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Abstract: The fuzzy c-means (FCM) clustering algorithm is the best known and used 
method in fuzzy clustering and is generally applied to well defined set of data. In this 
paper a generalized Probabilistic fuzzy c-means (FCM) algorithm is proposed and applied 
to clustering fuzzy sets. This technique leads to a fuzzy partition of the fuzzy rules, one 
for each cluster, which corresponds to a new set of fuzzy sub-systems. When applied to 
the clustering of a flat fuzzy system results a set of decomposed sub-systems that will be 
conveniently linked into a Parallel Collaborative Structures.  Copyright © 2007 IFAC 
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1. INTRODUTION 

 
 Cluster analysis is primarily a tool for 
discovering previously hidden structure in the set of 
unordered objects, where we assume that a natural 
grouping exists in the data. Cluster analysis is a 
technique for classifying data, i.e., to divide a given 
set of objects into a set of classes or clusters based on 
similarity. The goal is to divide the data set in such a 
way that cases assigned to the same cluster should be 
as similar as possible whereas two objects from 
different clusters should be as dissimilar as possible. 
It is an approach towards unsupervised learning as 
well as one of the major techniques in pattern 
recognition. 
The conventional (hard) clustering methods restrict 
each point of the data set to exactly one cluster. 
These methods yield exhaustive partitions of the 
example set into non-empty and pairwise disjoint 
subsets. Fuzzy cluster analysis, therefore allows 
gradual memberships of data points to clusters in   
[0, 1]. This gives the flexibility to express that data 
points belong to more than one cluster at the same 
time. Furthermore, these membership degrees offer a 
much finer degree of detail of the data model. 
One of the most popular object data clustering 
algorithms is the FCM algorithm, proposed by Dunn 

(1973) and extended by Bezdek (1981), which can be 
applied if the objects of interest are represented as 
points in a multi-dimensional space. FCM relates the 
concept of object similarity to spatial closeness and 
finds cluster centres as prototypes. Several examples 
of application of FCM to real clustering problems 
have proved the good characteristics of this 
algorithm with respect to stability and partition 
quality. Further, its convergence has been formally 
demonstrated (Bezdek,1987; Hathaway et. al. ,1988). 
From this method a large variety of clustering 
techniques was derived with more complex 
prototypes, which are mainly interesting in data 
analysis applications. However, the generalization of 
these techniques to clustering imprecisely or 
uncertainly data or objects is not yet explored. 
Moreover, in the real-world applications, transaction 
data are usually composed of quantitative values. 
Designing a sophisticated data-mining algorithm to 
deal with different types of data turns a challenge in 
this research topic. 
Recently, fuzzy set theory is more and more 
frequently used in intelligent systems, because of its 
simplicity and similarity to human reasoning. The 
theory has been successfully applied to many fields 
such as manufacturing, engineering, diagnosis, 
economics, and others (Höppner, 1999). 
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In this context, a generalization of the previously 
methods in order to be used in clustering of fuzzy 
data (or fuzzy numbers) would be a meritorious 
research. In this work, a new fuzzy relational 
clustering algorithm, based on the fuzzy c-means 
algorithm is proposed to clusters fuzzy data, which is 
used in the antecedent and the consequents parts of 
the fuzzy rules. This clustering process divides the 
fuzzy rules of a Fuzzy System into a set of classes or 
clusters of fuzzy rules based on similarity. From this 
new strategy, a flat fuzzy system f(x) can be 
organized into a hierarchical structure of fuzzy 
systems (Salgado, 2005a and 2007b). 
Hierarchical fuzzy modelling is a promising method 
to identify fuzzy models of target systems with many 
input variables or/and with different complexity 
interrelation. Partitioning a fuzzy system reduces its 
complexity, which simplifies the identification 
problem, improves the computation times and saves 
resources, such as memory space. Moreover, with the 
organization of the fuzzy system into a new 
hierarchical structure, the model readability and 
transparency can be improved. In this context, we 
propose a new technique, the Probabilistic Fuzzy 
Clustering of Fuzzy Rules (FCFR), based on cluster 
methodology, to decompose a flat fuzzy system f(x) 
into a set of n fuzzy sub-systems f1(x), f2(x), ..., fn(x), 
organized in a collaborative structure. Each of these 
clusters may contain information related with 
particular aspects of the system f(x). The proposed 
algorithm allows grouping a set of rules into c 
subgroups (clusters) of similar rules. It is a 
generalization of the Probabilistic Clustering 
Algorithm (FCM), here applied to rules instead of 
points. With this algorithm, the system obtained from 
the data is transformed into a new system, organized 
into several subsystems, in PCS structures (Salgado, 
2005b and 2007a). 
The paper is organized as follows: firstly, a brief 
introduction to fuzzy systems is presented. The 
concept of relevance of a set of rules and of fuzzy 
system is reviewed. The PCS structure is described in 
section 3. In section 4 the FCFR strategy is proposed. 
An example is presented in section 5. Finally, the 
main conclusions are outlined in section 6. 
 
 

2. RELEVANCE OF FUZZY SYSTEM 
 

A generic fuzzy model is presented as a collection of 
fuzzy rules in the following form: 
 
Ri: IF x1 is A1l and ... and xn is Aln THEN y=zl ( x ) 
 

where ( )1 2, , , T
nx x x x X= ∈  and y∈Y are linguistic 

variables, Aij are fuzzy sets of the universes of 
discourse Xi ∈ R, and zl ( x ) is a function of the input 
variables. Typically, z can take one of the following 
three forms: fuzzy set (Mamdani type fuzzy 
systems), singleton (Takagi-Sugeno) or polynomial 
function (Takagi-Sugeno-Kang, TSK) type fuzzy 
systems. Takagi-Sugeno fuzzy systems with centre 
average defuzzification, product-inference rule and 
singleton fuzzification are represented by: 

( ) ( )
1

M
l l

k k
l

f x p x θ
=

= ⋅∑
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where ( ) ( ) ( )
1

M
l l l

l
p x x xμ μ

=

= ∑  is the fuzzy basis 

functions (FBF), M represent the number of rules, θ l 
is the point at which the output fuzzy set l achieves 
its maximum value, and μl is the membership of the 
antecedent of rule l. The defuzzified output y of the 
fuzzy model is calculated as a weighted average 
(Roventa et al., 2003) of all fuzzy rules outputs. 
Fuzzy Logic Systems, FLS, are based on a set of 
rules that map regions in an input space, X, into 
regions in an output space, Y, describing a region in a 
product space S = X × Y. The fuzzy rules are fuzzy 
relations in the product space S described by a set of 
rules ℑ, which create a power set of fuzzy rules 

( )P ℑ . In the traditional systems, as equation (1), all 
the rules are considered as having the same 
contribution in the characterization of the fuzzy 
system. However, they will have different 
importance in different regions of space or in 
modelling fundamental relationships. For the 
characterization of the relative importance of sets of 
rules, in the modelling process, it is essential to 
define a relevance function.  
The relevance is a measure of the relative importance 
of the rules that describe the region S and is a special 
fuzzy measure that involves the relativity of a 
support region, which we see as a fuzzy measure 
only if the support of rules agrees with region S. 
Depending on the context where the relevance is to 
be measured, different metrics may be defined. 
 
Definition 1: The relevance of the rule R ∈ ( )P ℑ  on 
a region S can be characterized by a real positive 
value. The normalized relevance function maps the 
power set of fuzzy rules ( )P ℑ  on the real interval 

[ ]0 ,  1 , i.e.: ( ) [ ]0 ,  1S Rℜ ∈ . 
 
In the context of fuzzy systems there are many 
definitions of relevance of fuzzy rules. Next, we 
propose one of them for the fuzzy system (1). 
 
Definition 2: Let ℑ be a set of rules that map X into 
Y, describing completely the region S. The relevance 
of a rule Rl ∈ℑ, of fuzzy system (1) in S space is 
defined as: 
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i.e., the relevance in ( x ,y) is the maximum of the 
ratio between the output membership function value 
of rule l in ( x ,y), and the union (sum) value of all 
membership functions in ( x , y). 
 
Let one consider the Fuzzy Systems that obey to 
definition 3. 
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Definition 3: The fuzzy system relevance in the point 
kx S∈ is the sum of the relevance of all rules point 

kx S∈  and equal to one: 
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3. THE PARALLEL COLLABORATIVE 
STRUCTURE 

 
A clustering algorithm is used in this work to 
implement the separation of information among the 
various subsystems, which are organized into a 
Parallel Collaborative Structure, PCS. Each of these 
subsystems may contain information related with 
particular aspects of the system or merely 
collaborates to the performance of f(x). A PCS 
structure with n sub models fuzzy systems is 
depicted in Fig. 1. Each fuzzy system model i has 
two outputs: an output variable yi and the 
correspondent fuzzy system relevance ( )iℜ x . 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Structure of Hierarchical Collaborative Fuzzy 

System 
 
This fuzzy system architecture describes the strength 
of mind collaboration among the different fuzzy 
models. Therefore, the output of the SLIM model is 
the integral of the individual contributions of each 
fuzzy subsystem: 
 

         
( ) ( ) ( )

1

n

i i
i

f f
=

= ⋅ℜ∫x x x
   

     (4) 

 

where ( )iℜ x  represents the relevance function of 
the ith fuzzy subsystem covering the point x of the 
Universe of Discourse, and the ∫ is an aggregation 

operator. The relevance ( )iℜ x  reveals the effective 
contribution (or belief of its contribution) to the 
respective fuzzy system. This variable should be 
considered in the aggregation of all collaborative 
systems. 
With the same meaning of its congener sub-systems, 
the relevance of an aggregated system is given by: 
 

          
( ) ( )

1

n

i i
i=

ℜ = ℜ∪x x     (5) 

 
Naturally, if the ith fuzzy subsystem covers 
appropriately the region of point x, its relevance 
value is high (very close to one), otherwise the 
relevance value is low (near zero or zero). 

4. THE PROBABILISTIC CLUSTERING 
ALGORITHM OF FUZZY RULES 

 
 
4.1 The FCM algorithm 

 
Clustering is well established as a way to separate a 
set { }1 2, , , npx x xX =  into c subsets that represent 
(sub)structures of X. A partition can be described by 
a c × n partition matrix U. Each element iku , 

1, ,i c= , 1, ,k n=  of the partition matrix 
represents the membership of kx ∈ X  in the ith 
cluster. We distinguish a particular set of partition 
matrices:  
 

[ ]
1

0,1 1, 1, , ; 1, ,
c

cn
fcm ik

i
M U u k np i c

=

⎧ ⎫
= ∈ = = =⎨ ⎬

⎩ ⎭
∑

   
(6) 

 
FCM is defined as the following problem: Given the 
data set X, any norm ⋅  on p and a fuzziness 

parameter ( )1,m∈ ∞ , minimize the objective function 
 

        
( )

1 1

, ,    1<
n c

m
ik ik

k i

J U V u d m
= =

= ⋅ ≤ ∞∑∑
   

  (7) 

 

where 2
ik k id = −x v ; fcmU M∈ and { }1, , p

cV v v= ⊂  
is a set of prototype points (cluster centers).  
It can be shown that the following algorithm may 
lead the pair (U*,V*) to a minimum, using alternating 
optimization (Hathaway et. al, 1988), which result is 
resumed as follows: 
 
Probabilistic Fuzzy C-Means Algorithm 
 
Step 1– For a set of points X={x1, x2,..., xnp}, with  
xi∈ nR , keep c, 2 ≤ c < np, and initialize U(0)∈ Mfcm. 
 
Step 2– On the rth iteration, with r = 0, 1, 2, ... , 
compute the c mean vectors. 
 

 

( )

( )( )
( )( )

1

1

np mr
ik k

r k
i np mr

ik
k

u
v

u

=

=

⋅
=

∑

∑

x
, i=1, 2, ..., c.   (8) 

 
Step 3– Compute the new partition matrix U(r+1) 
using the expression: 
 

 

( )

1
1

1

1
1

c m
r ik

ik
jkj

du d
−

+

=

⎛ ⎞
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⎝ ⎠
∑                         (9) 

 
for, 1≤ i ≤ c , 1 ≤ k ≤ np, where kη ∈ . 
 
Step 4– Compare U(r) with U(r+1): If ||U(r+1)-U(r)||< ε 
then the process ends. Otherwise let r = r + 1 and go 
to step 2. ε is a small real positive constant. 
 
The equation (9) defines the probabilistic (FCM) 
membership function for cluster i in the universe of 
discourse of all data vectors X. 



     

4.2 Probabilistic Clustering Algorithm of fuzzy rules 
 
In this section, one assumes that fuzzy systems are 
multi-input-single-output systems :    y X Y , 

where 1
n

nX X X= × × ⊂  is the input space and 
V ⊂  is the output space of type (1), which has 
been clearly recognized as an attractive alternative to 
functional approximation schemes, since it is able to 
realize nonlinear mappings of any continuous 
function (Wang, 1992). Conceptually, the functional 
relationships between input-output variables, 
mathematically called dependent-independent 
variables, are expressed by fuzzy rules base through 
an inference process. 
The fuzzy rules are relationships between fuzzy sets 
(or fuzzy numbers) that portioned the antecedent and 
consequent space. 
The objective of fuzzy clustering partition is to 
separate a set of fuzzy rules ℑ={R1, R2,..., RM} in c 
clusters in the antecedent space and e clusters in the 
consequent space, according to a “similarity” 
criterion. This process allows finding the optimal 
clusters centres, V and Z, respectively in the input 
and output space, the partition matrix, U, of 
combined input-output partition and the matrix W of 
scalars values. Each value uijl represents the 
membership degree of the lth rule, Rl, belonging to 
the ith cluster of the input space and jth cluster of the 
output space. wjl is a value that express the 
translation of the consequent of the lth rule fuzzy sets 
in direction of the center of jth the output center of 
cluster. So, the center of each rule l in the cluster j is 

l
iθ  , with l l

i ilwθ θ=  and is expectable that: 
 

 1
1 ,   1, ,

e

jl
j

w l M
=

= =∑          (10) 

 
with jlw ∈ . 
Let xk ∈ S be a point covered by one or more fuzzy 
rules. Naturally, the membership degree of point xk 
belonging to (ij)th cluster is: 
 

1 1
1 ,   

c e

ijl k
i j

u x S
= =

= ∀ ∈∑∑               (11) 

 
and the relevance of the rules l in xk point: 
 

( )
1

1 ,   
M

l k k
l

x x S
=

ℜ = ∀ ∈∑              (12) 

 
The rule decomposition into c × e sub-relations will 
lead to an output fuzzy set decomposition as well. 
For fuzzy probabilistic clustering, each rule and xk 
point, must obey simultaneously to equations (6) and 
(11). This requirements and the relevance condition 
of equation (6) are completely satisfied in equation 
(11). So, for the Fuzzy Clustering of Fuzzy Rules 
Algorithm (FCFRA) the objective is to find U=[uijl], 

1[ , , ] n c
cv v R ×= ∈V and 1[ , , ] e

ez z R= ∈Z  where: 
 

( ) ( ) ( )22

1 1 1 1

n M c e
m m
ijl l k k i l jl j

k l i j
J u wθ

= = = =

⎡ ⎤= ℜ − + −⎣ ⎦∑∑∑∑ x x v z (13) 

is minimized, with a weighting constant m > 1, with 
equation (10), (11) and (12) as a constraint. 
It can be shown that the following algorithm may 
lead the pair (U*,V*,W*) to a minimum. The results 
can be expressed by the following algorithm:  
 
Probabilistic Fuzzy Clustering algorithms of fuzzy 
rules – FCAFR 
 
Step 1– For a set of points X={x1,..., xn}, with xi∈S, 
and a set of rules ℑ={R1, R2,..., RM}, with relevance 

( )lℜ kx , k = 1, … , M, keep c, 2 ≤  c < np, and 
initialize U(0)∈ Mfcm. 
 
Step 2– On the rth iteration, with r = 0, 1, 2, ... , 
compute the c mean vectors. 
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where 
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e
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=

= ∑ , i =1, 2, ... , e and. 

Step 3– Compute the new partition matrix U(r+1) 
using the expression: 
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where ( ) ( )22
ijlk k i l jl jD wθ⎡ ⎤= − + −⎢ ⎥⎣ ⎦

x v z , with 1 ≤ i ≤ c , 

1 ≤ l ≤ M. 
 
Step 4 – Compute the new partition matrix W(r+1) 
with the expression: 

( )1 1

1

ˆ1
ˆ

e
T
l r

r r
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with ( )ˆ T
l l l lθ θ θ θ=  and 
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Step 5 – Compute zj with: 
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Step 6– If || U(r+1)-U(r)|| < ε then the process ends. 
Otherwise let r = r + 1 and go to step 2. 
 
More details about this method can be found in 
(Salgado, 2007b). 



     

5. EXPERIMENTAL RESULTS 
 

In this section, an example is given to illustrate the 
proposed strategy for possibilistic clustering in 
“fuzzy rules domain”. Fig. 2 shows a volcano’s 
surface generated with 40×40 data points. The 
exercise is to capture in a PCS system the description 
of the function, trough the clustering decomposition 
of a flat fuzzy system (FS). The original structure of 
FS is identified from the data points using the 
Nearest Neighborhood Identification method, with a 
radius of 1.2 and a negligible error. A set of 380 
fuzzy rules was generated. It is general perception 
that the volcano function, W=F(U,V), can be 
generated by the following three level of PCS 
structure (or 3 collaborative fuzzy models), each one 
has the task to model, in collaborative contribution, a 
particular representation of the Vulcan surface. So, it 
is natural to have the following sub-system: 
 
Level 1 (Mountain): IF (U,V) is very close to (5,5) 
THEN W is quasi null; 

Level 2 (Hall): IF (U,V) is close to (5,5) THEN W is 
high; 

Level 3 (Background): IF U and V are anything 
THEN W is low; 

Now, we begin building the PCS structure in line 
with the SLIM-PCS Algorithm. As mentioned, in the 
first step, the system is modelled by a set of rules, 
which is an accuracy modelling of the identified 
system. The output of the system at this stage is 
practically identical of the one shown in Fig. 2. 
The second step consists in the decomposition of the 
fuzzy rules of the FS into 3 clusters (m = 1.2). Each 
one of these clusters represents a fuzzy system in a 
PCS structure. Fig. 3 to Fig. 5 shows the individual 
output response of each hierarchical fuzzy model. 
The original image can be described as the 
aggregation (equation (4)) of these three clusters 
surfaces. So, the use of the FCAFR algorithm makes 
the stratification of the early flat fuzzy system into a 
PCS structure. The membership values of the fuzzy 
rules for each cluster are shown in Fig. 6 to Fig 8. 
(note that the membership functions for each cluster 
are represented by a surface instead of its discrete 
values). From these figures we can observe where 
each cluster is “relevant” in the description of the 
various regions of the surface. It must be noted that 
the 1st cluster indentifies the mountain of the volcano 
without the interior cavity and this last one is 
modelled by the 2nd cluster. The 3rd cluster identifies 
the foot of the mountain. 
 
 

6. CONCLUSION 
 
In this work, the mathematical fundaments for 
Possibilistic fuzzy clustering of fuzzy rules were 
presented. In the FCFR the relevance concept has a 
significant importance. Based on this concept, it is 
possible to make a possibilistic fuzzy clustering 
algorithm of fuzzy rules, which is naturally a 
generalization of possibilistic clustering algorithms. 
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Fig. 2– Volcano surface – original system. 
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Fig. 3 – Surface generated by 1th fuzzy system cluster. 
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Fig. 4- Surface generated by 2sd cluster fuzzy system: the hall. 
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Fig. 5- Surface generated by third fuzzy system cluster – 

the background of surface. 
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Fig. 6- Membership function uil, for cluster 1. 
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Fig. 7- Membership function uil, for cluster2. 
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Fig. 8: Membership function uil, for cluster3. 
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