ L is Greatest Lower Bound (GLB) of Y, if l is a lower bound of Y and l0 ⊑ l, whenever l0 is

any other lower bound of Y.

It is not binding that Y has a LUB or a GLB, but when they exist they are unique and are denoted,

respectively, as ∐Y and ∏Y. The ∐Y and the ∏Y are, respectively, the join and meet operators, which

satisfy the next proprieties:

• Closure : ∀ x, y ∈ L, there is a unique z and w ∈ L, such that x ∏ y = z ∧ x ∐ y = w;

• Commutativity : ∀ x, y ∈ L, x ∏ y = y ∏ x ∧ x ∐ y = y ∐ x;

• Associativity : ∀ x, y, z ∈ L, (x ∏ y) ∏ z = x ∏ (y ∏ z) ∧ (x ∐ y) ∐ z = x ∐ (y ∐ z).

A lattice is a partially ordered set (L, ⊑) where the operators ∐ and ∏ are always defined. A lattice is

fully represented by the tuple L = (L, ⊑, ∐, ∏). A complete lattice is a lattice for which all non empty

subset Y of L, have a LUB and GLB. As consequence a complete lattice has:

• A unique element ⊥ ∈ L, designate by bottom, such that ⊥ = ∐ ∅ = ∏ L;

• And a unique element ⊺ ∈ L, designate by top, such that ⊺ = ∏ ∅ = ∐ L.

The complete lattice can be represented by the tuple L = (L, ⊑,∐,∏,⊥,⊺).

2 It is considered a partial ordering relation in opposition to a total ordering relation where ∀ x, y ∈ L, x ⊑ y ∨ y ⊑ x.

It is also important that the transfer functions used at the DFA satisfy the next conditions:

• All transfer functions should be monotone: l ⊑ l' ⇒ fb(l) ⊑ fb(l'). This means that an increase of

the knowledge on l produced by fb(l) must give raise to an increase of knowledge on l' (fb(l'));

• The set of all transfer functions, represented by F, should contain the identity functions (for the

blocks that have not effects over the lattice values);

• The set F should be closed under the composition of functions.

