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Abstract — This paper presents a fuzzy c-means 
clustering method for decompose a T-S fuzzy system. This 
technique is used to organize the fuzzy greenhouse climate 
model into a new structure more interpretable, as in the 
case of the physical model. This new methodology was 
tested to split the inside greenhouse air temperature and 
humidity flat fuzzy models into fuzzy sub-models. These 
fuzzy sub-models are compared with its counterpart’s 
physical sub-models. This algorithm is applied to the T-S 
fuzzy rules. The results are several clusters of rules where 
each cluster is a new fuzzy sub-system. This is a generalized 
Probabilistic Fuzzy C-Means (PFCM) algorithm applied to 
TS-Fuzzy System clustering. This allows automatic 
organization of one fuzzy system into a multimodel 
Hierarchical Structure. 

1. Introduction 

The greenhouse climate model describes the dependence 
of temperature, air humidity and CO2 concentration 
inside the greenhouse on the outside weather conditions 
and on the control equipment using a set of nonlinear 
differential equations of first order. These equations are 
formulated as result of a balance of energy and mass of 
many physical and biological processes. 
However, many processes related to the climate of the 
greenhouse are difficult to describe mathematically, 
especially when the structure of the system and the 
relationship between variables is unknown or too 
complex, giving rise to intractable mathematical 
expressions. Other strategies called intelligent could also 
be valuable alternatives. This is the case of Fuzzy 
modelling. Combining the well-established learning 
techniques with the proposed methodology enables the 
ability to learn from real world observation and 
describes naturally the behaviour as a series of 
understandable linguistically human rules. Despite this 
effort, it is not possible to guarantee a direct relation 
between the linguistic information and the physical 
processes. 

Clustering methods seeks to organize a set of items into 
clusters such that items within a given cluster have a 
high degree of similarity, whereas items belonging to 
different clusters have a high degree of dissimilarity [1] 
[2]. These methods have been widely applied in various 
areas such as taxonomy, image processing, information 
retrieval, data mining, etc [3][8]. Clustering techniques 
may be divided into hierarchical and partitioning 
methods: hierarchical methods yield complete hierarchy, 
i.e., a nested sequence of partitions of the input data, 
whereas partitioning methods seek to obtain a single 
partition of the input data in a fixed number of clusters, 
usually by optimizing an objective function. However, 
the generalization of these techniques to clustering 
imprecisely or uncertainly data or objects is not yet 
explored. Recently, fuzzy set theory is more and more 
frequently used in intelligent systems, because of its 
simplicity and similarity to human reasoning. 
This work addresses this fundamental goal of fuzzy 
modelling by using an algorithm that implements Fuzzy 
Clustering of Fuzzy Rules (FCFRA) applied to the 
climate greenhouse model [4]. The proposed algorithm 
allows the decomposition of the fuzzy relation into sub-
relations, through a process of unfolding the fuzzy rules. 
The obtained sub-rules are then grouped into v 
subgroups (clusters), by similarity association. As a 
result, the original fuzzy relation is layered through the v 
levels of the hierarchical fuzzy system [6]. In other 
words, the application of the FCFRA to the clustering of 
a flat fuzzy system leads to the distribution of the 
information carried by the system among various layers 
of a hierarchical collaborative structure (HCS) [5]. 

2. The Probabilistic Clustering Algorithm of 
T-S Fuzzy System 

A fuzzy rule-based model suitable for describing a large 
class of nonlinear systems was introduced by Takagi and 
Sugeno [9][10] as follows: 
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where l=1, 2, . . . , M, Rl denotes the lth IF-THEN rule 
and M is the number of rules in the rule base. xi, i = 1, ... 
, n, are individual input variables, and l

iA  are the 
associated individual antecedent fuzzy sets of each input 
variable. ly R∈  is the output of each rule and a the 
vector of parameters of the nonlinear function f. As a 
special case of f, we have a polynomial function, where 
a’s are the polynomials coefficients. 
For any input vector, [ ]1, , T

nx x= Lx , if the singleton 
fuzzifier, the product fuzzy inference and the centre 
average defuzzifier are applied, the output of the fuzzy 
model ŷ is inferred as follows [11]: 
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The objective of fuzzy clustering partition is to separate 
a set of fuzzy rules ℑ={R1, R2,..., RM} in c clusters in the 
antecedent space and e clusters in the consequent space, 
according to a “similarity” criterion. This process allows 
finding the optimal clusters centers V in the input space, 
the polynomial prototype Z at output space, the partition 
matrix, U, of combined input-output partition and the 
matrix W of scalars values. Each value uijk represents the 
membership degree of the kth rule, Rk, belonging to the ith 
cluster of the input space and jth cluster of the output 
space. wjk is a value that express the translation of the 
consequent of the kth rule fuzzy sets in direction of the 
center of jth the output center of cluster. So, the 
projection of yl in the cluster j is the function l

jy , with 
l l
j jly w y=  and is expectable that: 
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with jlw ∈ . 

Let xk ∈ S be a point covered by one or more fuzzy 
rules. Naturally, the membership degree of point xk 
belonging to (ij)th cluster is the sum of products between 
the relevance of the rules l in xk point and the 
membership degree of the rule l belonging to cluster ij, 
uijl, for all rules, i.e.: 
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where ( )lℜ x  represents the relevance function of the lth 
fuzzy subsystem covering the point x of the Universe of 
Discourse. 
The rule decomposition into c × e sub-relations will lead 
to an output fuzzy set decomposition as well. 

For the Fuzzy Clustering of Fuzzy Rules Algorithm 
(FCFRA) the objective is to find U=[uijl], 

1[ , , ] n c
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ez z R= ∈LZ  where: 
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is minimized, with a weighting constant m > 1, with 
equation (3) and (4) as a constraint. zj is the prototype 
function of the jth cluster in output space, here 
considered to be of polynomial type of order one: 
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It can be shown that the following algorithm may lead 
the triplet (U*,V*,W*) to a minimum. The results can be 
expressed by the following algorithm: 
 
Probabilistic Fuzzy Clustering Algorithm of Fuzzy 
Rules (FCAFR): 
 
Step 1– For a set of points X={x1,..., xn}, with xi∈S, and 
a set of rules ℑ={R1, R2,..., RM}, with relevance ( )lℜ kx , 
k = 1, … , M, keep c, 2 ≤  c < np, and initialize U(0)∈ 
Mfcm. 
 
Step 2– On the rth iteration, with r = 0, 1, 2, ... , compute 
the c mean vectors. 
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Step 3– Compute the new partition matrix U(r+1) using 
the expression: 
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where ( ) 22

ijlk k i l k jl jD f w= − + ⋅ −x v x z , with 1 ≤ i ≤ c ,    

1 ≤ l ≤ M. 
 
Step 4 – Compute the new partition matrix W(r+1) with 
the expression: 
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Step 5 – Compute zj with: 
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Step 6– If || U(r+1)-U(r)|| < ε then the process ends. 
Otherwise let r = r + 1 and go to step 2. 
 
More details about this method can be found in [7]. 

3. Experimental Results 

In this section the results achieved with the proposed 
greenhouse climate model strategies are presented: 
physical sub-models and the clustered fuzzy models. 
The identification of both models was done by using 
input–output data previously collected. The physical 
model was built by adding the contributions from the 
different heat mechanisms involved in the greenhouse 
climate behaviour. This model is used as a comparison 
to the clustered fuzzy models. 
The greenhouse climate model describes the dynamic 
behaviour of the stated variables using differential 
equations for the air temperature, humidity and CO2 
concentrations that results from a combination of the 
various physical processes involving heat and mass 
transfer taking place in the greenhouse and from the 
greenhouse to the outside air. In this paper, only the 
temperature variables presented in Figure 1 are 
considered. 
The presented physical model has as the main objective 
of validating the proposed fuzzy model and the 
performance of the FCFRA algorithm. The model 
considers a greenhouse divided into the control system 
devices (heating and ventilation), the covering material, 
the air inside, the outside space and the soil beneath the 
greenhouse. These components are characterized by the 
heating pipe water temperature, Theat, for the heating 
system; inside air temperature, Tin; outside air 
temperature, Tout and the soil temperature, Tsoil. Other 
fundamental measured variables of the process are the 
solar radiation, Rad [W/m-2], and two main control 
signals (control variables): heating ( 0 1heatu≤ ≤ ) and 
ventilation ( 0 1ventu≤ ≤ ), corresponding to a range from 
0 to 100% of the actuator nominal power.  
The energy balance in the greenhouse air is affected by 
the energy supplied by the heating system, QT,heat     
[Wm-2], the energy losses to the outside air due to the 
transmission through the greenhouse cover and the 
forced ventilation exchange, QT,out [Wm-2], the energy 
exchange with the soil QT,soil [Wm-2] and by the heat 

supplied by Sun’s radiation, QT,rad [Wm-2]. These fluxes 
obeyed to the following relations: 
 
- Sunlight radiant energy:  
 

,T Rad radQ c Rad= ⋅                (11) 
 
where the coefficient crad denotes the vulgar fraction of 
the solar radiation transformed into the heat. 
 
- Energy losses to the outside air: 
 

( ) ( ), ,T out vent vent leak roof in outQ c c T Tφ= + ⋅ −                       (12) 
 
where ,leak roofc  is the heat transfer coefficient through 
greenhouse cover.  
The ventilation flux, ventφ , is the sum of natural 
ventilation ( ,leak ventφ ) with the forced ventilation 
( ,force vent ventc u⋅ ), i.e., , ,vent force vent vent leak ventc uφ φ= ⋅ +  is 

ventc is the heat capacity per unit volume of air. 
 
- Energy transferred from soil:  
 

( ),T soil soil soil inQ c T T= ⋅ −                                            (13) 
 
where csoil  is an heat transfer coefficient. 
 
In the inside volume, a heat balance equation can be written 
and solved taking in account the different heat fluxes 
present here. From this analysis results the following 
deferential equation: 
 

( ), , , ,
,

1 -in
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cap T

dT
Q Q Q Q

dt C
= + +                (14) 

 
where, Ccap,T [J.m-2.ºC-1] is the heat capacity of the 
greenhouse air. 
 
A more detailed description of the greenhouse 
installation, physical process and models can be found in 
[5]. 
The first task is to identify a fuzzy system that can match 
all the N pairs of collected data to a given level of 
accuracy. The training data is a collection of data (of 
inside and outside physical variables) recorded from a 
long period (3 months) with a sampling interval of 1 
minute. The identification process was performed using 
triangular membership functions with 4×4×4×4 fuzzy 
sets. A set of 158 useful fuzzy rules were generated for 
the fuzzy Temperature model. The simulated and 
measured air temperatures are compared during a test 
period. These curves show a good agreement between 
measured data and the models output, with negligible 
error. 
In Figure 1, the heat fluxes computed with the physical 
and the clustered fuzzy sub-models are plotted. 
The natural heat leakage responses, 

( )( ), , ,out leak vent leak vent leak roof in outQ c c T Tφ= + −  (without forced 



ventilation) is plotted in (a); the heat input due to the 
sunlight radiation, QT,rad in (b); the heat supplied by the 
heating system, QT,heat in (c) and the heat exchanges 
between the inside air and the soil, QT,soil, in (d). These 
results show a good agreement between the clustered 
fuzzy model and its physical sub-models counterparts. 
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Fig .1. Heat fluxes computed with physical model (dotted line) 
and HCS fuzzy sub-model (full line). 

4. Conclusion 

This work has shown that the clustering strategy is 
capable to organise the fuzzy models in way to 
decompose its original structure into a hierarchical 
(collaborative) way. The result is a set of TSK- fuzzy 
sub-models that can reflect some individual 
relationships. In this article an application to the climate 
temperature fuzzy modelling of an agricultural 
greenhouse has been shown. The fuzzy clustering has 
been tested to split the inside greenhouse air temperature 
flat fuzzy model into fuzzy TSK sub-models. These sub-
models have a similar counterpart on the physical model, 
representing the contributions of the process 
mechanisms involved in the global system dynamics. 
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