
Software Methodologies for the Engineering of Service-Oriented Industrial
Automation: The Continuum Project

J. Marco Mendes1, Axel Bepperling2, João Pinto2,
Paulo Leitão3, Francisco Restivo1, Armando W. Colombo2

1Faculty of Engineering - University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto,
Portugal (e-mail: {marco.mendes, fjr}@fe.up.pt)

2Schneider Electric Automation GmbH, Steinheimer Str. 117, D-63500 Seligenstadt, Germany
(e-mail: {axel.bepperling, joao.pinto, armando.colombo}@ de.schneider-electric.com)

3Polytechnic Institute of Bragança, Quinta Sta Apolónia, Apartado 134, 5301-857 Bragança,
Portugal (e-mail: pleitao@ipb.pt)

Abstract

Service-orientation represents a new wave of
features and solutions by bringing closer Information
Technology to the industrial domain, particularly
factory shop floors. The service-oriented automation
software entities (designated here by bots) used in such
approach requires a short set of methodologies and
software targeting their specification for both
computer systems and embedded automation devices.
The present work explains the adopted methodologies
and software developments for the engineering of
service-based automation systems. The main contents
focus on the specification of a framework for the
development of bots and supporting engineering tools
that are part of the Continuum project. The paper also
does an overview over the engineering steps from the
system design to the operation, and focuses the
importance of the maintenance of automation bots.
Such applications will contribute to decrease the
development time and reduce the components'
interdependency, offering enough flexibility for
automatic reconfiguration of shop-floor layouts.

1. Introduction

Distributed computing systems are a natural
evolution of isolated computing, not only for extending
the limitations in terms of processing power and
consequent drawbacks, but also to assimilate software
to the real nature of things. Examples of dispersions
and their relations with the environment can be found
in natural systems (such as ecosystems [1]) and also in
human-made ones, like theme parks. Whatever the
extent is, the distribution should also be handled with

some kind of arrangement and obey to imposed laws,
else the behavior would be chaotic and non-sense.

Particularly in the scope of this work, distribution of
equipment, operators, products and information can be
found in modern industrial production systems that
should be ready for both mass-production and mass-
costumization. A large number of factors are critical in
the effective operation of such flexible production
lines, including the number of product options,
manufacturing operation of each one, product type,
workstation capacity, processing time of the operations
at each station, material handling capacity at each work
station, and overall material handling capacity [2].
Therefore, the resulting data to be processed, besides
being enormous, may also be constantly in change.

Distributed software components are already being
used in the form of distributed objects, function blocks
and services. The last one, in form of Service-oriented
Architectures (SoA) and Service-oriented Computing
(SoC), is hitting right now the domain of industrial
automation systems. The idea of “service-oriented
computing to provide a way to create a new
architecture that reflects components’ trends toward
autonomy and heterogeneity” [3] dominates the view
of the future trend. Also its growing maturity in the
business and e-commerce ground, are seen as step
forwards for a seamless integration [4] of resources
from different levels. Currently there are several efforts
dealing with these subjects, such as the SOCRADES
project (http://www.socrades.eu) to show the rising
tendency in the research and industry community.

Generally, SoA does only view the system by its
services, but less important are their providers and
requesters. These entities may represent automation
devices, software components and others, with the

2009 33rd Annual IEEE International Computer Software and Applications Conference

0730-3157/09 $25.00 © 2009 IEEE

DOI 10.1109/COMPSAC.2009.66

452

Authorized licensed use limited to: Instituto Politecnico de Braganca. Downloaded on January 15, 2010 at 17:59 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153403548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

special ability of encapsulating resources under the
shell of services. They represent a new approach that is
different from the traditional used Programmable
Logic Controllers (PLC) in automation. These entities
are sometimes called smart devices [5], other times
possessing different names, but having in common
representation as service enabled autonomous control
entities, devices actuators and sensors [6]. This work
adapts the word bot (as an abbreviation for the word
“robot”) to designate interacting software components
and mediators of hardware devices, robots and other
resources that may be found at the shop-floor.

Even if there are already existing tools for different
engineering steps of service-oriented systems, little
focus has been given to the nature of service-oriented
entities besides their services and interaction
mechanisms. Additionally, and considering the novelty
of it in industrial automation, the adoption of SoA
principles from the business level to the shop-floor has
to be smooth or be adapted to face the new
environment. In this context, the paper presents the
developed Continuum project with the goal to provide
an integrated engineering tool for service-oriented
automation systems, especially the specification and
management of the life-cycle of automation bots. The
mechanisms of interaction and control patterns using
service-orientation, and also a more advanced
engineering procedure are out of scope and are not
presented in this paper.

The outline is the following: section 2 discusses
background information and requirements for the
specification and development of software
methodologies and supporting applications for service-
oriented automation; section 3 steps into the
architecture of the Continuum project, focusing more
on the details of the bot framework and the
development studio; section 4 presents an overview
about several engineering steps since the system design
to the execution using the described approach; and
finally the paper resumes the conclusions and indicates
future work.

2. Background and requirements

Most applications developed today rely on a given
middleware platform which governs the interaction
between components, the access to resources, etc. [7].
Service-oriented Computing is a new paradigm that
evolves from the Object-Oriented Computing (OOC)
and component based computing paradigms by
splitting the developers into three independent but
collaborative entities: the application builders (also
called service requestors), the service brokers (or
publishers), and the service developers (or providers)

[8]. The scope of services applications goes beyond
organizational boundaries, such as e-Business. So,
integration and collaborations are key issues. And,
dynamic provision and evolution of services are a new
area of Software Engineering [9], that change the way
that software is developed and deployed.

The initiative in service-based systems replies its
echo in the concept of collaborative automation [11] in
the sense of autonomous, reusable and loosely-coupled
distributed components. Service computing and
orientation is here viewed not only as a form of
communication, but more a philosophy that software
entities should adopt by sharing resources and
representing their needs. As said before, this also
stands for a new way of design and thinking for
automation engineers, supported business managers,
and software engineers that have to develop the
necessary tools and methodologies. Figure 1 depictures
this view based on the requirements flow from the
automation and business “worlds” for the specification
of the necessary software.

Figure 1. Requirements for software
development of service-oriented automation.

For the success of a company, the marked must be
correctly analyzed and business strategies have to be
planned, which can maximize the usage of external
suppliers and clients, and consequently produce the
most favorable outcome (more details on this subject
can be obtained from game theory, particularly the best
response strategy and the Nash equilibrium). Of
course, since the environment is not static, flexibility
and adaptability are keywords of enormous
importance. The same is valid for efficient planning
and management of industrial shop-floors by the
automation engineers. A perfect balance between
mass-production and mass-customization is essential in
the new markets of ever changing demands.

Even if not seen at the first sight, both worlds are
service-enabled, and this does not always mean from

453

Authorized licensed use limited to: Instituto Politecnico de Braganca. Downloaded on January 15, 2010 at 17:59 from IEEE Xplore. Restrictions apply.

the technology point of view. In fact, the technology
side of services is nowadays more and more close
related to Web services. Therefore, software engineers
have the task to provide the right tools to facilitate the
life of both “communities” for service-oriented
environments, from the concept to the technology.
Business managers may used, for example, to get
statistical information of production and consequently
plan new strategies. But the main usage is for the
automation “people” so that they can easily plan and
configure factory cells.

There are numerous requirements for the
development of such systems and tools that can be
found in the requirement tables of several projects (see
for example the SOCRADES and SODA projects and
several related publications [11] [12] [13]). In this
context it is important to discuss the requirements that
software engineers have to attend to specify
configurable software entities and engineering tools.
Major requirements are:
– Service-oriented architectures as a reference model

for the specification, operation and integration of
automation systems;

– Maintain some compatibility to traditional
standards, such as IEC 61131 and IEC 61499;

– Easy development environment for automation
engineers and integration capabilities in business
levels;

– Device considerations such as use of low-cost
embedded devices with plug-and-play capabilities,
energy efficient, performance restrictions, security,
reliability and portability of code;

– Reuse, composition, aggregation, extension and
simplification of services and software entities;

– High-level process description for component
behavior and inter component relations, supported
by handling of undocumented and exceptional
events;

– Prepared for decentralization, autonomy of entities,
automatic reconfiguration and/or simple manual
reconfiguration.
The main challenge in the requirements and

proposed features, such as autonomy and re-
configurability are quite a problem when developing
software for the engineering of those systems. In the
end the software tools should provide the necessary
easiness so that they can be uniformly used and, from
the other side, have the necessary features.

3. The Continuum project: specification
and development

Based on the requirements, it was decided that the
basic building blocks that compose the distributed

system should be configurable software components
assuming different tasks, in a form of a component-
based service-oriented framework. As referred in the
introduction, the designation bot was adopted to
identify a software component (moreover in section
3.1). To design, configure and maintain bots, there is a
need of specific tools, that are user-friendly and speed-
up the development, using a high-level programming
approach (visual languages). Figure 2 represents a
schematic diagram of the used design principle.

Figure 2. Design concept for the software of
service-oriented industrial automation.

The project was baptized Continuum Development
Tools, named after the continuum concept used in
physics and philosophy. First developments were
started by integrating already developed software
components, in special the PndK (Petri nets
development toolKit) [16], under the same umbrella.
Along with the integration, it was identified that
several software packages are needed, namely: a
framework for developing bots, engineering tools for
the design and managing of bots and several utilities
(mainly libraries) for supporting activities (e.g. such as
communication and interface for devices).

Figure 3 represent a component diagram with the
several grouped software components that were
planned for the initial compendium of the Continuum
project. Target systems range from traditional PC’s
(especially for the engineering tools) to the devices that
should embed the generated bot code. The groups are
categorized by the automation bots, their supporting
engineering tools and additional utilities (in form of
libraries) to support the development. The main
component would be the Continuum Bot Framework
(CBF) for the development of bots and their functional
modules, inspired in the anatomy of living beings.
Another component, the Continuum Development
Studio (CDS) that is based on an extensible
Document/View framework, provides an engineering
tool for service-oriented bots, for example, supporting
the visual description, analysis and simulation of their
behavior (for now, in Petri nets formalism according
to the definition of T. Murata [15]). Both automation
bots and engineering tools are explained in more detail

454

Authorized licensed use limited to: Instituto Politecnico de Braganca. Downloaded on January 15, 2010 at 17:59 from IEEE Xplore. Restrictions apply.

in the next subsections. The Utilities package includes
several reused software libraries and tools, some
developed internally others adopted from the outside,
such as the SOA4D DPWS library (available at
https://forge.soa4d.org) providing facilities for the
development of Web services and the Qt toolkit (see
http://qtsoftware.com), used mainly as a graphical
toolkit for human interaction in the CDS.

Figure 3. Main software components of the
Continuum project.

The main languages of development are C and C++.
The development environment was generated and is
maintained using several tools. As such, Subversion
(http://subversion.tigris.org) is used as versioning
control system and CMake (http://www.cmake.org)
was the choice for the building system (permitting
cross-platform development and generation).
Additionally, documentation is generated using
Doxygen (http://www.doxygen.org/). There is no
specific software project management tool that is used,
since the group is constituted by few people and the
development is normally done at the same place.

3.1. Automation bots and their framework

Bots are a common term used in computer games to
designate non-human players in a virtual world that
should behave as similar as possible as the ones made
of flesh and bone. Therefore, methodologies of
artificial intelligence and nowadays scripting are used
to specify their behavior, whatever it is based on
known information or on completely new input. Bots
are also used in other fields with similar meaning
and/or extending it also for the use of repetitive

software tasks, such as chatbots, Web bots and tutor
bots for e-learning (as industrial robots for physical
tasks). In a general way, it is correct to say that a bot is
the software part of a robot or simulated being.

The adoption of this designation in this work is easy
to comprehend: from one side the question of
representing someone or something, from the other
side the connotation to robots that are widely used in
industrial automation. Still open, is the internal
organization of bots that is a special concern to the
developers and to the end users. As such, a modular
approach was adopted to specify several functional and
reusable modules that compose in the end a full
integrated bot. The reader may look to a module as an
organ of a living being, providing specific functions
and properties. For example, a bot that is mediator of
an industrial robot may have a module for
communication, a Petri nets interpreter, and also a
device interface (so it may read/write signals from/to
the robot device).

Bots that implement several functions require a
consistent anatomy to deal with the different function
modules (“organs”) in order to fulfill the necessary
requirements. Other problems may arise from the
asynchronously operating modules, possible data
inconsistencies and concurrent processes/threads. As a
whole, the integration of modules into a full functional
bot must be considered. Similar to what happen to
most of the animals that have a nervous system,
“impulses” or signals generated by modules should be
routed correctly to the destiny and be interpreted. This
can be considered as a form of loose integration,
particularly event-based integration in which modules
interact by announcing and responding to occurrences
called events [16].

The main basis for the development of bots is the
Continuum Bot Framework. A class diagram centered
on the CBF and realizations of modules and bots is
shown in Figure 4. A module can be defined by inherit
the CBFAbstractModule class and adding special
functionality to it. For example, the Petri Nets Kernel
Module uses the functions and structures of the
Continuum Petri Nets Kernel library. For the DPWS
Module, the external SOA4D DPWS library was used
to create a communication module, so that bots could
use it to communicate to others, via exposition of
services and consumption of others’ services. An
independent bot (integrated as a stand-alone
application or library) can be obtained by deriving
CBFAbstractBot, add some custom code and specially
combining required modules. See the example of a
Mechatronic Bot in Figure 4 that depends on several
modules.

455

Authorized licensed use limited to: Instituto Politecnico de Braganca. Downloaded on January 15, 2010 at 17:59 from IEEE Xplore. Restrictions apply.

Signals are used for intra-specific communication of
a bot, i.e. event-based interaction between its modules.
A signal is created from the CBFSignal class and
several parameters and user-data can be set in the
signal’s instance. Signals are sent by a module and
routed via the intermediate CBFModuleManager that
has a reference to each module. The receiving of
signals and their analysis is done asynchronously by
each module. When a signal is received, it is saved in
the local queue of the module. Internally, a module
represents a threaded close-loop that analyses the local
queue of received signals. Whenever a signal is popped
out from the queue, a code corresponding to this event
is executed. The used signals mechanism can be
compared in the functional way to the Signal/Slot
approach from the Qt toolkit [17].

3.2. Development studio for engineers

During the past decade, many kinds of distributed
computing systems have been proposed and built and
they also differ considerably in how they are
programmed [18]. The used programming languages
can vary from the conventional languages, to high-
level forms of representation, dedicated to
distributed/parallel systems. The initial choice for such
a language was Petri nets (specified originally by C.A.
Petri in his thesis [19]), not only because they
assimilate some of the languages used in automation
(see the IEC 61131-3 standard), but also due they wide
spectrum of features and applicability, possibilities for
extensions and solid mathematical foundation. In its
core, a Petri net is an abstract formal model of
information flow [20], which can be represented
graphically in the form of a graph by specifying the
relation of places and transitions.

The application of Petri nets can range typical
systems with defined behavior to more complex ones
with distributed participants. In any case, system
engineering and associated tools are required to
facilitate the developer's intervention. From the Petri
nets side, the practical usage is limited by the lack of
computer tools which would allow handling large and
complex nets in a comfortable way [21]. Therefore, the
Continuum Development Studio (CDS) is intended to
provide a user-friendly environment for several
engineering tasks of service-oriented automation
systems, since the specification and configuration of
automation bots, analysis and simulation, until the
operation of the system. Figure 5 represents a
screenshot of the CDS, simulating a Petri net control
model.

The development was based on a port and natural
evolution of the previous PndK, enriched with a multi
document/view type framework (similar to the model-
view-controller architectural pattern) and additional
tools. The framework was created on an insufficient
basis of the used Qt toolkit (that has in fact the support
for model-view programming in form of classes, but
does not provide a framework for their management
and integration into an application). Basically the
framework includes a document manager class for
supervising documents and their views, a project
explorer to aggregate documents in a logical way and
the abstract classes from which the developer can
create customized documents and views. The
document manager permits the creating of document
and view instances in the fashion of the factory method
pattern and also the customization of their tools, e.g.
menus, tool bars and other widgets. File handling (via
the operations of new, open, save, etc.) is also handled
in an integrated manner for all types of documents. For

Figure 4. Class diagram and realizations of the Continuum Bot Framework.

456

Authorized licensed use limited to: Instituto Politecnico de Braganca. Downloaded on January 15, 2010 at 17:59 from IEEE Xplore. Restrictions apply.

now, Petri net and text document types (and
corresponding views) were implemented.

Figure 5. Continuum Development Studio
showing a simulated Petri net.

Petri net document/view permits the design,
analysis and discrete simulation of Petri nets.
Additionally, a customized Property system was
developed to allow the enrichment of Petri nets and
their elements with information that can be used, e.g.
to associate the Petri net model to the behavior of an
automation bot. There is a built-in orchestration engine
that is able to coordinate and synchronize services
(using the SOA4D DPWS library) according to the
workflow described by a Petri net. Configuration of
bots (that include the Petri Nets Kernel Module) is
done mainly by describing their expected behavior via
a Petri net model, including the request of external
services, exposition of its own services and device
access.

4. The Continuum project: system
engineering overview

Once the software is fully completed to be used, the
question now is how to use it for specifying the
automation system. The following section describes
the several required engineering steps since the system
design until its operation and reconfiguration.

First of all, the used case study scenario
compromises a flexible production system with two
work stations (that can be used by operators and

robots), several conveyors that route production pallets
into/out of the system and to the workstations, and also
two lifters that make the interface between the upper
and lower levels of conveyors. The system exists
physically (Figure 6.a) and was also 3D modeled in
DELMIA (Digital Enterprise Lean Manufacturing
Interactive Application), used for simulation,
monitoring and to provide the connection of virtual
devices (see Figure 6.b). Prototype devices were
connected to the several equipment units (conveyors
and lifters) for hosting the builded automation bots
(initially un-configured). The used tools and
engineering methodology were applied to this scenario
with the goal of transferring pallets to the workstations
and introduce some flexibility in the design and
maintenance of the system.

Figure 6. Physical and virtual representation
of the case study scenario.

At the current time, the design phase compromises
the use of the virtual representation in DELMIA
mainly to export the connection information in XML
format to the CDS. The CDS is employed for
designing and analyzing the Petri nets template models
for describing the behavior of the bots (Figure 7.a).
When importing the device/connection information
from DELMIA, several steps are done by the CDS: 1)
instantiate Petri nets models for each bot based on the
designed template models, 2) create the necessary
properties of the Petri nets models so that several
parameters of the given information from DELMIA are
written on the models (e.g. bot/device information,
connections, ...), and 3) based on the “enrichment” of
the Petri nets models, composition of models can be
done for creating connection logic and for the overall
system analysis (Figure 7.b).

457

Authorized licensed use limited to: Instituto Politecnico de Braganca. Downloaded on January 15, 2010 at 17:59 from IEEE Xplore. Restrictions apply.

After the analysis and simulation (that can be done
with the CDS and also with DELMIA, providing
services of the virtual devices), bots must now be
configured. The process of deploying a service that
encapsulates its logic as a Petri nets model to a bot that
provides an embedded Petri Nets Kernel Module is
depicted in Figure 7.c. The deployment functionality is
a standard feature of the DPWS and is exposed as a
dynamic deployment service. The target and the
deployment service can be discovered by stacks built-
in discovery service. After deployment a new service
endpoint has been added and the execution of the
services logic has been initiated. Deployment
information includes the Petri nets behavior model,
connection information of neighbors (required
services), provided services by the bot and also extra
configuration information for the other modules of the
bot. The bot will configure itself (and its modules) and
is then ready for operation.

Operation means autonomous behavior of bots
according to their defined model, plus internal
exception handling and the exposition and requesting
of services by the different bots and other software
components that are on the system (Figure 7.d). Higher
level features in the service approach includes also the
aggregation of services into one (simplifying the
outside view), lateral collaboration between bots
(offering services), decentralization vs. hierarchical
control approach and also business considerations.
Business integration (and in general, higher-level
integration) of the factory cell is done via service-
orientation. Business needs are expressed by the
production planning and management of the factory

cells by monitoring their work status (via specific
series), disabling/enabling several routing paths of
production, etc.

During operation, reconfiguration may also be
needed. For example, a control model for a bot is not
anymore valid or production strategies have changed.
In these cases, affected bots should be stopped (without
paralyzing all the system) and consequently their
services would no longer available. During this time,
new models can be designed to define the new
expected behavior, uploaded to the bots and restart
their operation.

5. Conclusions and future work

This paper reports the specified and developed
software, under the name of Continuum Development
Tools, and provides an overview over the necessary
engineering steps to design, analysis and manage
automation systems based on service-oriented bots. A
special attention was devoted to the framework for the
definition of automation bots, which are the main
elements in the architecture, after the
provided/requested services.

Since the objective is to facilitate the specification
and enhance the operation of such systems, based on
the already solid foundation introduced in this work,
further efforts are required. In the future work can be
included the enhancement of the actual status of
development enriched with new features and more rich
environment (different types of bots and their
modules). Important is also the adaptation of advance
interaction patterns for service-orientation to increase

Figure 7. Engineering steps using the Continuum approach

458

Authorized licensed use limited to: Instituto Politecnico de Braganca. Downloaded on January 15, 2010 at 17:59 from IEEE Xplore. Restrictions apply.

the system response and autonomy. In practical terms,
evaluation has to be done on the actual case study
system by the parameters of performance, design and
maintenance efforts, flexibility, and capacity, besides
others. Based on one of the requirements, compatibility
to the standards of automation (such as IEC 61131 and
IEC 61499) must be reached to provide smooth
transitions to the new approach.

6. Acknowledgements

The authors would like to thank the European
Commission and the partners of the EU IST FP6
project “Service-Oriented Cross-layer infrastructure for
Distributed smart Embedded devices” (SOCRADES),
the EU FP6 “Network of Excellence for Innovative
Production Machines and Systems” (I*PROMS), and
the European ICT FP7 project “Cooperating Objects
Network of Excellence” (CONET) for their support.

7. References

[1] A.R. Clapham, T.G. Tutin, and D.M. Moore, Flora of
the British Isles, Edition 3, Cambridge University Press
Archive, 1990.
[2] S.A. Ali, H. Seifoddini, and H. Sun, “Intelligent
Modeling and Simulation of Flexible Assembly Systems”, In
Proceedings of the 37th Conference on Winter Simulation,
Orlando, Florida, December 2005, pp. 1350-1358.
[3] M.N. Huhns, and M.P. Singh, “Service-oriented
computing: key concepts and principles”, In IEEE Internet
Computing, Vol. 9, No. 1, 2005, pp. 75-81.
[4] F. Jammes, A. Mensch, and H. Smit, “Service-oriented
Device Communications Using the Devices Profile for Web
Services”, In Proceedings of the 3rd International Workshop
on Middleware for Pervasive and Ad-hoc Computing, ACM
Press, New York, NY, USA, 2005, pp. 1-8.
[5] F. Jammes, and H. Smit, “Service-oriented Paradigms in
Industrial Automation”, In IEEE Transactions on Industrial
Informatics, Vol. 1, No. 1, Feb. 2005, pp. 62-70.
[6] F. Ciancetta, B. D'Apice, D. Gallo, and C. Landi, “Plug-
n-Play Smart Sensor Based on Web Service”, In IEEE
Sensors Journal, Vol. 7, No. 5, May 2007, pp. 882-889.
[7] L. Baresi, R. Heckel, S. Thöne, and D. Varró,
“Modeling and Validation of Service-Oriented Architectures:
Application vs. Style”, In Proceedings of the 9th European
Software Engineering Conference held jointly with 11th
ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ACM Press, New York, NY, USA,
2003, pp. 68-77.
[8] W.T. Tsai, “Service-Oriented System Engineering: A
New Paradigm”, In Proceedings of the IEEE International
Workshop on Service-Oriented System Engineering, IEEE
Computer Society, October 2005, pp. 3-6.

[9] M. Aoyama, S. Weerawarana, H. Maruyama, C.
Szyperski, K. Sullivan, and D. Lea, “Web Services
Engineering: Promises and Challenges”, In Proceedings of
the 24th International Conference on Software Engineering,
ACM Press, New York, NY, USA, 2002, pp. 647-648.
[10] A.W. Colombo, and R. Harrison, “Modular and
Collaborative Automation: Achieving Manufacturing
Flexibility and Reconfigurability”, In International Journal
of Manufacturing Technology and Management 2008, Vol.
14, No. 3/4, pp. 249-265.
[11] F. Depeisses, “Requirements Specification for SODA”,
Final Version, March 2007, http://www.soda-itea.org.
[12] P. Spieß, and S. Karnouskos, “Maximizing the Business
Value of Networked Embedded Systems through Process-
Level Integration into Enterprise Software”, In Proceedings
of the Second International Conference on Pervasive
Computing and Applications, July 2007, pp. 536-541.
[13] P. Phaithoonbuathong, T. Kirkham, C.S. Mcleod, M.
Capers, R. Harrison, and R.P. Monfared, “Adding Factory
Floor Automation to Digital Ecosystems; Tools, Technology
and Transformation”, In Proceedings of the 2nd IEEE
International Conference on Digital Ecosystems and
Technologies, Feb. 2008, pp. 288-293.
[14] J.M. Mendes, P. Leitão, A.W. Colombo, and F. Restivo,
“Service-Oriented Process Control using High-Level Petri
Nets”, In Proceedings of the 6th IEEE International
Conference on Industrial Informatics, Daejeon (South
Korea), July 2008, pp. 750-755.
[15] T. Murata, “Petri nets: Properties, Analysis and
Applications”, In Proceedings of the IEEE, Vol. 77, 1989,
pp. 541-580.
[16] D.J. Barrett, L.A. Clarke, P.L. Tarr, and A.E. Wise, “A
Framework for Event-based Software Integration”, In ACM
Transaction on Software Engineering Methodologies, Vol. 5,
No. 4, 1996, pp. 378-421.
[17] J. Blanchette, and M. Summerfield, C++ GUI
Programming with Qt 4, Prentice Hall (in association with
Trolltech Press), 2006.
[18] H.E. Bal, J.G. Steiner, and A.S. Tanenbaum,
“Programming Languages for Distributed Computing
Systems”, In ACM Computing Surveys (CSUR), Vol. 21, No.
3, ACM Press, New York, NY, USA, 1989, pp. 261-322.
[19] C.A. Petri, Kommunikation mit Automaten, Doctoral
Thesis, Bonn Institut fuer lnstrumentelle Mathematik,
Schriften des IIM, Nr. 3, 1962.
[20] J.L. Peterson, “Petri Nets”, In ACM Computing Surveys,
Vol. 9, No. 3, 1977, pp. 223-252.
[21] Z. Suraj, B. Fryc, Z. Matusiewicz, and K. Pancerz, “A
Petri Net System - an Overview”, In Fundamenta
Informaticae, Vol. 71, No. 1, IOS Press Amsterdam, The
Netherlands, January 2006, pp. 101 – 119.

459

Authorized licensed use limited to: Instituto Politecnico de Braganca. Downloaded on January 15, 2010 at 17:59 from IEEE Xplore. Restrictions apply.

