
CHESS ROBOT SYSTEM: A
MULTI-DISCIPLINARY EXPERIENCE IN

AUTOMATION

José Gonçalves, José Lima, Paulo Leitão

Instituto Politécnico de Bragança, Departamento de
Electrotecnia, Quinta de Sta Apolónia 1134, 5301-857

Bragança, Portugal
{goncalves,jllima,pleitao}@ipb.pt

Abstract: This paper describes a chess robot system that allows remote users
to play chess, using a six axes anthropomorphic robot to move chess pieces in
the chessboard on getting commands from the player and from the application
chess engine. This experience allowed applying the concept of ’learning by doing’,
involving the integration of multi-disciplinary skills and teams.

Keywords: Robotics, Vision, Remote Control, Industrial Automation, Education

1. INTRODUCTION

The automation laboratory of the Escola Supe-
rior de Tecnologia e Gestão, from the Instituto
Politécnico de Bragança, possess a set of industrial
automation systems and technologies, aiming the
apprehension, learning and training of skills in the
automation scientific domain, both included in re-
search activities and in the curricula of Electrical
Engineering, Mechanical Engineering, Computer
Engineering and Industrial Engineering courses.

One of the available automation systems in the
laboratory is an industrial anthropomorphic robot
ABB IRB 1400. Industrial robots allow executing
repetitive operations normally performed by hu-
man operators. The word robot is derived from
a satiric theater play, written by Karel Capek
in 1921, who used it to designate labour force.
The introduction of robots allows to increase the
productivity (with no interruptions, absenteeism,
etc.) and to increase the robustness, speed and
resistence to hostile environments.

Aiming to demonstrate the potentialities of the
automation systems and technologies, namely
robotics and artificial vision, it was initiated an

internal project to develop a chess robot sys-
tem. This project allowed to run an experience
in automation education applying the concept of
’learning by doing’, involving the integration of
multi-disciplinary skills and teams.

Similar initiatives are reported in the literature,
such as Eric, a Chess playing Robot (Pires, 1999)
developed at Department of Mechanical Engineer-
ing of University of Coimbra, and ChessRobot.net
developed at Institute of Production Engineering
of Tampere University of Technology (Lobov et
al., 2004).

The chess robot system described in this pa-
per, and partially presented at the Robotics Por-
tuguese Open 2004 - Scientific Meeting (Sousa et
al., 2004), allows remote users to play chess (play-
ing with the white chess pieces). The chess robot
system uses the six axes anthropomorphic robot
ABB IRB 1400, which holds an electro-pneumatic
gripper with parallel fingers that pick and place
chess pieces. The robot is able to move chess pieces
in the chessboard on getting commands from the
player and from the application chess engine.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153403871?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The paper is organized as follows: initially, Sec-
tion 2 describes the system architecture. Section
3 describes the main hardware components and
Section 4 describes the software application, given
details about all modules included in the applica-
tion. Section 5 describes the validation mechanism
giving special attention to the vision system. At
the last, Section 6 rounds up the paper with con-
clusions and presents the future work.

2. SYSTEM ARCHITECTURE

The chess robot system comprises the following
main modules, as illustrated in the Figure 1: chess-
board, robot, software application and artificial
vision.

Virtual Chessboard

Player

robot interface
(RobComm OCX)

chess logic
control module

verification
module

chess
engine

DB

real
chessboard

UDP

robot interface
(RobComm OCX)

Fig. 1. Modules of the Chess Robot System

The software application, which acts as the brain
of the system, comprises the interface with the
player, the chess logic control module, the chess
engine, and the robot interface.

The virtual chessboard gives an easy interface
to the player, by displaying the chessboard of
the chess game. On the virtual chessboard, the
player drags and drops a white chess piece. The
command associated to this movement is delivered
to the chess logic control module that forwards it
to the chess engine that evaluates the move and if
the move is valid, the chess logic control module
calculates the robot parameters for the move, as
illustrated in the flowchart of the Figure 2.

Then the chess logic control module sends move-
ment commands to the robot, which reflects the
move requested by the player, or the move calcu-
lated by the system after the invocation of the
chess engine. The communication between the
control module and the industrial robot is per-
formed through the robot interface module.

Start the game

gets the move that the
player want to perform

sends the move to the
chess engine

correct
move?

executes the move in
the virtual chessboard

asks the robot to
execute the move in the

real chessboard

the verification module
asks the vision system if
the target position is free

sends a command to
execute physically the

the move

target
position is

free?

move
executed by
the robot?

asks the chess
engine to define the
next move of black

chess pieces

valid

invalid

free

not free requests external
help to remove piece

done?
yes

game
over? game over

yes

no

yes

next
play?

white chess
pieces

black chess
pieces

Fig. 2. Chess Robot System Algorithm

The integration of artificial vision in the chess
robot system allows to implement a validation
mechanism. Once the robot receives the move to
perform, the validation mechanism verifies if the
target position of the chess piece is free, asking
the vision system. In affirmative case, the verifi-
cation module gives authorization to the robot to
move the chess piece, through the robot interface
module.

3. HARDWARE ARCHITECTURE

The physical movements of the chess pieces within
the chessboard (and also the remotion of chess
pieces from the chessboard) are executed by an
anthropomorphic ABB IRB 1400 robot, as illus-
trated in the Figure 3. The robot is programmed
using RAPID language, which allows to program

and control the robot in a simple and friendly way.

Fig. 3. Robot Moving Chess Pieces

The robot program, running in continuous and
waiting for a command to execute a physical
move, can be saw as a sequence of movements in
the space passing through pre-defined positions
along a trajectory with a specific orientation,
velocity and acceleration.

Initially, the robot is putted in a safe position and
the gripper is opened, using respectively the func-
tions repouso() and abregarra(). The functions
to drag an drop pieces, follow a methodology that
is common in the industrial robotic programming,
defining a free zone where there are no limitations
in the type of movements and the velocity used
to perform those movements, and a conditioned
zone, near the chessboard, where the movements
must be linear and performed with conditioned
velocity.

The developed robot program is illustrated by
showing the code for the agarra() function that
allows the robot to pick a piece from one origin
position and for the larga() function that allows
the robot to place the piece in one destination
position.

PROC AGARRA()

MoveJ Offs(p30,regy1,-regx1,100),vmax,fine,tool0;

MoveL Offs(p30,regy1,-regx1,0),v100,fine,tool0;

fecha_garra;

MoveL Offs(p30,regy1,-regx1,100),vmax,fine,tool0;

ENDPROC

PROC LARGA()

MoveJ Offs(p30,regy2,-regx2,100),vmax,fine,tool0;

MoveL Offs(p30,regy2,-regx2,0),v100,fine,tool0;

abre_garra;

MoveL Offs(p30,regy2,-regx2,100),v5000,fine,tool0;

repouso;

ENDPROC

The robot program contains 6 registers that allows
to control the execution of the physical move-
ments:

• regx1 - coordinate x of the origin position of
the piece to move.

• regy1 - coordinate y of the origin position of
the piece to move.

• regx2 - coordinate x of the target position of
the piece to move.

• regy2 - coordinate y of the target position of
the piece to move.

• reg11 - indication of a move request.
• move - authorization to move a piece.

The indication of a request to execute a physical
move is given by the register reg11: if this register
has the value 1 it means that a new request is
arrived. If the robot is available, it begins the
procedures to execute the move.

Initially, and since all movements are made be-
tween the origin and the target positions, it should
know the coordinates of those positions. The value
of the coordinates for the two positions are de-
fined in the regx1, regy1, regx2 and regy2 reg-
isters. In the robot program these positions are
programmed using offsets in relation to one pre-
defined point of the chessboard.

The movement is only performed when the move
register is equal to 1, which means that the veri-
fication module had verified if the target position
is free, using the vision system, and gave autho-
rization for the movement.

4. SOFTWARE APPLICATION

The software application is responsible to build up
the system, comprising mainly the virtual chess-
board, the chess logic control module, the chess
engine, the verification module and the robot in-
terface. These components will be described in
this section.

4.1 Virtual Chessboard

The virtual chessboard is the graphical mod-
ule that allows the user to communicate with
the chess robot system. It reflects the state of
the game using a graphical representation of the
chessboard.

Instead of using an existing graphical interface,
for example the xboard (xboard, 2004) or the win-
board (Winboard, 2004), respectively for Unix and

Microsoft platforms, the graphical interface was
built from scratch, using the C++ programming
language (Stroustrup, 2000). The option to build
the graphical interface from scratch is sustained
by the need to obtain full control over the sys-
tem, allowing for example to wait that the robot
finishes the movement of a chess piece.

The graphical chessboard was developed using the
Qt toolkit (Trolltech, 2003), that allows develop-
ing graphical interfaces in a friendly way.

4.2 Chess Logic Control Module

The chess logic control module manages the flow
of information/requests between the virtual chess-
board, the chess engine and the robot interface.

The communication of this module and the virtual
chessboard and with the chess engine is imple-
mented using pipes (a point-to-point communi-
cation mechanism). The communication with the
robot interface is performed using Microsoft Foun-
dation Classes (MFC).

4.3 Chess Engine

In this work it was made the option to inte-
grate an available chess engine instead of devel-
oping one from the scratch, since the core of
this work is focused in the robotic and validation
systems. The chosen chess engine was GnuChess
(Gnuchess, 2004), which is an executable program
in text mode. This chess engine, available of pub-
lic domain (General Public License, 2004), runs
as a separated process, communicating with the
chess logic control module using anonymous pipes
(Johnson and Troan, 1998).

The chess engine starts two pipes, one for the stan-
dard input and another for the standard output.
The chess engine reads commands from the stan-
dard input and writes the answers in the standard
output.

The state of the game and other parameters are
controlled using commands that follow the xboard
protocol (Chess Engine Communication Protocol,
2004), often used in chess engines. The protocol
works in asynchronous mode, i.e. the entity that
sends the message continues its activity without
being blocked waiting for one answer.

In this work the most used command is the order
to move a chess piece using the coordinates in
algebraic notation. For example, the coordinate
a2a3 is a command to move from the position
a2 to the position a3. If the move is valid the
chess engine answers with the coordinates of the
movement of a black chess piece, for example with
d7d5.

The following example illustrates the direct access
and usage of the GnuChess chess engine:

gnuchess.exe -x
Chess
Adjusting HashSize to 1024 slots
a2a3
1. a2a3
1. ... d7d5
My move is: d7d5

In case that the movement request is invalid, the
chess engine doesn’t return the coordinate of the
next movement but the indication that the move
is invalid because it violates the game rules.

4.4 Verification Module

The main function of the verification module is to
authorize the robot to execute physically a piece
move, after to analyze if the target position of the
piece is free.

The verification module is cyclically reading the
reg11 parameter to know if there is a request to
move a chess piece. In affirmative case, it asks
the vision system about the state of the target
position. If the target position is empty, then it
gives authorization to the robot to move the chess
piece by writing the value 1 in the move register.

The verification module as developed using the
Delphi programming language. The communica-
tion between the verification module and the vi-
sion system is done through Ethernet using the
UDP (User Datagram Protocol) protocol, which
allows to distribute the image acquisition and the
processing mechanism from the other components
of the chess robot system.

4.5 Robot Interface

The communication between the computational
application and the industrial robot is essentially
used when:

• the computational application wants to give
to the robot the command to execute a chess
piece move;

• the computational application needs to give
to the robot the indication about the coordi-
nates of the origin and target positions;

• the verification module wants to give to the
robot the authorization to start the move-
ment.

• the computational application wants to know
the robot status.

The robot interface is built upon the RobComm
ActiveX provided by ABB (ABB, 1996). This
interface uses essentially the following primitives
to access the robot controller:

• The primitive S4ProgramNumVarWrite, that
allows to write to a register of the robot
program.

• The primitive S4ProgramNumVarRead, that
allows to read a register of the robot pro-
gram.

As an example, the request to move, in the real
chessboard, a chess piece from one position to an-
other, requires to use the S4ProgramNumVarWrite
to update the regx1, regy1, regx2, regy2 and
reg11 parameters. The x e y coordinate values
are calculated making the direct conversion of an
algebraic coordinate to integer values and then
multiplying them for a scale factor. This scale
factor corresponds to the size of each square of
the real chessboard.

5. VISION SYSTEM

The detection of chess pieces inside the chessboard
can be done using several approaches, such as
electrical capacitance, switches, or artificial vision.
The last one is easier to setup not only due to the
simplicity of hardware but also because it allows
to build a robust system. Otherwise, it would be
necessary to use 64 sensors as well as a complex
electric circuit, drawing on to failures.

In this work, the mechanism to detect pieces
in the chessboard is based in artificial vision
(see the screenshot of Figure 4). The developed
system comprises an USB web-cam placed above
the chessboard. The developed vision software
implements a positioning calibration allowing to
have a high degree of system flexibility in terms
of size and positioning of the chessboard, as well
as its distance to the camera. The calibration
of colours is also possible in order to change
the chessboard colours or pieces colours without
interference.

Fig. 4. Screenshot of the Vision System

In the next sections will be described the details
related to the implementation of the vision sys-

tem, namely the method of noise filtering sup-
ported by a Gaussian filter, and the positioning
and colour calibrations.

5.1 Noise Filtering

During the image acquisition, some random noise
is introduced by the acquisition system into the
real image. In order to filter it, a Gaussian filter
(Pratt, 1991) is implemented using a 2D convolu-
tion.

Basically, the convolution is a window H that is
scanned across the original image a. The output
pixel value is the weighted sum of the input pixels
within the window, where the weights are the
values of the filter assigned to each pixel of the
window itself. The window H with its weights is
called the convolution kernel. If the filter H[i, j] is
zero outside the rectangular window (i=0,1,...,I-1;
j=0,1,...,J-1), the convolution can be written as
the following finite sum:

Y (m,n) = a(m,n) ⊗ H(m,n) =

=
I−1∑
i=0

J−1∑
j=0

H(i, j) · a(m − i, n − j)

where Y is the resulting image and H is the
convolution kernel, given by:

H =

⎛
⎝ 1 1 1

1 1 1
1 1 1

⎞
⎠

Another form of noise is ”salt and pepper”. Here,
the noise is caused by error in the transmission.
The corrupted pixels are either set to the max-
imum value (which looks like snow) or to the
minimum value (which looks like black points).
A way to withdraw this noise is to use a median
filter. In this application, it was not necessary to
use the median filter since there was no ”salt and
pepper” noise.

5.2 Chessboard Direction and Orientation

The chessboard positioning must be calibrated by
the vision system in order to recognize exactly the
64 squares included in the chessboard. This po-
sitioning calibration could be dynamically found
out across an extra image processing but, since
the chessboard and the camera are motionless,
this must be done just once. So, the chessboard
corners must be introduced by the user clicking
in the corners image. The knowledge of corners
enables the system to calculate all square posi-
tions. This is true only if the barrel distortion lens
is despised and if the camera is placed paralleled

to the chessboard (Pratt, 1991). If not, an image
of the world map function must be created. The
angle of the chessboard, see Figure 5, is needed
for the calculation of the square coordinates.

Fig. 5. Chess Table Before the Rotation

A way to solve this problem is to rotate the all
image in order to have the chessboard boarders
in parallel to the image limits (i.e. β = 0o), as
shown in Figure 6. Another solution is keeping the
original image and the square positions affected by
this angle.

Fig. 6. Chess Table After the β Rotation

For the described chess robot system application
the first solution is better than the second one.
On the one hand, it is easier to implement and
more suitable for the user to understand it. On
the other hand, it is slower than the second one
and not appropriate for real-time applications.

The rotation referred above, through the β angle,
is applied to the (A′x,A′y) point, resulting in
the (Ax,Ay) point, as illustrated in the Figure 7,
applying the image rotation theory, (Pratt, 1991)
described by the following equation.(

X2

Y2

)
=

(
cos(β) − sin(β)
sin(β) cos(β)

) (
X1 − Ax

Y1 − Ay

)
+

(
Ax

Ay

)

where the (X2,Y2) values are the new coordinates
for the (X1,Y1) point.

The knowledge of A, B, C and D coordinates (the
four corners of the chessboard after the rotation)

A'

B'

C'

D'
D C

B

A

x

y

Fig. 7. Square Rotation

allows to find the edge coordinates for each square.

x

y

(0,0) m

n

Fig. 8. Chess Board Axes

Considering the Figure 8 that shows all the 64
squares of the chessboard, and that m,n ∈ [0..8],
the square coordinates are given by the following
equations:

Px(m) = Dx +
m × (Cx − Dx)

8

Py(n) = Dy +
n × (Ay − Dy)

8

where Px(m) is the X coordinate for the mth

square and Py(n) is the Y coordinate for the nth

square.

As result, all square positions are circumscribed
by yellow lines as illustrated in Figure 9.

Fig. 9. Square Positions

5.3 Colours Calibration

An essential component of a coloured vision sys-
tem is the colour classification and detection al-
gorithms for each pixel. Considering the 16777216
colours (256∗256∗256) that is possible to represent
with 8 bit for each component R, G and B, it
is possible to build a coloured cube defined from
(0, 0, 0) to (28R; 28G; 28B) with RGB components
in each vertex, as shown in the Figure 10.

Fig. 10. RGB Cube

Some main colour vectors are presented in the
following table:

RGB coordinates Point Colour
(255,0,0) R Red
(0,255,0) G Green
(0,0,255) B Blue

(0,255,255) C Cyan
(255,0,255) M Magenta
(255,555,0) Y Yellow

(255,255,255) W white

A cube edge represents 256 discrete and different
colour points and there are 16777216 different
coloured points inside the cube. It is necessary to
teach the system of the 2 visible colours in chess-
board that will be known as chessboard colours.
In practice, several cube points are fitted in one
chessboard colour. In short, calibration fits chess-
board colours and cube points (RGB combina-
tions). By this way, it is now possible to guess the
colour for each square as well as its probability. It
is necessary to calibrate the chess colours in the
setup of each game and after a lightning change.
This calibration can be saved in a file that keeps
all RGB combinations for each colour.

Lightning stability and camera control are very
important to this task (image processing). Lens
iris must be stilled; otherwise colours calibration
is lost. When the robot arm moves in front of the
camera, the images should not be observed and
the lens iris should be stilled too.

If the lightning changes frequently, an auto-iris
lens could be used (assuming that light wave
length is constant).

5.4 Decision System

The main objective of the vision system is to
detect if any chess piece is inside of a requested
square. This can be done applying the probabili-
ties theory. The available information to take the
decision is:

(1) The colour arrangement (left upper square
colour introduced by user).

(2) The square positions.
(3) The number of guessed pixels for each chess

colour for each square.

The square areas are scanned and for each one it
must be studied the colour of each pixel. A gap of
15%, as shown in the Figure 11, is not considered
in order to avoid errors.

�

��
��

x
y

yf-yi

xf-xi

Fig. 11. Square Areas Scan

In this case, δ = 0.15 × (xf − xi) and θ = 0, 15 ×
(yf−yi). Due to the camera resolution parameters
(different image width and height), the δ and θ
values are usually different.

The probability to have chess piece inside a square
can be found considering the square area and
the number of pixels guessed of the same colour
as the chess colour arrangement. Despising the
error introduced by the acquisition system, the
following expression shows the probability of piece
existence.

p(existingpiece) = 1− ColouredMatchedPoints

area

where:

area = (xf − xi) · (yf − yi)

As illustrated in the Figure 11, the decision about
the piece existence can be guessed through a
threshold probability value pre-defined by the
user. Low values of this threshold (like 0.1 up to
0, 4) are common because the number of affected
pixels when the piece exists is really lower than
area.

6. CONCLUSIONS AND FUTURE WORK

In this paper it was described the implementation
of a playful application that allows to demon-
strate the capabilities associated to robotic sys-
tems, but also the application of the concept of
’learning by doing’, involving the integration of
multi-disciplinary skills and teams. The objective
was to built a chess robot system that allows
remote users to play chess, using a six axes an-
thropomorphic robot, available at the automation
laboratory of the Polytechnic Institute of Bra-
gança, to move chess pieces in the chessboard on
getting commands from the player and from the
application chess engine.

An important issue associated to the chess robot
system is the vision system that allows to im-
plement a validation mechanism, avoiding that
the robot moves one chess piece to a position
not empty. Some problems and the implemented
solutions occurred during the implementation of
the vision systems were point out.

As future work, we intent to allow the remote ac-
cess to the chess robot system using the Internet.

REFERENCES

ABB (1996). RobComm User´s Guide. ABB Flex-
ible Automation inc.

Chess Engine Com-
munication Protocol (2004). http://www.tim-
mann.org/xboard/engine-intf.html.

Gamma, Erich, Richard Helm, Ralph Johnson
and John Vlissides (1994). Design Patterns.
Addison-Wesley.

General Public License (2004).
http://www.gnu.org/copyleft/gpl.html.

Gnuchess (2004).
http://www.gnu.org/software/chess/chess.html.

Johnson, Michael K. and Erik W. Troan (1998).
Linux Application Development. Addison-
Wesley.

Lobov, A., E. Lopez, J. Lastra and R. Tuokko
(2004). ChessRobot.net: An Interactive On-
line Experience. In: Proceedings of the 2nd
International Conference on Industrial Infor-
matics. Berlin, Germany. pp. 64–68.

Pires, N. (1999). Eric, a Chess Playing Robot.
http://robotics.dem.uc.pt/norberto/eric/.

Pratt, William K. (1991). Digital image process-
ing. John Willey and Sons Inc.

Sousa, F., J. Gonçalves and P. Leitão (2004). Sis-
tema Robotizado de Xadrez. In: Proceedings
of the Scientific Meeting of Robótica 2004.
Porto, Portugal. pp. 163–168.

Stroustrup, B. (2000). The C++ Programming
Language. Addison-Wesley.

Trolltech (2003). Qt trolltech toolkit.
http://www.trolltech.com.

Winboard (2004).
http://www.tim-mann.org/xboard.html.

xboard (2004).
http://www.tim-mann.org/xboard.html.

