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Abstract

This paper presents a fuzzy system 
approach to the prediction of nonlinear 
time series and dynamical systems based 
on a fuzzy model that includes its 
derivative information. The underlying 
mechanism governing the time series, 
expressed as a set of IF–THEN rules, is 
discovered by a modified structure of fuzzy 
system in order to capture the temporal 
series and its temporal derivative inform-
ation. The task of predicting the future is 
carried out by a fuzzy predictor on the 
basis of the extracted rules and by the 
Taylor ODE solver method. We have 
applied the approach to the benchmark 
Mackey-Glass chaotic time series. 

Keywords: Derivative approximation, Times Series, 
Fuzzy modelling. 

1    Introduction 
Time series is widely observed in many aspects of 
our lives. Daily temperature, stock market and so 
forth are examples of time series. A time series is a 
continuous x t  or a discrete sequence of 
measured quantities 1 2, , , nx x x  taken from human 
activity data or some physical system. Basically, 
there are three main goals in time series analysis: 
prediction, modelling and characterization [6]. The 
goal of prediction is to accurately forecast the 
short-term evolution of the system, modelling aims 
to precisely capture the features of the system’s 
long-term behaviour, and the purpose of system 
characterization is to determine some underlying 
fundamental properties of the system and the 
nature of observations. Forecasting refers to a 
process by which the future behaviour of a 
dynamical system or data series is estimated based 

on our understanding and characterization of the 
system and the laws of its nature. 

Much effort has been devoted over the past several 
decades to develop and improve the time-series 
forecasting models. This task is most complex and 
hard due to multiple reasons, such as: high 
sensibility to initial conditions in the unstable 
dynamical system [4]; difficulty on the determ-
ination of trends or on the recognition of patterns 
in presence of stochastic noise on observable 
sequence data; or just the natural uncertainty, 
vagueness and incompleteness of data. However, 
in the absence of something better, there are some 
statistical or empirical solutions to make reason-
able predictions [11]. Most of these linear 
approaches, such as the well-known Box–Jenkins 
method, have shortcomings [3][12]: all have a 
natural default in that they lack the ability to 
directly incorporate the natural linguistic inform-
ation in their modelling or in their strategies, even 
to extract relevant linguistic information from the 
data series. 

More recently, neural networks and fuzzy logic 
modelling have been applied to the problem of 
forecasting complex time series. The main 
advantage of these methodologies is that we do 
not need to specify a priori the structure of a 
model, which is clearly needed in the classical 
regression analysis [14][11]. Also, both models are 
nonlinear in nature and they can more easily 
approximate complex nonlinear systems than 
simple linear statistical models. Of course, there 
are also disadvantages to statistical regressions 
models, where we can use the information given 
by their parameters to understand the process. This 
problem can be greatly reduced if alternatively the 
relationships of the process are expressed by 
linguistic relationships, which are transparent and 
easily read by an expert, through the use of a fuzzy 
modelling. 

Fuzzy Systems (FS) have been successfully 
applied to a number of scientific and engineering 
fields in recent years, but their performance is 
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highly dependent on their structure (hierarchical or 
flat structure, number of inputs, the partition of the 
input and output spaces by membership functions, 
and their shape), their inference mechanism, their 
aggregation operations, and their fuzzification and 
defuzzification methodology. Various schemes of 
fuzzy modelling, with specific algorithms, have 
been proposed to capture some specificity of the 
problem at hand and thus contribute to the 
efficiency of the overall identification schemes 
[18], if necessary by taking advantage of numeric 
experimental data and of neurofuzzy techniques 
[8][15]. Various fuzzy predictors (FP’s) of time 
series have been introduced and have 
demonstrated their success in accurate predictions 
[2][7][16][19], whose main research effort was 
made in the creation of appropriate fuzzy rules and 
memberships through a learning process.  

However, this effort generally does not guarantee 
a model with reasonable dynamical information, 
i.e. the derivative information of the time series. 
So, we propose a new fuzzy system structure that 
is capable of approximating regular functions as 
well as their derivatives on compact domains with 
linguistic information. Here, the linguistic inform-
ation is associated to the translation process of 
fuzzy sets within the fuzzy relationships, that 
when modelled is able to describe local trends of 
the fuzzy models (temporal or positional 
derivatives). With derivative models of the 
temporal series, for the attractive regions of work, 
it is possible to make a Taylor series that can 
approximate a solution of ordinary differential 
equations or of a temporal series in distinct regions 
of the space. With this result it is possible to use 
the traditional ODE method to solve dynamical 
equations or to model temporal series. 

This paper is organized as follows. Section 2 
describes the perturbed fuzzy system. Section 3 
presents theoretical aspects of the approximation 
of a function and its derivatives by the perturbed 
fuzzy system. Section 4 presents an ODE Fuzzy 
solver method based on the perturbed fuzzy 
system. The proposed algorithm will be used to 
benchmark prediction problems of the Mackey-
Glass chaotic time series (Section 5). Finally, a 
conclusion is drawn. 

2    The Perturbed Fuzzy System 
Fuzzy systems modelling [9] provides a frame-
work for modelling complex nonlinear relations, 
using a rule-based methodology. Consider a 
system y f x ; y is the output (or consequent) 

variable and 1, , T n
nx xx  is the input 

vector (or antecedent) variable. Let 1 nU UU
be the domain of the input vector nx  and V
the output space.

A linguistic model relating variables x and y can 
be written as a collection of rules that link terms 

, ii j iA U , 1, ,i ij N , 1, ,i n , and jB V ,

1, , nj j j , where , ii j iA x  and jB y  re-
present the descriptor sets associated, respectively, 
to variables xi, 1, ,i n  and y. In fuzzy systems 
modelling, this relationship is represented by a 
collection  of fuzzy IF–THEN rules: 

11 1, ,: IF  is and ... and  is 

      THEN  is 
nj j n n j

j

R x A x A

y B
  (1) 

where 1, , nj j j  is the index of rule, which 
belongs to the index set: 

1, , | 1, , ; 1, ,n i iJ j j j N i n .

The input space 1 nU UU  and the output 

space V are being partitioned in 
1

n
ii

N N

fuzzy regions, in which it is possible to define N
fuzzy rules of the form of (1). The rule base can be 
represented by the fuzzy relation defined on the 
Cartesian product A×B [18]. If each input space Uj
(for j=1,…,n) is completely partitioned by Nj
fuzzy sets, then there is always at least one active 
rule. Given values for the input variables *x x ,
the value of y is calculated as a fuzzy subset G by 
a fuzzy inference process: 

1. For each rule j, find the firing level of the rule: 

1 21 2 nj j j j nA A x A x A xx  (2) 

With the linguistic connective “and” of the 
antecedent of rule (1) defined as T-norm operation, 
“ ”, jA  can be viewed as the fuzzy set 1 , i

n
i i jAX

with membership functions jA x .

2. The fuzzy implication of each rule :R j

j jA B  is a fuzzy set in U V  that is defined as 
,B j jR y A B yj :A x x , where “ ” is an 

operator rule of fuzzy implication. For each rule j,
calculate the effective output value Gj, based of sup-
star composition: 

' sup ,j BG y A R yj : A
x U

x x

3. Combine (unite) the individual outputs of the 
activated rules to find the overall system output 

1

N
jj

G G .
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Generally, A x  is considered as a singleton set. 
For the arithmetic inference process, the output of 
each rule j is given by j j jG y A B yx . In 
many situations, e.g. in series prediction and 
modelling applications, it is desirable to have a 
crisp value y* for the output of a fuzzy system, 
instead of a fuzzy value G(y). The defuzzifier 
maps the fuzzy sets in V to crisp points in V. In 
this paper, a centre-average defuzzifier [17] is 
used, and the output expression of the Fuzzy 
System can be written as 

1 1

N N

j j j
j j

g A Ax x x  (3) 

where j is the centroid point in V for which the 
membership function jB y  achieves its max-
imum value, being assumed that jB y  is a 

normal fuzzy set, i.e., 1j jB .

Fuzzy identification systems are able to integrate 
information from different sources, namely from 
human experts and from experimental observation. 
However, the process of translating this 
knowledge to linguistic IF–THEN rules is made as 
a sequence of static or instantaneous pictures of 
the modelled process, and so the dynamical 
information is discarded. However, the state 
variables of a dynamical process or temporal series 
are not static: in each instant they possess an 
instantaneous value and a trend of evolution. This 
trend, which contains information of the 
derivatives, should also be modelled by the diffuse 
system. A simple way to do this is to ensure that 
each input and output fuzzy set captures the trend, 
obtaining what we call a perturbed fuzzy set. 
These perturbed fuzzy sets are traditional fuzzy 
sets, characterized by their static position and 
shape, added with potential velocity, acceleration, 
etc. In the context of this paper, we are concerned 
with a special type of perturbed fuzzy sets, due 
both to a translation process and an additive 
process.

Definition 1: The nonlinear translation of a fuzzy 
set A of U by h U , denoted hA , is the fuzzy 
subset of U defined as hA x A x h ,

where h  is a nonlinear homogenous trans-
lation function of the perturbation variable h, i.e., 

0
lim 0
h

h .

Perturbation h moves fuzzy set A from its natural 
position to another position in the neighbourhood. 
As a special and known case we have h h .

Definition 2: Let ,h x  be an additive perturbed 
function resulting from the product of a translation 
function weight ,h x  by the membership 
function A x :

, ,h x h x A x

where ,h x  is a homogenous, nonlinear 
function of variable x and perturbation h, i.e., 

0
lim , 0
h

h x  and , 0h x . The additive 

perturbed fuzzy set of A is ,hA x x h A x ,
where , 1 ,x h h x .

For convenience of representation, consider that 
,x h h x . Both previously defined per-

turbed fuzzy sets obey the following axiom. 

Axiom 1: Let 1 p  and P nf L . For 
nh , let hA x , the perturbed function of 

Definitions 1 and 2, be continuous with respect to 
variable h. Then 0lim  0h hA x A x .

Let
1, , 1 , nh j h j h j nA A x A xx  be the aggreg-

ation of perturbed membership functions. For the 
product T-norm operation and perturbations of the 
additive type, we have , , ,h j h j jA Ax x x h ,
where

1 1, 1 1 ,, , ,
n nj h j h j n nx h x hx h  and 

1, , T
nh hh  is the perturbation vector. 

The fuzzy relationships that involve fuzzy set A
are consequently also perturbed, and that reflects 
into the fuzzy system. The result of the perturbed 
fuzzy sets is a perturbed fuzzy system that is equal 
to the static fuzzy system when the perturbation 
variables h are null. 

Definition 3: A perturbed fuzzy system, PFS, 
results from the perturbation of input and output 
fuzzy sets of fuzzy system (3). Let the input fuzzy 
sets of rules be of the additive type, i.e., 

, ,h j j jA x x h A x , and let the output fuzzy 
sets be of the nonlinear translation type, 

, j j jB x B xh h . The perturbed version of 
fuzzy system (3) is: 

,
1

,
1

,

N

j j j
j

N

j
j

A
g

A

h

h

x h
x  h

x
  (4) 

Remark: If the input fuzzy sets of the PFS (4) are 
not perturbed and the perturbation vector h is 
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obtained by difference between vector x and a 
constant vector 0x  (for example, the null vector), 

0h x x , then the PFS given by (4) is the well-
known TSK model. Moreover, if all input fuzzy 
sets of the PFS (4) are perturbed by the same add-
itive function, i.e., , ,j ix h x h , ,i j J ,
then the PFS of equation (4) is also the well-
known TSK model. 

3    The Derivative Approximation 
In this section we present the sufficient condition 
for the perturbed fuzzy systems as universal 
approximators, in order to answer the questions: 
“Given a real, continuous and differentiable 
function in v , is there a perturbed fuzzy system 
that can approximate it up to its vth derivative? 
How to perturb the membership functions and how 
many fuzzy sets (or fuzzy rules) are needed to 
ensure the desired approximation accuracy?” 

The design of the static fuzzy system g x  is 
made by choosing the appropriate partition of the 
input space, the shape of the membership function 
and its position in the input space U and output 
space V. These structural learning settings are of 
great importance to approximate the zero-order 
function f x . The derivative information could 
be included in the fuzzy modelling by associating 
it to the potential perturbation of its membership 
function. Without lost of generality, we will 
consider that the additive perturbed function 

,j jx h h is independent of variable x.
Furthermore, we assume that the perturbed 
functions are approximated by multivariate poly-
nomials of the multivariate variable perturbation 
h.

Definition 4: Let the perturbed functions j h

and ,j x h , presented on Definition 1 and 2, be 
multivariate polynomials of degree r and s,
respectively, defined on compact set nU , i.e.: 

1
1

1

1

, 1
0 0

n
n

n

n

ss
ddj

s j j d d n
d d

Q a h hh h (5)

1
1

1

1

, 1
0 0

n
n

n
n

rr
dd

r j j d d n
d d

P b h hh h (6)

where
1

n
ii

r r ,
1

n
ii

s s , v=r+s, 0, ,0
j

jb

and 0, ,0 1ja , for 1, ,j N .

The perturbed fuzzy system, PFS, is now a rational 
function of polynomials of variable h:

, ,1

,1

,
N

j s j r jj
N

s jj

A Q P
g

A Q

x h h
x h

x h
 (7) 

Two new theorems show us that fuzzy system (7) 
can: first, approximate a vth-order polynomial to 
any degree of approximation; second, extrapolate 
the last result to approximate any nonlinear 
function.

Theorem 1: Consider the perturbed fuzzy system 
of equation (7). It can approximate any N distinct 

polynomials of order v, ,
1

v

v jT c
jx h x h , in 

N distinct nodes j Sx . Also, the ith derivative of 

,jg x h  in respect to h can approximate the ith

derivative of ,vT
jx h , for 1, ,i v ; i.e: 

+1
, ,

+1

,r rx T x Tg
E

i ii
i x x

h i i i

h hx h
x h

h h h

and lim 0E E0 0

i i
j h jh

x x .

Theorem 2: Suppose that Nj overlapped and 
equally distributed fuzzy sets are assigned to each 
input variable of Fuzzy System (7). Then, for any 
given real, continuous and differentiable function 
f x  defined in v  and approximation error 

bound 0 , there is a perturbed fuzzy system (7) 
with perturbed functions of Definition 4 that 
guarantees:

i)
0

lim ,
h

g x g x h

ii)
0sup

sup lim ,
hx f

f x g x h

iii)
0sup

,
sup lim  for 1,..,

i i

i ihx f

f x g x h
i v

x h

4    The Fuzzy ODE Taylor Series Method 
A continuous, autonomous, stationary, nonlinear 
dynamical system can be described by a set of 
ordinary differential equations, ODE, 
dx t dt F x t , where x t  is the vector of 
system states and F is the system vector field. 

By expanding the solution of ODE to the initial 
value problem, 0 0x t x , in a Taylor series about 

0t , one obtains a local solution that is valid within 
its radius of convergence, R0. If the series is 
evaluated at 1t , where 1 0t R , we obtain an 
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approximation to 1 1x t x , and the solution may 
then be expanded in a new series about 1t . The 
solution may of course then be extended to point 

2t , and so forth, so that by a process of “analytical 
continuation” one obtains a piecewise polynomial 
solution to the ODE problem. 

Perhaps the simplest one-step methods of order P
are based on Taylor series expansion of the 
solution x t . If 1px t  is continuous on ,a b ,
then Taylor's formula gives  

1 1
1 , ,

!

p
p p

k k k k k k
hx x f t x h f t x O h
p

(8)

where
1

11 ,
!

p
pp

k k
hO h f x

p
, with 

1k k kt t , and the total derivatives of f are 
defined recursively by: 

1 1, , , , ,  1,2, .i i i
t yf t x f t x f t x f t x i

To solve the ODE problem with (8), in each 
observable sample point kx , it is necessary to 
(analytically or numerically) estimate the value of 
the dynamical system’s derivatives. With a 
perturbed fuzzy system, a multi-derivative 
modelling can be created in order to be used in 
solving the prediction problem. The result is a 
fuzzy system (based on linguistic representation 
structure) that describes the temporal series as well 
as its derivatives. 

With a set of pN v N  points of the temporal 
series, with N and v as in Definition 4, where we 
now use the values of the local Taylor series terms 
(up to the kth-order continuous derivative), a multi-
variate Padé approximation is used to identify the 
coefficients of the polynomials. 

Definition 5: Consider a function f x , through 
its series expansion at a certain point kx  in U,

0
k kf cx + h x h   (9) 

The Fuzzy Padé approximant, ,g x h , is that 
rational fuzzy function of degree v=r+s in the 
numerator and s in the denominator (polynomials 
Q’s, s

jQ h ), whose power series expansion agrees 
with a given power series to the highest needed 
degree of f . If the rational function is of the type 
of (7), then ,g x h  is said to be a Fuzzy Padé 

approximation to series (9), which in those points 
satisfies the conditions: 

,0g fx x   (10) 

and

,   0
g f

v
0 0

i i

i i
h h

x h x h
i

h x
 (11) 

These last two equations provide 1v  algebraic 
equations that involve 1v N  unknown para-
meters. This approach can be applied in a set of N
points of space U, as much as the number of fuzzy 
rules of the PFS. The resulting equations allow us 
to solve the problem of finding the parameters. In 
this way, coefficients 

1 , , n

j
d da of polynomials 

s
jQ h  and coefficients 

1 , , nd db  of r
jP h  will be 

determined. The Padé approximant is the “best” 
approximation of a function by a rational function 
of the given order [1]. A Padé approximant often 
yields better approximation of the function than 
truncating its Taylor series and it may still work 
where the Taylor series does not converge. 

5    Numerical Example 
The PFS approach has been evaluated for a non-
linear system identification problem, the Mackey-
Glass chaotic time-series prediction problem. 

The Mackey-Glass time series has been widely 
used as a standard benchmark for prediction 
algorithms (Crowder [5], Lapedes and Farber [10], 
Moody and Darken [13], …). The time series is 
generated by integrating the delay differential 
equation,

x t f ty (12)

where x t dx t dt , ,
T

t x t x ty  and 

1 cf t a x t x t b x ty . With 
0.2a , 0.1b , 10c  and 17 , the time series 

is chaotic, exhibiting a cyclic but non-periodic 
behaviour. The upper order of temporal deriv-
atives of state variable x t  can be recursively 
defined by: 

x t x t
' 'x t f x t f x t

2
x t x t x t
' '' 'x t f x t f x t f x t

They will be used for validating the FPS derivative 
approximation of the series. 
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For the calculation of the 3rd derivative of x t  a 
number of 3  past samples are necessary to save.  

The task’s goal is to use known values of the time 
series up to the point x t  to predict the values at 
some point in the future x t h . The standard 
method for this type of prediction is to create a 
mapping from D points of the time series spaced h
apart, i.e., vector 1 , ,dt x t n h x ty ,

to a predicted future value 1x t . To allow 
comparison with earlier work [5][10][13], we used 
nd = 4 and h = 6. All other simulation settings in 
this example were purposely arranged to be as 
close as possible to those reported in [8]. The 
numerical solution of equation (12) is obtained by 
the fourth-order Runge-Kutta with time step 0.1, 
initial condition 0 1.2x , and we assume 

0x t  for 0t . The time series thus generated 
consisted of 3000 data values, 2700 of which were 
used as training patterns and the other 300 as test 
data. The domain space is partitioned by a grid of 
triangular memberships. The total number of rules 
created, after excluding all unfired rules, was 
N=137.

Next, the PFS was used for simultaneously 
modelling the time series x t  and the derivative 
time series x t , x t  and x t . The fuzzy 
model has consequent polynomials of order 3 and 
antecedents of order zero. With these models the 
time series x t  can be predicted by Taylor ODE 
solver:

2 3

( 1)
2 6

T Tx k g g T g gy y y y  (13) 

Note that, in the predicted process the past system 
output terms x k , 6x k , 12x k , and 

18x k  were replaced by the respective model 
predictions. This free-running fuzzy model tests 
the stability of the obtained model. 

Figure 1 shows the approximation of Mackey-
Glass time series done by the ODE method (13), 
where 0lim ,i i

hg x G x h , for 0,1, 2,3i . In 
all cases, the resulting time series (from zero to 
third order) are practically coincident with the 
correspondent analytical time series. The mean 
square errors of this time series approximation and 
its derivatives are shown in Table 1. 

6    Conclusions 
The ability of the Perturbed Fuzzy Systems, PFS, 
to approximate any sufficiently smooth function, 
reproducing its derivatives up to any order, has 
been demonstrated. The PFS proved its ability to 
simultaneously estimate functions and their 
derivatives using information contained in finite 
numerical samples extracted from the data series, 
as well as its use in solving ODE problems. 

Figure 1: Modelling of the Mackey-Glass time series 
and its temporal derivative series. The exact time 
series (solid line) and the fuzzy approximation by 
PFS (dashed line) are practically coincident. 

Table 1: Mean Square Error of the Approximation 

ORDER OF 
DERIVATIVE

MACKEY-GLASS
TIME SERIES 

0 1.095×10-3

1 9.808×10-7

2 4.538×10-7

3 2.044×10-7
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