
Clustering Algorithms for Fuzzy Rules Decomposition

Paulo Salgado 
CETAV – Universidade de Trás-os-Montes e Alto 

Douro 
psal@utad.pt 

Getúlio Igrejas 
Departamento de Electrotecnia 

ESTiG – Instituto Politécnico de Bragança 
igrejas@ipb.pt  

 
 

Abstract 

This paper presents the development, testing 
and evaluation of generalized Possibilistic 
fuzzy c-means (FCM) algorithms applied to 
fuzzy sets. Clustering is formulated as a 
constrained minimization problem, whose 
solution depends on the constraints imposed 
on the membership function of the cluster and 
on the relevance measure of the fuzzy rules. 
This fuzzy clustering of fuzzy rules leads to a 
fuzzy partition of the fuzzy rules, one for each 
cluster, which corresponds to a new set of 
fuzzy sub-systems. When applied to the 
clustering of a flat fuzzy system results a set 
of decomposed sub-systems that will be 
conveniently linked into a Hierarchical 
Prioritized Structures. 

1 Introduction 

In recent years, fuzzy modelling techniques 
became an active research area due to its successful 
application to complex system models, where 
classical methods are difficult to apply due to the 
lack of sufficient knowledge. The idea of fuzzy 
modelling consists on establish qualitative relations 
expressed via linguistic rules based on expert 
knowledge [1]. A fuzzy model is defined as a set of 
IF-THEN rules, used to describe these input-output 
relations of a complex system. 

Fuzzy rules induce in this way a fuzzy partition 
of the product space of the input-output variables. 
Generally, fuzzy clustering algorithms are very 
suitable techniques to detect this fuzzy partition. 
Different authors have proposed the use of the fuzzy 
clustering techniques in this process, see for example 
[2, 3, 4]. Fuzzy clustering in the Cartesian product-
space of the inputs and outputs is another tool that 
has been quite extensively used to obtain the 
antecedent membership functions [3], [5, 6]. 
Attractive features of this approach are the 
simultaneous identification of the antecedent 
membership functions along with the consequent 
local linear models and the implicit regularization 

[19]. However, all these techniques are used as 
unsupervised identification methods and never to 
organize the fuzzy rules of a fuzzy system. 

The automated modelling techniques will be used 
to obtain accurate and transparent rule-based models 
from system measurements. This last objective is 
generally relinquished by a posterior reduction of the 
model complexity by reduction [20], merging [21] or 
selection [22] of the most significant rules of the 
fuzzy system, which can produce some lost of 
information. Other strategy [7], more efficient, 
consists on organizing the flat fuzzy system f(x) into 
a set of n fuzzy sub-systems f1(x), f2(x), ..., fn(x), 
organized in a particularly structure, by transferring 
the information from the original fuzzy system to 
other sub-systems. Each of these systems may 
contain information related with particular aspects of 
the system f(x). This process has been called 
Separation of Linguistic Information Methodology, 
SLIM [11, 17]. This objective can be reached if the 
fuzzy system is represented in different hierarchical 
structures, as the HPS (Hierarchical Prioritized 
Structure), which allows organize the information in 
the prioritized fashion, [13, 14, 15]. 

This work addresses this fundamental aim of 
fuzzy modelling by using an algorithm that 
implements Possibilistic Fuzzy Clustering of Fuzzy 
Rules (P-FCFR). The proposed algorithm permits the 
group of a set of rules into c subgroups (clusters) of 
similar rules. It is a generalization of the Possibilistic 
Clustering Algorithm, here applied to rules instead of 
points in [11, 12]. With this algorithm, the system 
obtained from the data is transformed into a new 
system, organized into several subsystems, in HPS 
structures. The application of the P-FCFR in the 
fuzzy system is here used to organize the 
information, by distributing it among various layers 
of the HPS structure. 

The paper is organized as follows. Firstly, a brief 
introduction to fuzzy systems is presented. The 
concept of relevance of a set of rules and of fuzzy 
system is reviewed. The HPS structure is described 
in section 3. In section 4 the FCFR strategy is 
proposed. An example is presented in section 5. 
Finally, the main conclusions are outlined in section 
6. 
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2 The Relevance 

A generic fuzzy model is presented as a 
collection of fuzzy rules in the following form: 
 
Ri: IF x1 is Ail and x2 is Ail ... and xi is Ain THEN y=zi ( x ) 
 

where ( )1 2, , , T
nx x x x U= ∈  and y ∈V are linguistic 

variables, Aij are fuzzy sets of the universes of 
discourse Ui ∈ R, and zi( x ) is a function of the input 
variables. Typically, z can take one of the following 
three forms: fuzzy set (Mamdani type fuzzy 
systems), singleton (Takagi-Sugeno) or polynomial 
function (Takagi-Sugeno-Kang, TSK) type fuzzy 
systems. Takagi-Sugeno fuzzy systems with centre 
average defuzzification, product-inference rule and 
singleton fuzzification are represented by: 
 

( ) ( )
1

M
l l

k k
l

f x p x θ
=
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where ( ) ( ) ( )
1

M
l l l

l
p x x xμ μ

=

= ∑  is the fuzzy basis 

functions (FBF), M represent the number of rules, θ l 
is the point at which the output fuzzy set l achieves 
its maximum value, and μl is the membership of the 
antecedent of rule l. The defuzzified output y of the 
fuzzy model is calculated as a weighed average [8, 9] 
of the outputs of all fuzzy rules. 

Fuzzy Logic Systems, FLS, are based on a set of 
rules that map regions in an input space, U, into 
regions in an output space, V, describing a region in a 
product space S = U × V. The fuzzy rules are fuzzy 
relations in the product space S described by a set of 
rules ℑ, which create a power set of fuzzy rules 

( )P ℑ . In the traditional systems, as equation (1), all 
the rules are considered as having the same 
contribution in the characterization of the fuzzy 
system. However, they will have different 
importance in different regions of space or in 
modeling fundamental relationships. 

For the characterization of relative importance of 
sets of rules, in the modelling process, it is essential 
to define a relevance function.  

The relevance is a measure of the relative 
importance of the rules that describe the region S. 
The relevance is a special fuzzy measure that 
involves the relativity of a support region, which we 
see as a fuzzy measure only if the support of rules 
agrees with region S. 

Depending on the context where the relevance is 
to be measured, different metrics may be defined. 

Definition 1: The relevance of the rule R ∈ ( )P ℑ  on 
a region S can be characterized by a real positive 
value. The normalized relevance function maps the 

power set of fuzzy rules ( )P ℑ  on the real interval 

[ ]0 ,  1 , i.e.: ( ) [ ]0 ,  1S Rℜ ∈ . 

In the context of fuzzy systems there are many 
definitions of relevance of fuzzy rules. Next, we 
propose one of them for the fuzzy system (1). 
 
Definition 2: Let ℑ be a set of rules that map U into 
V, describing completely the region S. The relevance 
of a rule Rl ∈ℑ, of fuzzy system (1) in S space is 
defined as: 
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i.e., the relevance in ( x ,y) is the maximum of the 
ratio between the value of the output membership 
function of rule l in ( x ,y), and the value of the 
membership of the union (sum) of all the functions in 
( x , y). 
 

Let consider the Fuzzy Systems that obey to 
definition 3. 
 
Definition 3: The relevance of fuzzy system in the 
point kx S∈ is the sum of the relevance of all rules 
point kx S∈  and equal to one: 
 

( ) ( )
1

1
M

k l k
l
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3 The Hierarchical Prioritized 
Structure 

A clustering algorithm is used in this work to 
implement the separation of information among the 
various subsystems. These subsystems are organized 
into a HPS structure, as illustrated in figure 1. This 
structure allows the prioritization of the rules by 
using a hierarchical representation, as defined by 
Yager [13]. If i < j the rules in level i will have a 
higher priority than those in level j. 

Consider a system with i levels, i=1,…, n-1, each 
level with Mi rules: 

 
I) If U is Aij and 1îV − is low, then Vi is Bij  and rule 

II is used; 
 
II) V1 is 1îV − ; 
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Level  2

Level  n
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V1

Vn-1

 
Figure 1 - Hierarchical Prioritised Structure (HPS) 

 
Rule I is activated if two conditions are satisfied: 

U is Aij and 1îV − is low. 1îV − , which is the maximum 
value of the output membership function of Vi-1, may 
be interpreted as a measure of satisfaction of the 
rules in the previous levels. If these rules are 
relevant, i.e. 1îV −  is not low, the information 
conveyed by these rules will not be used. On the 
other hand, if the rules in the previous levels are not 
relevant, i.e. 1îV −  is low, this information is used. 
Rule II states that the output of level i is the union of 
the output of the previous level with the output of 
level i. 

The output of a generic level i is given by the 
expression: 
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where ( )*  ,  1, ,l

i il il iF A x B l M= ∧ =  is the output 
membership function of rule l in level i. 

Equation (4) can be interpreted as an aggregation 
operation, for the hierarchical structure. The 
coefficient αi translates the relevance of the set of 
rules in level i. Level 1 gets from level 0:  α0=0, G0 
=∅. 

Paulo Salgado [16, 17] proposed a general 
definition of relevance for the HPS structure: 
 
Definition 4: (Relevance of fuzzy system just i level) 
Let Si be the input-output region covered by the set 
of rules of level i. The relevance of the set of rules in 
level i is defined as: 
 

( )( )1 1 ,  1 ,
ii i i SS Tα α α− −⎡ ⎤= − ℜ⎣ ⎦  (5) 

 
where ( ){ }( ),  1, ,

i i

l
S S i iS F l Mℜ = ℜ = where S and T 

are, respectively, S-norm e T-norm operations, and 
ℜSi is restricted by the proposed axiomatic. 

( )i

l
S iFℜ represents the relevance of rule l in level 

i, and is defined in this work by (2). Using the 

product implication rule, and considering Bil a 
centroid of amplitude δil centered in y=ÿ, then 
 

( ) ( )*
i

l
S i il ilF A x δℜ = ⋅    (6) 

 
When the relevance of a level i is 1, the relevance 

of all the levels below is null. If the S-norm and T-
norm operations used in (5) are continuous and 
derivable, and a cost function is given, it is possible 
to develop an optimization process for tuning the 
parameters of the membership functions of the rules 
in a HPS system. 

In the next section, an algorithm implementing 
the SLIM methodology for the HPS structure is 
presented. For simplicity, the algorithm is presented 
for a particular HPS structure (with three levels, n=3, 
two inputs, ni=2, and one output, no=1). All rules are 
of the type: 

 
I) If U is Aij and 1îV − is low, then Vi is θij and rule II 

is used; 
 
II) V1 is 1îV − ; 
 
The consequent rules are of the Sugeno type, with 

singleton membership functions, θij. The antecedent 
sub-sets Aij (product aggregation of the input 
membership functions) are of the Gaussian type. The 
system output is obtained by a center area 
defuzzifier: 
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Fi may be written as 
 

1
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ij

i
ijj

AF θ
=
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and Gn as (Yager, 1998): 
 

( ) ( ) ( )11n ij i ijG b A xα −= − ⋅   (9) 
 
The relevance of the set of rules just i level, as 

definition 3, is here simplified by using the next 
expression: 
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4 The Possibilistic Clustering Algorithm 
of Fuzzy Rules 

4.1 The Probabilistic and Possibilistic c-
means Algorithm 

Clustering is well established as a way to separate 
a set { }1 2, , , nx x xX =  into c subsets that represent 
(sub)structures of X. A partition can be described by 
a c×n partition matrix U. Each element iku , 

1, ,i c= , 1, ,k n=  of the partition matrix 
represents the membership of kx ∈ X  in the ith 
cluster. We distinguish two particular sets of 
partition matrices: the set of fuzzy partitions 
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and the set of possibilistic partitions 
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The most widely used fuzzy clustering [3] model 

is the fuzzy c-means (FCM) [10]. FCM is defined as 
the following problem: Given the data set X, any 
norm ⋅  on p  and a fuzziness parameter 

( )1,m ∈ ∞ , minimize the objective function 
 

( ) 2

1 1

, ,    1<
n c

m
ik k i

k i

J U V u m
= =
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 (13) 

 
where fcmU M∈ and { }1, , p

cV v v= ⊂ is a set of 
prototype points (cluster centers). To assign low 
membership to noise points in each cluster the 
normalization condition: 
 

1

1,  1, ,
c

ik
i

u k n
=

= =∑  

 
in (11) must be dropped, which leads to possibilistic 
instead of fuzzy partitions. To avoid the trivial 
solution 0iku = , 1, ,i c= … , 1, ,k n= … , 
Krishnapuram and Keller [18] added a punishment 
term for low memberships to the objective function 
in (13) and obtained the possibilistic c-means (PCM) 
model: Given X, ⋅ , and ( )1,m ∈ ∞ , minimize the 
objective function: 

( ) ( )2

1 1

, 1-
n c

mm
ik k i i ik

k i

J U V u uη
= =

= ⋅ − +∑∑ x v  (14) 

 
where pcmU M∈ , { }1, , p

cV v v= ⊂ as in (5), and 

the distance parameters { }1, , \ 0cη η +∈  are user 
specified. FCM and PCM both use point prototypes 
for V. 

It can be shown that the following algorithm may 
lead the pair (U*, V*) to a minimum, using alternating 
optimization [3]: 
 
Possibilistic Fuzzy C-Means Algorithm 
 
Step 1– For a set of points X={x1, x2,..., xn}, with 
xi∈

pR , keep c, 2 ≤ c <n, and initialize U(0)∈ Mcf. 
 
Step 2– On the rth iteration, with r= 0, 1, 2, ... , 
compute the c mean vectors. 
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x
, i=1, 2, ..., c. (15) 

 
Step 3– Compute the new partition matrix U(r+1) 
using the expression: 
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(16) 

 
for, 1≤ i ≤ c , 1 ≤ k ≤ n, where kη ∈ . 
 
Step 4– Compare U(r) with U(r+1): If || U(r+1)-U(r)|| < ε 
then the process ends. Otherwise let r=r+1 and go to 
step 2. ε is a small real positive constant. 

The equation (16) defines the possibility (P-
FCM) membership function for cluster i in the 
universe of discourse of all data vectors X. 

 

4.2 Fuzzy Clustering of Fuzzy Rules 

The objective of the fuzzy clustering partition is 
to separate a set of fuzzy rules ℑ={R1, R2,..., RM} in c 
clusters, according to a “similarity” criterion. This 
process allows finding the optimal clusters centre, V, 
and the partition matrix, U. Each value uik represents 
the membership degree of the kth rule, Rk, belonging 
to the ith cluster i, Ai, and obeys to equations (11) or 
(12), respectively for the FCM or PCM method. 

Let xk ∈ S be a point covered by one or more 
fuzzy rules. Naturally, the membership degree of 



point xk belonging to ith cluster is the sum of products 
between the relevance of the rules l in xk point and 
the membership degree of the rule l belonging to 
cluster i, uil, for all rules, i.e.: 
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1 1
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il l k k
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for the FCM algorithm, and only 
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for the PCM algorithm. 

A rule decomposition into c sets (sub-relations) 
will lead to an output fuzzy set decomposition as 
well. For fuzzy system (1), for each rule l we will 
have new centers l

iθ  associated to the output 
prototypes zi, for 1, ,i c= . 
 

l l
i ilwθ θ=  

 
and is expectable that: 
 

1

1 ,   1, ,
c

il
i

w l M
=

= =∑
 

 
where ilw ∈  is now a parameter that characterizes 
the deviation from the original centroid. 

For fuzzy clustering, each rule and xk point, must 
obey simultaneously to equations (3) and (11) or (12)
, respectively for FCM or PCM algorithms. This 
requirements and the relevance condition of equation 
(3) are completely satisfied in equation (17). So, for 
the Fuzzy Clustering of Fuzzy Rules Algorithm, 
FCFRA, the objective is to find a U=[uik] and 

1 2[ , , , ]Cv v v=V  with p
iv R∈  where: 

 

( )( ) ( )2 2

1 1 1
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is minimized, with a weighting constant m>1, with 
equation (17) as a constraint. 

It can be shown that the following algorithm may 
lead the pair (U*,V*) to a minimum. The models 
specified by the objective function (19) were 
minimized using alternating optimization. The results 
can be expressed by the following algorithm:  
 
Possibilistic Fuzzy Clustering algorithms of fuzzy 
rules – P-FCAFR 
 
Step 1– For a set of points X={x1, x2,..., xn}, with 
xi∈S, and a set of rules ℑ={R1, R2,..., RM}, with 
relevance ( )lℜ kx , k= 1, … , M, keep c, 2 ≤  c < n, 
and initialize U(0)∈ Mcf. 
 

Step 2– On the rth iteration, with r= 0, 1, 2, ... , 
compute the c mean vectors. 
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(20) 

 

where ( ) ( )r r
ilu U⎡ ⎤ =⎣ ⎦ , i=1, 2, ... , c. 

 
Step 3– Compute the new partition matrix U(r+1) 
using the expression: 
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with 1 ≤ i ≤ c , 1 ≤ l ≤ M. 
 
Step 4– Compare U(r) with U(r+1): If || U(r+1)-U(r)|| < ε 
then the process ends. Otherwise let r=r+1 and go to 
step 2. ε is a small real positive constant. 

The application of the P-FCAFR algorithm on 
fuzzy system (1) rules results in a fuzzy system with 
a HPS structure, i.e. a system with the form: 
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In conclusion, this methodology allows expand 

the original fuzzy system (1) into the HPS structure, 
with the form of equation (7). 

If the rules describe one region S, instead of a set 
of points, the equation (21) will be reformulate to: 
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(23) 

 
and if the membership of relevance function of the 
rules is symmetrical, the last equation can be 
rewrited as: 
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where lx is the center of rule l. 

Similarly conclusion can be obtained between 
FCAFR  [12,17] and the P-FCAFR algorithms: If all 



rules have the same shape, the possibilistic fuzzy 
clustering of fuzzy rules can be determined by only 
considering the center of the rules. 

5 Experimental Results 

In this section, an example is given to illustrate 
the proposed strategy for possibilistic clustering in 
“fuzzy rules domain”. Figure 2 shows a volcano’s 
surface, generated with 40×40 data points. The 
exercise is to capture in an HPS system the 
description of the function, trough the clustering 
decomposition of a flat fuzzy system (FS). The 
original structure of FS is identified from the data 
points using the Nearest Neighborhood Identification 
method, with a radius of 1.2 and a negligible error. A 
set of 380 fuzzy rules was generated. It is general 
perception that the volcano function, W=F(U,V), can 
be generated by the following three level hierarchical 
HPS structure, with one rule in each level: 
 
Level 1: IF (U,V) is very close to (5,5) THEN W is 
quasi null (Rule 1); 
 
Level 2: IF (U,V) is close to (5,5) THEN W is high 
(Rule 2); 
 
Level 3: IF U and V are anything THEN W is low 
(Rule 3); 
 
The fuzzy sets membership functions very close, 
close, anything, quasi null, high and low can be 
defined as two dimensional Gaussian functions: 
 

( ) ( )
22
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ii
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x xx x

I i x e e σσμ
⎛ ⎞−⎛ ⎞− ⎜ ⎟−−⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠= ×  with ( )1 2,x x x=  and 

{ }" ", " ", " "I = very close close anything ; 

( ) ( ) { } { }1 1
0J i

i
wμ = =θ ; 

with { }" ", " ", " "J = quasi null high low ; 
 
where ijx  and ijσ are the central value and the width 
of the input membership functions, respectively, and 
θi is the central value of the singleton output 
membership function for the i level. Because there is 
only one rule at each level its subscripts were 
omitted. 

Now, we begin building the HPS structure in line 
with the SLIM-HPS Algorithm. As mentioned, in the 
first step, the system is modeled by a set of rules, 
which is an accuracy modeling of the identified 
system. The output of the system at this stage is 
practically identical of the one shown in Figure 2. 

The second step consists in the decomposition of 
the fuzzy rules of the FS into 3 clusters (η= 4, 10, 
200, respectively for cluster 1, 2 and 3; m=1.2). Each 
one of these clusters represents a fuzzy system in a 

HPS structure, using the FCAFR algorithm 
presented. Figure 3 to Figure 5 shows the individual 
output response of each hierarchical fuzzy model. 
The original image can be described as the 
aggregation (equation (7)) of these three clusters 
surfaces. 

So, the use of the P-FCAFR clustering algorithm 
makes the stratification of the early flat fuzzy system 
into a HPS structure. The results of this algorithm 
shown the same basic shape as the one represented in 
Figure 2, with just minor discrepancies. 

The membership values of the fuzzy rules for 
each cluster are shown in Figure 6 to Figure 8 (note 
that the membership functions for each cluster are 
represented by a surface instead of its discrete 
values). From these figures we can observe where 
each cluster is “relevant” in description of the 
various regions of the surface. It must be noted that 
the 1st cluster indentifies the mountain of the volcano 
without the interior cavity and this last one is 
modeled by the 2nd cluster. The 3rd cluster identifies 
the foot of the mountain. 

6 Conclusions 

In this work, the mathematical fundaments for 
Possibilistic fuzzy clustering of fuzzy rules were 
presented. In the P-FCFR the relevance concept has a 
significant importance. Based on this concept, it is 
possible to make a possibilistic fuzzy clustering 
algorithm of fuzzy rules, which is naturally a 
generalization of possibilistic clustering algorithms. 
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Figure 2 – Volcano surface – original system. 
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Figure 3 – Surface generated by first fuzzy system cluster. 
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Figure 4 - Surface generated by second cluster fuzzy 

system - the hall. 
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Figure 5- Surface generated by third fuzzy system cluster – 

the background of surface. 

 

-10
-5

0
5

10

-10

-5

0

5

10
0

0.1

0.2

0.3

0.4

0.5

 
Figure 6 - Membership function uil, for cluster 1. 
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Figure 7 - Membership function uil, for cluster2. 
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Figure 8: Membership function uil, for cluster3. 
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