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Abstract: Nowadays, a substantial part of the agricultural production takes place in 
greenhouses, which enable to tune the crop growing by modifying, artificially, the 
environmental conditions and the plant’s nutrition. The main goal is to optimise the 
balance between the production economic return and the operation costs of the climate 
actuators. Severe environment and market restrictions jointly with an increasing tendency 
of the fuel price motivate the development of more “intelligent” energy regulators. In 
order to formulate the best options for a production plan, this type of artificial supervisors 
must be able to formulate close predictions on a large set of variables. Considering, for 
instance, the air temperature control inside a greenhouse, the system must be able to close 
predict the evolution of the solar radiation since this is the exogenous variable which 
most influences the thermal load during the day. In this paper, an artificial neural 
network, in conjunction with a wavelet decomposition strategy, is used for forecasting, 
an hour ahead, the instantaneous solar radiation energy density sampled at one minute 
interval. The results obtained from this work encourage further exploitation of this kind 
of signal processing technique. Copyright © Controlo 2008 
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1. INTRODUCTION 

 
Greenhouses are building structures that allow the 
creation of an indoor microclimate for crop 
development. In order to provide the best 
environmental conditions, this microclimate can be 
modified by artificial actuations such as: heating, 
ventilation and CO2 supply. As one could expect, this 
non-natural conditions are achieved by additional 
energy spent in the production. In this context, a 
regulator which minimises the energy consumption 
while keeping the state variables as close as possible 
to the optimum crop physiological response is 
essential. 
 
State-of-the-art greenhouse climate controllers are 
based on models to simulate and predict greenhouse 
environment behaviour (Coelho et al., 2005; van 

Straten, 1996). These models must be able to describe 
indoor climate process dynamics, which are functions 
of the control actions taken and the outside climate. 
Moreover, if predictive or feedforward control 
techniques are to be applied, it is necessary to employ 
models to describe and predict the outside climate, 
being the most relevant air temperature and solar 
radiation. Concerning this last variable, it is assumed 
that the dynamic system state space is not directly 
observable. Hence one will try to catch it’s behaviour 
by fitting it in a time-series structure. In this situation 
the appropriate response, in a particular time instant, 
will depend, solely, on past observations. 
 
The overall objective of this study is to predict the 
solar radiation future trend by taking into 
consideration only the past observations of the series. 
In this context several models were tested with a 
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special focus given to the one which uses a data pre-
processing based on the Haar wavelet decomposition. 
 

2. THE HAAR WAVELET 
 
In time-series prediction, wavelets can be used to 
reduce the data dimensionality, i.e. the original signal 
is fractioned into several signals with different 
spectral contents. Afterwards, a set of models is used 
to predict each of the components. Finally, the partial 
results achieved are used to obtain the original 
signal’s prediction. Alternatively, in (Mellit et al., 
2006) the dilations and translations of Morlet 
wavelets are used as activation functions in artificial 
neural networks. 
 
The wavelet transform can be viewed as a filter bank 
(Strang and Nguyen, 1996). In particular, the Haar 
Wavelet decomposition of a signal is resumed by it’s 
journey trough a filter bank with high-pass and low-
pass profiles. The following figure illustrates this 
strategy. 
 

 
 
Fig. 1. The Haar Wavelet as a filter bank. 
 
As mentioned previously, in this radial structure 
coexist two different types of filters with low-pass 
and a high-pass frequencies responses. The low-pass 
type impulse response, for a giving filtering depth k , 
is designated, in Figure 1, by [ ]ks n . On the other 
way, the high-pass filter impulse response is 
represented by [ ]kd n . In the Haar wavelet context, 
the filter impulse responses are (Walker, 1999):  
 

[ ] [ 1][ ]
2

n ns n δ δ+ −
=  (1) 

 
[ ] [ 1][ ]

2
n nd n δ δ− −
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Equations (1) and (2) belong to two stable and causal 
filters. In both equations [ ]nδ  refers to Kronecker 
delta and Nn∈  is related to the sample number. 
 

Applying the Z  transform to (1) and (2) results in the 
following transfer functions: 
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In the following figure the magnitude profile of both 
frequency responses (the phase plot is neglected since 
it’s linear) are shown. 
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Fig. 2. Frequency response magnitude for the two 

types network filters. 
 
The convolution of the impulse response [ ]s n  with 
the signal [ ]x n  results, in a signal composed by the 
arithmetic mean of consecutive samples. In the same 
way, when it passes through [ ]d n , [ ]x n  becomes a 
signal taken as the first difference of the original 
signal. The result of the low-pass filter can be 
interpreted as the signal ‘tendency’. On the other side 
the high-pass output refers to the signal ‘detail’. 
 
The radial structure presented earlier points out to the 
possibility of estimating the ‘tendency of the 
tendency’ until an arbitrary level k . The filter’s 
impulse response presented in each level can be 
different as we will see afterwards. 
 
Assuming at this stage, the high-pass filters all alike, 
the ‘tendency of the tendency’ of a signal, i.e. the 
second degree tendency represents the signal filtered 
by a filter whose impulse response is the convolution 
of the impulse response on each level: 
 

2 [ ] [ ] [ ] [ ]Sx n s n s n x n= ∗ ∗  (5) 
 
Figure 3 shows the frequency response of this cascade 
structure for five different depth levels. As one could 
expect, and following the original signal tendency 
line, the increase of the tree depth implies a filtering 
with decreased bandwidth. Thus, the partial generated 
signals dynamics tend to lower down. The same could 
be stated for the ‘detail’ part of the signal. 
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Fig. 3. Frequency response of five different filtering 

levels. 
 
The bank filter structure shows that it is also possible 
to estimate the ‘detail’s tendency’ or the ‘tendency’s 
detail’. This information results from the passage of 
the signal [ ]x n  through the band-pass filter with 
direction dependent profiles. 
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Fig. 4. The ‘tendency’s detail’ as a band-pass filter. 
 
If the bank filters frequency responses are identical, 
there will be redundancy of information. For instance 

1 2 3( ) ( ) ( )S z D z S z⋅ ⋅  has the same frequency response 
as 1 2 3( ) ( ) ( )S z S z D z⋅ ⋅ . One of the advantages of this 
decomposition method is it’s reversibility, i.e., it is 
possible to obtain the original signal back from the 
‘details’ and ‘tendencies’ computation. For example, 
since: 
 

1 1[ ] [ ] [ ]S Dx n x n x n= +  (6) 
with 
 

1 [ ] [ ] [ ]Sx n x n s n= ∗  (7) 
 
and  
 

1 [ ] [ ] [ ]Dx n x n d n= ∗  (8) 
 
The following expression is obtained, 
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As stated before the bank filters frequency responses 
can be different from each other. One common 
strategy is to use compressed filters spectra forms, 
that is, filters with zero padding between the two non-
zero samples (Soltani, 2002). With this strategy it is 
possible to have a larger capability in frequency 
discrimination. For example, the following impulse 
responses: 
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are obtained by dilations of the “mother” wavelet 
expressed by equations (1) and (2). The frequency 
response of these filters is represented in the 
following figure. 
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Fig. 6. Frequency response magnitude for dilation 

versions of initial filters. 
 
It can be shown that, for a k  level decomposition, the 
original signal can be reconstructed by: 
 

[ ] [ ] [ ]S D
k k

k
x n x n x n= + ∑  (14) 

 
Let’s now consider de solar energy density for a 
particular cloudy day with the following aspect: 
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Fig. 7. Solar radiation power density. 
 
This data was acquired, using a pyranometer, with a 
one minute sampling time. A fourth level Haar 
decomposition with dyadic frequency response filters 
of the previous signal leads to four new signals with 
the following profiles: 
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Fig. 8. Wavelet decomposition of the solar radiation 

density. 
 
It is this information, rather than the raw data itself, 
that will be feed to a non-linear parametric model. 

 

3. SOLAR RADIATION PREDICTION 
 
In this section a comparative study of several types of 
parametric models will be investigated concerning 
their ability to predict solar radiation using a sixty 
steps ahead horizon. 
 
The solar radiation, represented as a time-series, is a 
very complex prediction problem due to the 
extremely uncorrelated high frequency components. 
Although the low-frequency profile could be obtained 
from a deterministic radiation model, the high-
frequency oscillation due to disturbances, such as 
clouds and atmosphere attenuation, is extremely 
difficult to predict using only past information. In 
general, the evolution of the relative prediction error 
versus the forecast horizon, for a giving time-series 
model, will show a logarithmic profile with the error 
rising fast in the first thirty or forty steps ahead as can 
be seen in fig. 9. The fact that the first derivative of 
the error is slowing down after this point does not 
mean that there is advantageous to take predictions 

farther in time. It only says that there is a smaller 
margin to make the things worst! 
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Fig. 9. Prediction error as a prediction horizon 

function. 
 
In the following items a set of prediction models will 
be investigated concerning their capacity to close 
forecast the solar radiation on a highly fluctuating 
day. The maximum prediction horizon taken is sixty 
steps ahead and the performance is inferred taking 
into consideration two indexes: the average of the 
root-mean squared (RMS) error along the prediction 
horizon and the percentage of change in direction. 
The later is a qualitative index that represents the 
model ability to predict the tendency, i.e. capable of 
following the signal derivative sign. This figure of 
merit is very important in the context of air 
temperature regulation under a model predictive 
control (MPC), since the heating and ventilation 
requirements will be computed taking into account if 
it will be expected a heat load increase or decrease in 
the near future. Equations for both performance 
indexes are (15) and (16). 
 

( )
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Where N  refers to the number of observations, H  is 
the prediction horizon, x  is the signal average and 
the pair { }ˆ[ ], [ ]x n x n  represents the input and 
predicted signals, respectively. 
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Where, 
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and [ ]u ⋅  refers to the Heaviside (or discrete step) 
function. 
 
3.1 A simple AR(10) Model. 
 
In this section the behavior of a simple ten pole filter 
will be investigated for prediction purposes. The filter 
coefficients were computed, using the previous day 
data, by means of a least squares algorithm. The 
following picture illustrates the model’s ability to 
predict the solar radiation over a time horizon of 1 
hour with a time step of 1 minute. 
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Fig. 10. Top: sixty steps ahead prediction of the solar 

radiation using an AR(10) model. Bottom: the 
prediction tendency in a one hour period taken at 
sample 187. 

 
First of all it seems that the predicted signal is out of 
phase with the measured one. Indeed, the predicted 
radiation is lagging the real version by, 
approximately, the prediction horizon. Figure 10 also 
shows that the total energy predicted for a day is 
lower than the measured one. This can be well 
understood by looking at the filter impulse response 
illustrated in Fig. 11. After the excitation signal, the 
response will asymptotically tend to zero as the time 
passes by. So, in closed-loop, there is no chance to 
achieve a good dynamic behaviour prediction,  
especially when the horizon is large and the trend of 
the signal is upward.  
 
Due to the signal periodic nature, it is always possible 
to try to use the past day to predict the present one. 
However, the correlation generally observed between 
days is only of significant importance for the very 
low frequency component. The computation of the 
cross-correlation is not zero for lags out of the narrow 
interval around zero. But the values obtained only 
reflect the numeric nature of the algorithm and does 
not have any meaning in terms of day’s 
interconnection. 
 
Frequently, the rigid nature of these type of models 
can be seen as a serious drawback due to the low 
correlation between successive days. In this context 
often one tries to estimate the filter parameters more 
closely to each of the prediction start-up point. The 
recursive version of the least squares method seems 
tailored to this approach. Figure 12 presents the new 
prediction based on this strategy. 
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Fig. 11. Filter’s impulse response. 
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Fig. 12. Prediction results using a recursive AR(10) 
model: real and predicted values for the sample 
k+60 (top) and simulated values over the 
prediction horizon time interval starting at sample 
187 (bottom). 

 
At first glance the predictions instability suggests an 
instable model. Indeed, this is what happens as it can 
be seen by inspection of the following figure. 
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Fig. 13. Stability chart as a function of time. 
 
Relatively to the AR(10) algorithm, the dynamic 
behaviour is, punctually, improved but the instability, 
especially for large prediction horizons, tends to make 
the predictor to ‘windup’. 
 
3.2 The Artificial Neural Network. 
 
The previous algorithms tried to express the predicted 
output as a linear combination of past inputs. The use 
of artificial neural networks (ANN) can overcome 
this constraint by trying to relate the past values in a 
non-linear fashion. Linear basis networks (LBN), as 
well as radial ones (RBN), applied to time-series 
prediction are extensively found in literature 
(Kingdom, 1993) (Ferreira and Ruano, 2004), among 
many others. 
 
The ANN performance is strongly related to the 
possibility to find reasonable non-linear relationships 
between signals. If the signal to predict does not 
exhibit this type of associations, the results obtained 
are not far form the ones obtained by simple linear 
models. The following figure presents the prediction 
and simulation results obtained by a LBN with a 
hidden layer composed of two neurons. The input 
space is the same used for the previous models. 



     

100 200 300 400 500 600 700 800
0

100

200

300

400

500

W
/m

2
Measured
60 min prediction

180 190 200 210 220 230 240

100

150

200

sample

W
/m

2

Measured
60 min simulation

 
 
Fig. 14. Top: sixty steps ahead prediction of the solar 

radiation using an LBN neural network model. 
Bottom: the prediction tendency in a one hour 
period taken at sample. 

 
Comparing to the early results, this new prediction 
tends to overcome the measured radiation. This 
discrepancy implies a relatively large error. 
Nevertheless, the dynamic behaviour is, on average, 
better than the ones achieved with the two previous 
forecasts methods. 
 
3.3 The Artificial Neural Network (ANN) over 

Wavelet Decomposition (WD). 
 
The prediction, using this non-linear model 
architecture was computed by recursion. It’s possible 
to train the network directly for the k-step ahead 
signal. But in this case, the autocorrelation between 
the present samples and the future ones is to low to 
belong to the model’s input space. 
 
In order to increase the autocorrelation between 
samples the Haar wavelet is used. A set of ANN will 
be used to model each of the signals generated by the 
decomposition. In the end, the partial forecasts are 
associated in order to produce the final prediction. As 
before, all the networks will be trained using the last 
acquired day. The results achieved by this strategy are 
illustrated in Fig. 15. 
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Fig. 15. Top: sixty steps ahead prediction of the solar 

radiation using an hybrid ANN-WD model. 
Bottom: the prediction tendency in a one hour 
period taken at sample. 

 
For the set of running tests, this algorithm has showed 
the best dynamic forecast behaviour, as seen by the 
performance indexes (eq. 15 and 16) in table 1. 
Nevertheless, it was the most complex and time-
consuming technique of all. 
 

Table 1 Performance indexes of the four models 

Method  J Q CE‡/%  
AR(10)  31.96 23.37 <7 
AR(10)†  47.93 23.88 16 
ANN  37.95 31.51 28 
ANN-WD  31.44 34.60 100  
†Recursive least squares with a 0.998 forgetting factor. 
‡Relative computation effort. 

 

4. CONCLUSION 
 
In this work several models were tested in order to 
close predict the solar radiation within a time horizon 
of one hour. The results reveal better results for 
non-linear models when compared to linear ones. But 
it’s complexity is, by far, larger and more sensitive to 
several tuning parameters. On the other hand, the 
wavelet decomposition has shown an improvement in 
relation to ANN. More research effort will follow this 
line of work in the nearby future, with the goal of 
employing this technique in the prediction of the solar 
radiation within a greenhouse MBPC- Model Based 
Predictive Controller. 
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