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Abstract: A new scheme of fuzzy optimal control for the temperature of an Agriculture
Greenhouse is presented. The proposed method is based on the Pontryagin’s Minimum
Principle (PMP) that is used to train an adaptive fuzzy inference system to estimate values
for the optimal co-state variables. This work shows that it is possible to successfully control
a greenhouse by using these techniques. A method is presented to control the greenhouse
air temperature achieving significant energy savings by minimizing a quadratic performance
index selected for the desired operating conditions. This approach allows finding a solution
to the optimal control problem on-line by training the system, which can be used on a closed-
loop control strategy. Successful simulations results for the controlled system are presented.
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1. INTRODUCTION

The agricultural crop sector is being rapidly trans-
formed into an industry of major importance that
must rely heavily on advanced crop management tech-
niques and intelligent control systems, essential com-
ponents of the new generation of plant factories. One
of present challenges in this industrial sector is about
the need for better management, improved product
quality and reduced production cost. Intensive agri-
culture is proved to be energy inefficient and unsus-
tainable in long run if not managed efficiently. The
main aim is increasing the yield per unit of land and
labour up to optimum value. The use of standard con-
trol strategies was not capable to supply the tools for
the improvement of this reality. The proliferation of
new computational techniques, based on Computa-
tional Intelligence Techniques, provides new solutions
that made this objective realizable, with new software
with increased functionalities. A wealth of research
efforts is being focused today on providing intelli-
gent computer-based management systems, driven by

1 Supported by the Portuguese ”Fundação para a Ciência e a
Tecnologia (FCT)” under grant POSI/SRI/41975/2001

optimal or sub-optimal methods. The climate green-
house control in order to improve the development
of a specific cultivation and to minimize the produc-
tion costs is becoming increasingly important for the
growers. So, greenhouse crop production management
systems are becoming increasingly sophisticated and
are using many of the advanced methodologies and
tools of industrial automation, modern control theory
and Computational Intelligence (CI). The knowledge
components, necessary to deploy CI in crop produc-
tion, include a variety of forms such as models, fuzzy
reasoning, evolutionary algorithms as well as imple-
mentation platforms such as networked and robotic
systems. Computational Intelligence, also known as
Artificial Intelligence (AI), is the science that attempts
to replicate human intelligence on computers. Both
procedural and knowledge-based (declarative) pro-
grammings are used to perform tasks normally done
by human experts or consultants. To meet the increas-
ing complexity of agricultural systems, it is essential
to address the issues of their management with in-
creasingly sophisticated methodologies. This has led
to the promising field of Precision Agriculture, where
the goal is to improve the efficiency of operation as
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well as the quality and consistency of products by
compensating the vagueness and uncertainty of the
environment. This objective can only be achieved by
applying advanced information and optimal control
technologies to production management of the green-
house processes. Moreover, the possibility of incor-
poration of linguistic information, supplied from an
expert, into optimal control learning methodologies is
a gratefully task. During the last decades, many con-
trol strategies based on classical and modern control
have been tested to control those systems but, unfor-
tunately, with limited results. Interactions between the
internal and external variables and the complexity of
the phenomena (multivariable, nonlinear, no station-
ary) are such that it is often difficult to implement
the conventional techniques of regulation. Moreover,
these methods induce choices to simplify assumptions
on the models, incomplete measurements of physical
variables, disturbances on the parameters, atmospheric
interference, and climates sub processes which are not
envisaged in the model. To achieve efficient produc-
tion in greenhouses it is necessary to employ optimal
control strategies to adjust the growth conditions in a
way that high and good quality yields are generated
at low expense and low environmental load. In this
way, several climate variables, such as the air tem-
perature, humidity and CO2 concentration, must be
optimally controlled by actuating on the heating, the
ventilation and the CO2 injection systems according
to specified criteria’s. The structure and parameters of
this control system must be found from a dynamic
optimization problem that has been formulated as a
minimize (or maximize) problem, expressing trough
an explicit desired optimal criterion and taking in ac-
count the physical and physiological limitations in-
volved in the processes. Modern theory of optimal
control is based on two principal results: Pontryagin
Maximum (or Minimum) Principle (PMP) and Bell-
man’s method of dynamical programming. However,
It is well known that exact analytical solutions exists
only for specific classes of optimal control problems,
such as, linear systems with quadratic integral cost
function. But so far, few results can provide an effec-
tive way of optimal control design for general nonlin-
ear systems. Actually fuzzy logic represents one of the
most important techniques dealing with nonlinearities.
Additionally, the fuzzy inference systems emerged as
one of the most useful approaches to collect human
knowledge and expertise on control and to transform
the collected knowledge into a basis for developing
controllers (Chuen-Lee, 1990a; Chuen-Lee, 1990b;
Wang, 1997).We present an alternative approach to
nonlinear optimal control based on a fuzzy logic sys-
tem and on PMP. According to Pontryagin’s Minimum
Principle the co-state variables play a key role in find-
ing the optimal control. However, looking at the prob-
lem on a fuzzy logic ground, the co-state variables ap-
pears to behave like the output of an expert system that
knows which sequence of values will minimize the
cost function. In this approach, the (adaptive) fuzzy

inference system can be used to generate actuator val-
ues, but its primary function is to generate estimates
of the co-state variables. A number of stable and op-
timal fuzzy controllers were developed for linear sys-
tems by using the PMP with quadratic cost function.
Wang (Wang, 1998) developed the optimal fuzzy con-
troller for linear time-invariant systems. Based on the
conventional linear quadratic optimal control theory,
Wu and Lin (Wu and Lin, 2000b) presented a design
method of the optimal controllers for continuous and
discrete-time fuzzy systems. Later, Wu and Lin (Wu
and Lin, 2000a) developed a design scheme of the op-
timal fuzzy controller under finite or infinite-horizon
by using the calculus-of-variation method. Moreover,
Wu and Lin (Wu and Lin, 2000a; Wu and Lin, 2000b)
presented local and global approaches of optimal and
stable fuzzy controller design methods for both con-
tinuous and discrete-time fuzzy systems under both
finite and infinite horizons by applying traditional lin-
ear optimal control theory. This study considers the
application of optimal control strategy to the air tem-
perature inside a greenhouse. The purpose of this work
is to implement an optimal control algorithm, using
the learning optimal strategy described in more detail
in (P. Salgado, 2007). In this article, a Fuzzy Model
(FM) is used as the nonlinear controller of the co-
state variables of the optimal control problem. The
FM is trained to directly minimize the performance
index subjected to plant outputs, states and inputs. The
optimization is carried out using a gradient scheme
that is computed employing the recently developed
concept of convergence of state and co-state optimal
trajectories.

2. THE FUZZY INFERENCE SYSTEM

Several structures and learning algorithms are capable
of implementing fuzzy inference engine and can be
used as co-state variable controller. Without any loss
of generalization, the used fuzzy system results from
the following algorithm.

Consider a system y = f (x), where y is the output
variable and x = [x1, · · · , xn]

T
∈ Rnis the input vec-

tor. Let U = [α1, β1]×· · ·× [αn, βn] be the domain of
input vector x. The problem to solve is the following:
consider the input-output data pairs

(
xk, y

(i)
k

)
, k =

1, 2, · · · , np, where xk ∈ U and y
(i)
k ∈ V = R is

the derivative value, with i = 1, 2, · · · , r. This data
is assumed to be generated by an unknown nonlinear
function y = f (x) and our objective is to design a
fuzzy system g (x) based on these input-output pairs
that approximates the unknown function f (x). Typi-
cally, the expert knowledge expressed in a verbal form
is translated into a collection of if-then rules of the
type:
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Ri1,··· ,in
: IF x1 isA

1
i1

and · · · andxn is A
n
in

THEN y is C
i1,··· ,in

,
(1)

where A
j
ij

in Uj and in V are linguistic terms charac-
terized, respectively, by fuzzy membership functions
A

j
ij

(xj) and C
i1,··· ,in

(y), and the index set is defined
by:

I = {i1, i2, · · · , in|ij = 1, 2, · · · , Nj} , (2)

with j = 1, 2, · · · , n. Fuzzy system g (x) is con-
structed following the steps:

Step1: Partition of the input space - For each j,
j = 1, · · · , n define Nj fuzzy sets in [αj , βj ] us-
ing the following triangular membership functions:
Aj

r (xj) = μ
(
xj ; x̄

r−1
j , x̄r

j , x̄
r+1
j

)
, for r = 1, · · · , Nj ,

αj = x̄1
j < · · · < x̄

Nj

j = βj , with μ (x; a, b, c)
a triangular membership given by μ (x; a, b, c) =
(x− a) / (b− a), for a ≤ x ≤ b; μ (x; a, b, c) =
(c− x)/(c− b), for b ≤ x ≤ c; 0 otherwise and
a < b < c. After completing this task, the domain
space is partitioned by a grid of triangular membership
functions. The fuzzy rule antecedent Ri1,··· ,in

can be
viewed as the fuzzy set Ai1,··· ,in

= ×n
j A

j
ij
∈ U,

with membership functions Ai1,··· ,in
(x) = A1

i1
(x1)∗

· · · ∗ An
in

(xn), where ∗ is the min or product T-norm
operator and i1, · · · , in ∈ I .

Step 2: Learning of the rule base - For each an-
tecedent, with index i1, · · · , in ∈ I , find the sub-
sets of the training data where the membership func-
tion Ai1,··· ,in

(x) is not null. If the number of points
found is not zero, then rule Ri1,··· ,in

is added to
the rule base, represented by a table of indexes:
RB = {i1, · · · , in ∈ I : Ai1,i2,··· ,in

(xk) > 0},with
k = 1, · · · , np.

Step 3: The fuzzy system - Here it is assumed to use the
singleton fuzzifier, the product inference engine and
the centre-average defuzzifier. The fuzzy system can
thus be represented by:

g (x, θ) = pT (x) · θ, (3)

where p (x) = [p1 (x) , · · · , pM (x)]
T and θ =

[θ1, · · · , θM ]
T are vectors of the fuzzy basis functions

(FBF’s) and the constant consequent constituents, re-
spectively. θl is the point in V at which C

l
(y) achieves

its maximum value and l ∈ RB is the index of the
rule. Each fuzzy basis function (FBF) of the fuzzy

system is given by p
l
(x) = A

l
(x)

/
M∑
l=1

A
l
(x).

There are three main reasons for using the FM de-
scribed as a basic building block for adaptive fuzzy
controllers or identification systems:

• These fuzzy logic systems are constructed from
fuzzy IF-THEN rules using specific fuzzy in-
ference, fuzzification, and defuzzification strate-

gies, which allow the incorporation of informa-
tion from human experts into controllers. In op-
timal control context, this information can be
expressed through the co-state variable of the
optimization process;

• It has been showed in other works (Ying, 1994;
J. A. Dickerson, 1996; Castro and Delgado,
1996; Wang and Mendel, 1992) that fuzzy logic
systems are universal function approximators;

• The structure and the parameters of FM de-
scribed by equation 3, will be adapted based
on the training information. Various well estab-
lished structural and parametric learning meth-
ods could be used to create and adjust the param-
eters of the membership functions of the rules
(Ying, 1994) in order to make this adaptation.

3. THE OPTIMAL CONTROL ALGORITHM

Consider the nonlinear discrete dynamic system as:

xk+1 = g (xk) + h (xk)uk, (4)

where g : R
n → R

n and h : R
n → R

n are con-
tinuous over R

n. Assume that gk + hkuk is Lipschitz
continuous on a set U ∈ R

n containing the origin,
and that system is stabilized in the sense that there
exists a continuous control on U that asymptotically
stabilizes the system. It is desired to find a sequence
of uk, which minimizes the cost function:

J = Φ (N, xN ) +

N−1∑
k=1

L
k (xk, uk), (5)

where

L
k (xk, uk) = (xk−rk)T

Rk(xk−rk)+u
T
k Qkuk, (6)

and

Φ (N, xN ) = (xN − rN )T
RN (xN − rN ). (7)

rk is the desired state at k sample, Rk and Qk are
matrices that allow to weight attainment of the desired
state versus control effort. The control problem is to
find the control u

∗
k sequence that minimizes the above

criterion or cost function J . In interval [1, N ] is the
prescribed control time interval, Φ (N, xN ) is the cost
on the final state value xN , and Lk (xk, uk) is the cost
on both state and command at instant k < N . The
solution for this problem given by PMP is as follows.
One defines the sequence of Hamiltonian functions
Hk:

H
k = L

k + λ
T
k+1 · f

k
, (8)

where λk ∈ R
n is a vector of Lagrange multipliers.

Accordingly to common usage one will designate λk

as the co-state variables. The optimal sequence u∗k
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that minimizes the criterion of equation 5 is found by
solving simultaneously the following equations:

λk = Akλk+1 + Rk (xk − rk) , (9)

uk = −Q
−1
k Bkλk+1, (10)

λN = RN (xN − rN ) , (11)

where Ak =
(
∂fk

/
∂xk

)T and Bk =
(
∂fk

/
∂uk

)T .

The equation 10 may be taken as an optimal feed-
back control law, if the optimal value of the co-state
variable, λ∗k+1 is known at time k. Now the approach
proposed in this paper may be made explicit. One
takes λk+1 as the output of a fuzzy inference system Λ

that at instant k generates an estimate of λ
∗
k+1, having

as inputs the observed state xk and the time to go
N − k: λk+1 = λ̂∗k+1 = Λ(xk, N − k). This gives the
feedback control law uk = −Q

−1
k h(xk)Λ(xk, N−k),

which by incorporation of the h function into the fuzzy
inference system can be streamlined to:

uk = −Q
−1
k Λh(xk, N − k), (12)

From equation 4 and 10 we have:

xk+1 = gk −Hkλk+1, (13)

where Hk = h(xk)Q−1
k hT (xk).

In general, finding solutions is not an easy task due
to the equations interdependence, which implies the
used of forward and backward time sequences. If, by
adaptation or learning through fuzzy inference sys-
tem, along successive runs or training iterations of
the system from k = 0 to N , the estimates con-
verge to the optimal ones, then any of the control
laws becomes optimal. Additionally to this problem,
we are confronted in many real applications with lim-
itations in the actuators values and in the measuring
sensors. Generally, the admissible values of actuations
are bounded:

umin � uk � umax, (14)

When this happens, the restriction defined on equa-
tion 14 must be taken in account in the formulation
of the optimal problem by addition of a restriction
equation. Alternatively, we adopt a weight to penalize
the cost function when the value of actuations violates
the limiters, by using a more strong penalized matrix
Q̃k > Qk. So, in these cases of violations of restric-
tion of actuators we have:

uk = −Q̃
−1
k h(xk)λk+1, (15)

In this circumstance the cost fuction of equation 6 is
rewrited as:

Lk (xk, uk) = (xk − rk)T Rk(xk − rk) + λT
k+1

·

·
(
hT (xk)Q̃−1

k
h(xk)

)
λk+1,

(16)

To solve the set of equations resulting from framing
a discrete optimal control problem under PMP, an
off-line optimization method is usually applied. Here,
one proposes a learning algorithm based on an ap-
proximate gradient descent method that, during the
training iterations, progressively refines the accuracy
of the co-state fuzzy estimator. This strategy reduces
the necessary computing time and memory, avoiding
the calculations of the exact adjoint and the direc-
tional derivatives of the cost functional. Below the first
algorithm of this method is given in the theoretical
form. The implementation of the algorithm will be
described in future work. From equation 11 it follows
that for optimal trajectories one must necessarily have
λN = RN (xN − rN ) so λ∗N = RN (x∗N − rN ). Let
E = λN − RN (xN − rN ) be the error or difference
between the end value of the state and the co-state
variable trajectories. As noted above, for optimal tra-
jectories x∗(k) and λ∗(k), it is a necessary condition
that λ∗N = RN (x∗N − rN ) or E = 0. It is also
possible to prove that this is a sufficient condition. If
E → 0, then xk → x∗k and λk → λ∗k, i.e. the trajec-
tories of the state and co-state variables converge to
the optimal ones. It follows that to attain optimal state
trajectories, it is necessary that the error E converge to
zero. This objective is achieved by adjusting the final
λN co-state variables in order to minimize:

E
2 = (λN −RN (xN − rN ))T ·

· (λN −RN (xN − rN ))
(17)

The gradient descent algorithm was employed to de-
termine the adjustments to the final co-state value:

λ
q+1
N = λ

q
N − 2αE

q ∂Eq

∂λ
q
N

(18)

where, q = 0, 1, 2, · · · is the training iteration number
and α is a scalar step-size variable. For all q:

∂E

∂λN

= I − RN

∂xN

∂λN

(19)

where I is the identity matrix.
The summands at the right side of equation 19 can be
solved iteratively as:

∂xk+1

∂λN

= Ak

∂xk

∂λN

−Hk

∂λk+1

∂λN

(20)

∂λk

∂λN

=
∂λk

∂λk+1

∂λk+1

∂λN

(21)

with ∂x0/∂λN = 0 and ∂λN/∂λN = I .
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From equations 9 and 13, the equation 21 can be
rewrited as:

∂λk

∂λN

= (I + RkHk)−1
Ak

∂λk+1

∂λN

(22)

From the new value of λ
q+1
N a new backward co-

state trajectory is computed trough equation 9. With
the new value of co-state variable λ

q+1
k , for k =

1, · · · , N , a new state trajectory is also computed. As
far as E → 0 the trajectories of the state and co-state
variables will converge to the optimal ones. However,
looking at the problem on fuzzy logic grounds, the co-
state variables appears to behave like the output of an
expert system that knows which sequence of values
will minimize the cost function. This can be under-
stood as a control strategy based on an adaptive fuzzy
inference system, which generates at each time k, in
the control time interval, an estimated value for the
co-state variable at time k+1. A training iteration can
be defined as a sequence of control actions from k = 0
to k = N . Then, along successive training itera-
tions the fuzzy inference system rules may be changed
in order to generate estimates converging to the true
optimal values of the co-state variables, tracking the
adaptation of co-state variables of equation 18. This
implies the convergence of the state variables values
to the optimal values. Changing the rules of the fuzzy
inference can be achieved with learning algorithms,
which take the final input error between state and co-
state variables. In fact, it can be shown that, under the
quadratic version of criterion equation 5, if the error
goes to zero then the state and co-state trajectories will
converge to the optimal.

The open-loop trajectory learning scheme was ob-
tained through numerical solution of the boundary
value problem, as described above. Then, a FM is
trained to approximate the closed-loop relationship
between the system states and the computed input.
This closed-loop controller is expected to be more
robust to plant and initial state perturbation.

4. THE GREENHOUSE MODEL

The greenhouse climate model describes the dynamic
behaviour of the stated variables by the use of differ-
ential equations for the air temperature, humidity and
CO2 concentrations that results from a combination
of the various physical processes involving heat and
mass transfer taking place in the greenhouse and from
the greenhouse to the outside air. In this paper, only
the temperature variables presented in figure (1) are
considered.

The presented physical model has as the main ob-
jective validating the proposed diffuse model and the
performance of the FCFRA algorithm. The model
considers a greenhouse divided into two control sys-
tem devices (heating and ventilation), the covering

   
Solar  

radiation 

Outside  air  

temperature, Tout  

Soil temperature, Tsoil 

Inside air 

Temperature, 
Tin 

Crops 
Vapour 

(air humidity) 

condensation 

Heating, uheat 

CO2 

(concentration) 

Ventilation, uvent Rad 

Fig. 1. Greenhouse climate model structure.

material, the air inside, the outside space and the
soil beneath the greenhouse. These components are
characterized by the heating pipe water temperature,
Theat, for the heating system; inside air temperature,
Tin; outside air temperature, Tout and the soil tem-
perature, Tsoil. Other fundamental measured variables
of the process are the solar radiation, Rad[W/m−2],
and two main control signals (control variables): heat-
ing (0 ≤ uheat ≤ 1) and ventilation (0 ≤ uvent ≤ 1),
corresponding to a range from 0 to 100% of the actu-
ator nominal power.

The energy balance to the greenhouse air is affected by
the energy supplied by the heating system, QT,heat,
the energy losses to the outside air due to the con-
duction through the greenhouse cover and the forced
ventilation exchange, QT,out[Wm−2], the energy ex-
change with the soil QT,soil[Wm−2] and the heat
supplied by radiation from the sun, QT,rad[Wm−2].
These fluxes obey to the following relations:

Sunlight radiant energy:

QT,Rad = crad · Rad (23)

where the coefficient crad denotes the usual fraction
of the solar radiation transformed into heat;

Energy losses to the outside air:

QT,out = (cventφvent + cleak,roof ) ·

· (Tin − Tout)
(24)

where cleak,roof is the heat transfer coefficient through
greenhouse cover. The ventilation flux,φvent, is the
sum of natural ventilation (φleak,vent) with the forced
ventilation (cforce,vent · uvent), and therefore φvent =
cforce,vent · uvent + φleak,vent and cvent is the heat
capacity per unit volume of air.
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Table 1. Parameters of the greenhouse cli-
mate model.

Parameter Value Dimension
Ccap,T 21208 Jm−2 ◦C−1

cheat 1.148 Wm−2 ◦C−1

csoil 4.554 Wm−2 ◦C−1

crad 0.5 -
cvent 1290 Jm−3 ◦C−1

cleak,roof 1.374 Wm−2 ◦C−1

cforce,vent 0.010 ms−1

φleak,vent 0.0014 ms−1

Energy transferred from the soil:

QT,soil = csoil · (Tsoil − Tin) (25)

where csoil is the heat transfer coefficient. In the inside
volume, a heat balance equation can be written and
solved taking into account the different heat fluxes
present here, i.e., the following differential equation:

dTin

dt
=
(
QT,heat −QT,out + QT,soil + QT,rad

)
·

·
1

Ccap,T

(26)

where Ccap,T is the heat capacity of the greenhouse
air. The computed parameters of the greenhouse cli-
mate model are showed in Table 1. These parameters
were obtained by employing a nonlinear optimization
strategy to a set of real measured data. The training
data are a collection of data recorded between Jan-
uary 20 and February 9, with a sampling interval of 1
minute. The simulated and measured air temperatures
were compared during a test period. These curves
show a good agreement between measured data and
the models output, with negligible error.

5. SIMULATION RESULTS

The fuzzy optimal controller design objective is to
control the greenhouse inside air temperature and
humidity, represented here by the state vector x (t),
subjected to a fitness function of equation 5 and
limited by a range of possible actuations values of
equation 14. The control variables are the heating
control (0 � uheat � 1) and the ventilation control
(0 � uvent � 1).

The optimal co-state trajectories will be computed and
will be used in the adaptation of the co-state fuzzy
controller. Moreover, the process output center param-
eters of fuzzy rules are adjusted; the other parameters
of the fuzzy system are kept fixed. It is shown the
effectiveness of the learning strategy in the control of
the inside air temperature and air humidity, which is a
nonlinear dynamical system.

In the training phase of the fuzzy optimal con-
troller, quadratic cost weights, the initial states vector

and reference signal vector were R = diag[1, 0.5],
Q = diag[10, 0.01], Q̃ = diag[20, 20],S = 4R,
x0 = [11, 1◦C; 0, 08 kg

/
m - 3]T . The reference sig-

nals are rk = (TempRef (k) ; HRef (k)), for k =
1, · · · , 1440 and T = 1 minute, where TempRef (k)
is given by:

⎧⎪⎨
⎪⎩

12◦C, for 1 � k < 500 & 1200 < k � 1440;

28◦C, for 700 � k � 1000 ;

12 + 0.08 (k − 500)◦ C, for 500 � k < 700;

28 − 0.08 (k − 1000)◦ C, for 1000 � k < 1200;

(27)

and

HRef (k) : RHRef (k) = 80% (28)

The learning process of section 3 was applied to im-
plement the co-state fuzzy control through 74 fuzzy
rules. A set of simulation tests were performed for
a predefined reference signals (for temperature equa-
tion 27 and absolute/relative humidity equation 28). In
each example, a co-state discrete trajectory, initially
supplied by the fuzzy system, is improved by the
learning algorithm. The resulting trajectory is used to
update the fuzzy control weights. This approach goes
on continuously to reduce the feed forward control
function error during the FM training and generates
the optimal control trajectory. The FM supplies the
values of co-state variables for each one of 24 hours
instances of a day. The intercalary co-sate values are
obtained for linear interpolations of these values. Fig-
ure 2 and 3 shows the controlled greenhouse inside air
temperature and absolute humidity for 24 hours of a
day (22 of January, 1998), with a measured interval of
1 minute. The hatched lines are the reference signals.
Both signals track fairly their references signals tak-
ing in account the cost inherences of the heating and
ventilations actuations. In Figure 4 is represented the
co-state trajectory obtained by referred optimization
processes and its correspondent action variables. The
behaviour of state variables and actuations are agreed
with the restrictions of the problem and the trajectories
are optimal with respect to the quadratic performance
index.

6. CONCLUSIONS

This work consisted in the implementation of the
non-linear quadratic optimal strategy to control the
inside air temperature and humidity of an Agricul-
tural Greenhouse. The method described is based on
nonlinear optimal strategies to help the fuzzy co-state
system to map optimal values of the co-state variables.
A learning algorithm interactively adjusts the co-state
variable values in an optimal way that is continuously
saved in the fuzzy inference system.
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Fig. 2. Trajectory of inside air temperature controlled
by the optimal fuzzy control (’-’). The detached
is the reference temperature and the cyan line is
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trolled by the optimal fuzzy control (’-’). The de-
tached is the reference temperature and the cyan
line is the outside air absolute humidity.
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Fig. 4. Actuations computed by the optimal control
algorithm: uheat and uvent; Trajectory of co-
state variables computed by the proposed optimal
control algorithm (’.’).
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