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Abstract

We give a new computational method to obtain symmetries of ordinary
differential equations. The proposed approach appears as an extension of
a recent algorithm to compute variational symmetries of optimal control
problems [Comput. Methods Appl. Math. 5 (2005), no. 4, pp. 387-409],
and is based on the resolution of a first order linear PDE that arises as a
necessary and sufficient condition of invariance for abnormal optimal con-
trol problems. A computer algebra procedure is developed, which permits
to obtain ODE symmetries by the proposed method. Examples are given,
and results compared with those obtained by previous available methods.
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1 Introduction

Sophus Lie was the first to introduce the use of symmetries into the study of
differential equations, Emmy Noether the first to recognize the important role
of symmetries in the calculus of variations. Currently, all the computer algebra
systems that address differential equations provide several tools to help the user
with the analysis of Lie symmetries. Recently, the authors developed a computer
algebra package for the automatic computation of Noether variational symme-
tries in the calculus of variations and optimal control [5], now available as part of
the Maple Application Center at http://www.maplesoft.com/applications/app center view.aspx?AID=198

The omnipresent tools for Lie symmetries provide a great help for the search
of solutions of ODEs, their classification, order reduction, proof of integrability,
or in the construction of first integrals. From the mathematical point of view, a
ODE symmetry is described by a group of transformations that keep the ordi-
nary differential equation invariant. Depending on the type of transformations
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one is considering, different symmetries are obtained. An important class of
symmetries is obtained considering a one-parameter family of transformations,
which form a local Lie group. Those transformations are often represented by
a set of functions known as the infinitesimal generators. From the practical
point of view, the determination of the infinitesimal generators that define a
symmetry for a given ODE is, in general, a complex task [6, 11]. To address the
problem, we follow a different approach.

We propose a new method for computing symmetries of ODEs by using
a Noetherian perspective. Making use of our previous algorithm [5], that has
shown up good results for the computation of Noether variational symmetries of
problems of the calculus of variations and optimal control, we look to an ODE
as being the control system of an optimal control problem. Then, we obtain
symmetries for the ODE by computing the abnormal variational symmetries of
the associated optimal control problem.

This paper is organized as follows. In §2, the necessary concepts associated
with variational symmetries in optimal control are reviewed. The new method
for computing symmetries of ODEs is explained in §3. The method is illustrated
in §4, where we compute symmetries for three distinct ODEs and compare the
results with the ones obtained by the standard procedures available in Maple.
We end the paper with some conclusions and comments §5. The definitions of
the new Maple procedure that implements our method are given in Appendix.

2 Symmetries in optimal control

Without loss of generality, we consider the optimal control problem in Lagrange
form: to minimize an integral functional

I[x(·),u(·)] =

∫ b

a

L(t,x(t),u(t)) dt (1)

subject to a control system described by a system of ordinary differential equa-
tions of the form

ẋ(t) = ϕ(t,x(t),u(t)) , (2)

together with appropriate boundary conditions. The Lagrangian L : R × Rn ×

Rm → R and the velocity vector ϕ : R × Rn × Rm → Rn are assumed to be
continuously differentiable functions with respect to all their arguments. The
controls u : [a, b] → Rm are piecewise continuous functions; the state variables
x : [a, b] → Rn continuously differentiable functions.

The celebrated Pontryagin Maximum Principle [10] (PMP for short) gives
a first-order necessary optimality condition. The PMP can be proved from a
general Lagrange multiplier theorem. One introduces the Hamiltonian function

H(t,x,u, ψ0,ψ) = ψ0L(t,x,u) +ψT · ϕ(t,x,u) , (3)

where (ψ0,ψ(·)) are the “Lagrange multipliers”, with ψ0 ≤ 0 a constant and
ψ(·) a n-vectorial piecewise C1-smooth function, and the multiplier theorem
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asserts that the optimal control problem is equivalent to the maximization of
the augmented functional

J [x(·),u(·), ψ0,ψ(·)] =

∫ b

a

(

H(t,x(t),u(t), ψ0,ψ(t)) −ψ(t)T · ẋ(t)
)

dt . (4)

Definition 1. A quadruple (x(·),u(·), ψ0,ψ(·)) satisfying the Pontryagin Max-
imum Principle is said to be a (Pontryagin) extremal. An extremal is said to
be normal when ψ0 6= 0, abnormal when ψ0 = 0.

Let hs : [a, b]×Rn ×Rm ×R×Rn → R×Rn ×Rm ×Rn be a one-parameter
group of C1 transformations of the form

hs(t,x,u, ψ0,ψ) =

(hs
t (t,x,u, ψ0,ψ),hs

x
(t,x,u, ψ0,ψ),hs

u
(t,x,u, ψ0,ψ),hs

ψ(t,x,u, ψ0,ψ)) . (5)

Without loss of generality, we assume that the identity transformation of the
group (5) is obtained when the parameter s is zero:

h0
t (t,x,u, ψ0,ψ) = t, h0

x
(t,x,u, ψ0,ψ) = x,

h0
u
(t,x,u, ψ0,ψ) = u, h0

ψ(t,x,u, ψ0,ψ) = ψ.

Associated with a one-parameter group of transformations (5), we introduce its
infinitesimal generators :

T (t,x,u, ψ0,ψ) =
∂

∂s
hs

t

∣

∣

∣

∣

s=0

, X(t,x,u, ψ0,ψ) =
∂

∂s
hs

x

∣

∣

∣

∣

s=0

,

U(t,x,u, ψ0,ψ) =
∂

∂s
hs

u

∣

∣

∣

∣

s=0

, Ψ(t,x,u, ψ0,ψ) =
∂

∂s
hs
ψ

∣

∣

∣

∣

s=0

. (6)

We can define variational invariance using the augmented functional (4) and
the one-parameter group of transformations (5) or an equivalent condition in
terms of the generators (6):

Definition 2 ([3, 13]). An optimal control problem (1)-(2) is said to be invariant
under (6) or, equivalently, (6) is said to be a symmetry of the problem (1)-(2)
if

∂H

∂t
T +

∂H

∂x
· X +

∂H

∂u
· U +

∂H

∂ψ
· Ψ− ΨT · ẋ −ψT ·

dX

dt
+H

dT

dt
= 0 , (7)

with H the Hamiltonian (3).

A computational algorithm to obtain the infinitesimal generators T , X, U,
and Ψ that form a variational symmetry (7) for a given optimal control problem
(1)-(2) was developed in [5]. Here we remark that the abnormal variational
symmetries (i.e. the ones associated with ψ0 = 0) obtained by the method
introduced in [5] provide symmetries for ordinary differential equations.
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3 Computing ODE symmetries from an optimal

control perspective

To ODE symmetries (see e.g. [1, 15]) we associate a smaller group of infinites-
imal transformations than that used in optimal control: we are only interested
in transformations of the independent variable t and transformations of the de-
pendent variables x. Let gs : R × Rn → R × Rn be a one-parameter group of
C1 transformations of the form

gs(t,x) = (gs
t (t,x),gs

x
(t,x)) ,

with g0(t,x) = (t,x). Let us denote the respective infinitesimal generators by

ξ(t,x) =
∂

∂s
gs

t (t,x)

∣

∣

∣

∣

s=0

, η(t,x) =
∂

∂s
gs
x
(t,x)

∣

∣

∣

∣

s=0

. (8)

Our method begins by identifying a richer set of variational symmetries in the
form (6), from which we then obtain (8). In this section, we explain in detail
how to arrive to the set of generators (8) that keep an ODE invariant.

We are interested in determining symmetries for systems of ODEs in the
canonical form















y
(r1)
1 = φ1(t, y1, ẏ1 . . . y

(r1−1)
1 , · · · , yn, ẏn . . . y

(rn−1)
n ) ,

...

y
(rn)
n = φn(t, y1, ẏ1 . . . y

(r1−1)
1 , · · · , yn, ẏn . . . y

(rn−1)
n ) ,

(9)

where functions φk : R × RΣn

i=1
ri → R, k = 1, . . . , n, are continuously differen-

tiable with respect to all their arguments. To write the system (9) of differential
equations as a control system (2), we begin by converting it as a system of equa-
tions of first order. For that we introduce a new set of variables, represented by
the vector x:

x = [x1, . . . , xr]
T

=
[

y1, ẏ1, . . . , y
(r1−1)
1 , . . . , yn, ẏn, . . . , y

(rn−1)
n

]T

, (10)

where r = Σn
i=1ri. With this notation, we get the control system























ẋ1 = x2 ,
...

ẋr1−1 = xr1
,

ẋr1
= φ1(t,x) ,

· · ·























ẋr1+...+rn−1+1 = xr1+...+rn−1+2 ,
...

ẋr1+...+rn−1 = xr1+...+rn
,

ẋr1+...+rn
= φn(t,x) ,

(11)

with r state variables but no control variables (i.e., (11) is a particular case of
(2) where ϕ does not depend on u).
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To use the formalism of optimal control and the notion of variational sym-
metry [5], one thing is missing: the existence of an integral functional (1) to be
minimized, and whose Lagrangian L enters into the definition of the Hamilto-
nian (3), thus being necessary for computing symmetries by (7). However, if we
restrict ourselves to the abnormal case, where the cost functional has no role, i.e.
if we fix ψ0 = 0, then the Hamiltonian H does not depend on the Lagrangian L
and we can look to our system (11) as an optimal control problem. If we only
consider the abnormal case, the control system (11) is everything one needs to
write (7) and find symmetries.

We are now in conditions to use our Maple optimal control package [5] and
its procedure Symmetry to obtain symmetries for systems of ODEs (9). We
only need to rewrite (9) as in (11) and then call function Symmetry of [5] for the
abnormal case. After using this technique with several concrete examples, and to
be able to compare the obtained results with the ones from standard techniques,
we concluded that a great manual effort is necessary at each particular problem
in converting the initial system into the canonical form, then to (11), and finally
recovering the initial notation to compare the results with those obtained by the
tools already available in the Computer Algebra System Maple. To do all the
process in an entirely automatic way, and also to optimize the algorithm, we
define here a new Maple function odeSymm (see Appendix) whose purpose is to
compute symmetries for systems (9) of ODEs.

The algorithm

We consider the abnormal Hamiltonian

H(t,x,ψ) = ψT · ϕ(t,x) ,

where the velocity vector is given by

ϕ(t,x) = [x2, . . . , xr1
, φ1(t,x), xr1+2, . . . , xr1+r2

, φ2(t,x), · · ·

· · · , xr1+...+rn−1+2, . . . , xr, φn(t,x)
]T

. (12)

Condition (7) simplifies to

ψ
T ·

(

∂ϕ

∂t
T +

∂ϕ

∂x
· X −

dX

dt
+ϕ

dT

dt

)

+ ΨT · (ϕ− ẋ) = 0 . (13)

Thus, given a system of ODEs, we determine the infinitesimal generators ξ and
η (8), which define a symmetry of the given ODEs, in the following way:

1. First we rewrite the given system of ODEs in the form (9);1

2. We represent the dependent variables yi and their derivatives y
(j)
i , i =

1, . . . , n, j = 1, . . . , ri − 1, present in functions φk of the canonical system
(9), by a new set of variables x, in accordance with (10);

1We only deal with differential equations that can be written in the canonical form (9).
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3. We define the velocity vector ϕ (12);

4. We substitute ϕ and its partial derivatives into (13);

5. From equation (13), we determine the variational generators T (t,x,ψ),
X(t,x,ψ) and Ψ(t,x,ψ);

6. In the results obtained, we go back to the initial notation of variables, by
means of the inverse relations of (10);

7. From the obtained set of variational generators T , X and Ψ, we extract
the subset of generators ξ and η,

ξ ≡ T , ηi ≡ X1+
P

i−1

k=1
rk
, i = 1, . . . , n ,

which represent symmetries for the given system of ODEs.

The infinitesimal generators obtained in step 5 are functions of the auxiliary
variables x. Since in step 6 the variables x resume to its initial meaning, we
conclude that our method is able to give dynamic symmetries (cf. Example 2).
Indeed, the generators may involve derivatives of the dependent variables:

(ξ,η) ≡ (ξ(t,y, ẏ, . . .),η(t,y, ẏ, . . .))

with (t,y, ẏ, . . .) = (t, y1, ẏ1 . . . y
(r1−1)
1 , · · · , yn, ẏn . . . y

(rn−1)
n ).

We now address the non-trivial part of our seven-step algorithm, which re-
sides precisely in step 5: the determination of the associated variational gener-
ators. We use the following strategy. Expanding the total derivatives

dT

dt
=

∂T

∂t
+
∂T

∂x
· ẋ +

∂T

∂ψ
· ψ̇,

dX

dt
=

∂X

∂t
+
∂X

∂x
· ẋ +

∂X

∂ψ
· ψ̇ ,

we write equation (13) as a polynomial

A(t,x,ψ) +B(t,x,ψ) · ẋ + C(t,x,ψ) · ψ̇ = 0 (14)

in the 2r derivatives ẋ and ψ̇:

ψT ·

(

∂ϕ

∂t
T +

∂ϕ

∂x
·X +ϕ

∂T

∂t
−
∂X

∂t

)

+ ΨT · ϕ

+

(

−ΨT +ψT ·ϕ ·
∂T

∂x
−ψT ·

∂X

∂x

)

· ẋ (15)

+

(

ψT ·ϕ ·
∂T

∂ψ
−ψT ·

∂X

∂ψ

)

· ψ̇ = 0 .

The terms in (15), which involve derivatives with respect to vectors, are ex-
panded in row-vectors or in matrices, depending, respectively, if the function is
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a scalar function or a vectorial one. Equation (15) is a differential equation in
the 2r + 1 unknown functions T , X1, . . . , Xr and Ψ1, . . . , Ψr. This equation
must hold for all ẋ1, . . . , ẋr, ψ̇1, . . . , ψ̇r, and therefore the coefficients A, B,
and C of polynomial (14) must vanish, i.e,



































ψT ·

(

∂ϕ

∂t
T +

∂ϕ

∂x
·X +ϕ

∂T

∂t
−
∂X

∂t

)

+ ΨT ·ϕ = 0 ,

−ΨT +ψT ·ϕ ·
∂T

∂x
−ψT ·

∂X

∂x
= 0 ,

ψT ·ϕ ·
∂T

∂ψ
−ψT ·

∂X

∂ψ
= 0 .

(16)

Although a system of partial differential equations, solving (16) is possible using
the Maple command pdsolve because the system is of the first order, homoge-
neous, and linear with respect to the unknown functions and their derivatives.
We also remark that since system (16) is homogeneous, we always have, as
trivial solution, (T,X,Ψ) = 0.

When dealing with ODEs with several dependent variables and high-order
derivatives, the number of calculations to be done is big enough, and the help
of the computer is more than welcome. We use the computer algebra system
Maple 10 to define a new procedure odeSymm that does all the cumbersome
computations for us – all the steps 1 to 7 of our algorithm.

Our procedure odeSymm receives, as input, a system of ODEs, and returns,
as output, a family of symmetries (ξ,η) – see definition of procedure odeSymm

in Appendix. To optimize the resolution of (16), we give the possibility to
pass several optional parameters to odeSymm. These optional parameters are
described in the Appendix and illustrated with concrete examples in §4. Here
we just mention that, by default, we use the method of separation of variables
(see [8, 15]) to solve (16). More precisely, we follow [2]: the generators are
replaced by the sum of unknown functions, one for each variable. For example,
T (t, x1, x2) = T1(t) + T2(x1) + T3(x2). Through the optional parameters, one
can use the default solving process of the Maple solver pdsolve or other specific
methods (cf. Example 1).

4 Illustrative examples

To show the functionality and the usefulness of our new procedure odeSymm, we
consider three concrete problems found in the literature. All the examples were
carried out with Maple version 10 on a 1.4GHz 512MB RAM Pentium Cen-
trino. The running time of procedure odeSymm is indicated, for each example,
in seconds.

Example 1 (Kamke’s ODE 120). We begin with a first order ODE found in
Kamke’s book [7]:

> ode:= t*diff(y(t),t)-y(t)*(t*ln(t^2/y(t))+2)=0;
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ode := t
d

dt
y(t) − y(t)

„

t ln

„

t2

y(t)

«

+ 2

«

= 0

To obtain symmetries of the equation we use our Maple procedure odeSymm with
the additional parameter hint=noint. This means that we will use the default
method of resolution of PDEs of the Maple solver pdsolve. If the optional
parameter hint is not used (see Examples 2 and 3 below), our procedure odeSymm
uses the method of separation of variables. We obtain the following infinitesimal
generators (0.72 sec):

> gerad:= odeSymm(ode, y(t), split, hint=nohint);

gerad :=

»

ξ = −
1

2
, η = −

y

t

–

,
h

ξ = 0, η = −
y

et

i

One can test the validity of the obtained symmetries with the symtest command
of the DEtools Maple package:

> map(DEtools[symtest], [gerad], ode, y(t));

[0, 0]

The symtest confirm that the infinitesimal generators leave the given ODE in-
variant, i.e., the generators obtained by our method give indeed a symmetry to
Kamke’s ODE 120. It is interesting to remark that, without the knowledge of
the computed symmetries, the ODE Maple solver dsolve is not able to integrate
the ODE:

> dsolve(ode, y(t), class);

However, when one gives to the Maple solver the infinitesimal generators found
by our method, the ODE is correctly solved:

> dsolve(ode, y(t), HINT=[gerad]);

y(t) = t
2
e
(C1−1)e−t

It is also interesting to note that our method is able to find one symmetry that
is different from the ones obtained using the standard methods of the literature.
The Maple system provides nine different algorithms to compute symmetries of
ODEs through the command symgen of the DEtools package. All the available
schemes for determining the infinitesimal generators – option way=all – are
not able to identify our pair of infinitesimals

[

ξ = 0, η = − y

et

]

:

> DEtools[symgen](ode, y(t), way=all);

h

ξ = 1, η = 2
y

t

i

,

»

ξ = 0, η = y ln

„

t2

y

«–

Example 2 (Damped Harmonic Oscillator). We consider a harmonic oscillator
with restoring force −kx, emerged in a liquid in such a way that the motion of
the mass m is damped by a force proportional to its velocity. Using Newton’s
second law one obtains, as the equation of motion, the following second order
differential equation [9, pp. 432–434]:

> EL:= m*diff(x(t),t,t)+a*diff(x(t),t)+k*x(t)=0;
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EL := m
d2

dt2
x(t) + a

d

dt
x(t) + kx(t) = 0

The symmetries for this equation are easily obtained with our Maple procedure
odeSymm (1.21 sec)

> gerad:= odeSymm(EL, x(t), split);

gerad := [ξ = 0, η = x] ,

»

ξ = 0, η = −
mx

′

k

–

, [ξ = 1, η = 0] ,

"

ξ = 0, η = e
−

at

2m e
t

√

a2
−4 km

2m

#

,

"

ξ = 0, η = e
−

at

2m e
−

t

√

a2
−4 km

2m

#

One can confirm that these infinitesimals represent valid symmetries for the
differential equation:

> map(DEtools[symtest], [gerad], EL, x(t));

[0, 0, 0, 0, 0]

Note that the output of our odeSymm procedure includes a dynamical symmetry:
the derivative of the dependent variable is present in the second pair of obtained
infinitesimal generators.

Example 3 (Kepler’s problem). We now consider the Kepler’s problem: a prob-
lem of the calculus of variations – see [14, p. 217]. In this case, the Lagrangian
depends on two dependent variables q1 and q2:

L(t,q, q̇) =
m

2

`

q̇
2
1 + q̇

2
2

´

+
K

p

q2
1 + q2

2

.

We will use the proposed method to determine symmetries for the corresponding
Euler-Lagrange differential equation. The Euler-Lagrange equation is trivially
obtained using our package of the calculus of variations [4, Example 5.2]:

> L:= m/2*(v[1]^2+v[2]^2)+K/sqrt(q[1]^2+q[2]^2);

L :=
1

2
m

`

v1
2 + v2

2´

+
K

p

q1
2 + q2

2

> EL:= CLaws[CV][EulerLagrange](L, t, [q[1],q[2]], [v[1],v[2]]);

EL :=

(

−m
d2

dt2
q1(t) −

Kq1(t)

(q1(t)2 + q2(t)2)
3/2

= 0,

−m
d2

dt2
q2(t) −

Kq2(t)

(q1(t)2 + q2(t)2)
3/2

= 0

)

In this case, the Euler-Lagrange equation is a system of two second order ODEs.
Our odeSymm procedure is able to determine symmetries for systems of differen-
tial equations as well (13.32 sec):

> odeSymm(EL, [q[1](t),q[2](t)], split);
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[ξ = 0, η1 = −q2, η2 = q1] ,

»

ξ =
3

2
t, η1 = q1, η2 = q2

–

, [ξ = 1, η1 = 0, η2 = 0]

It is worth to mention that this example can not be handled by the algorithms
available in Maple. Indeed, the Maple command symgen that looks for a symme-
try generator for a given ODE is not able to address more than one dependent
variable.

5 Conclusions

We have used the CAS Maple to define a new computational procedure that de-
termines, in an automatic way, symmetries of ODEs. The automatic calculation
of symmetries is a subject much studied under the theory of differential equa-
tions, with many results and applications in many different areas. Our main
novelty is the presentation of a new algorithm, alternative to existing ones, which
looks to symmetries of ODEs as particular cases of Noether-variational symme-
tries. As explained in §3, our algorithm involves the resolution of a first order,
homogeneous, and linear PDE, which is the abnormal case of the necessary and
sufficient condition of invariance for problems of optimal control studied with
Noether’s theorem [5, 12]. Interesting points of the proposed method are: (i) it
is based on a new approach to the subject – in particular, it is different from all
the nine alternative algorithms available in Maple; (ii) allows us to obtain dy-
namic symmetries for ODEs of any order; (iii) allows to determine symmetries
for systems of ODEs, when the analog simgen Maple command of the DEtools

package can only obtain solutions for a single ODE.
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Appendix: the new Maple procedure odeSymm

The procedure odeSymm, introduced in this paper, has been implemented for the
computer algebra system Maple (version 10). The complete Maple definitions
can be freely obtained from http://www.ipb.pt/∼pgouveia/odeSymm.htm to-
gether with an online help database for the Maple system.
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odeSymm computes the infinitesimal generators which define the symmetries
of the ODE, or system of ODEs, specified in the input. As explained
in section 3, this procedure involves the resolution of a system of partial
differential equations. We have used the Maple solver pdsolve, using, as
preferential method, the separation of the variables by sum.

Output:

- one or more lists of symmetry generators for a given ODE, or system
of ODEs ([ξ =?, η1 =?, η2 =?, . . . , ηn =?], · · · ).

Syntax:

- odeSymm(ode, x(t), opts)

Input:

ode - ordinary differential equation, or a set or list of ODEs;

x(t) - any indeterminate function of one variable, or a list of them, repre-
senting the unknowns of the ODE problem;

opts - (optional) specify options for the odeSymm command, where opts is
one or more of the following:

allconst - When this argument is given, the output presents all
the constants given by the Maple command pdsolve. By default,
that is, without option allconst, we eliminate redundant con-
stants; this is done by our Maple procedure reduzConst, which
is a technical routine, and thus not provided here. Essentially,
the procedure transforms in one constant each sum of constants.
The interested reader can find the Maple file with its definition
at http://www.ipb.pt/∼pgouveia/odeSymm.htm.

mindep - When one wants to restrict to the minimum the dependen-
cies of the infinitesimal generators: ξ(t) and η(x). By default,
that is, in the absence of options mindep and alldep, the follow-
ing dependencies are considered: ξ(t) and η(t,x);

alldep - All possible dependencies for the infinitesimal generators:
ξ(t,x,ψ) and η(t,x,ψ);

split - When this argument is given, the procedure invoke the split
command to divide the resultant set of infinitesimal generators
into uncoupled subsets, by fixing the values for all the constants
given by the Maple command pdsolve. The procedure split is
a technical routine. The interested reader can find the Maple file
with its definition at http://www.ipb.pt/∼pgouveia/odeSymm.htm.

showdep - Shows, in the obtained solution, all the dependencies of
the generators; otherwise only the name of the generators is
shown;
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showt - Shows, in the obtained solution, the dependence on the time
variable (independent variable); otherwise, the time variable is
omitted as a function parameter;

showgen - Shows, in the obtained solution, besides the infinitesimal
generators ξ and η, the augmented set of variational generators,
T , X and Ψ;

hint=<value> - Indicate a method of solution of the PDE system
(16), where <value> is one of `+̀ , `*̀ , or any other expression
allowed by the command pdsolve, being also possible to use
hint=nohint for the case one wants to use the standard method
of resolution of Maple; by default, the system is solved by sepa-
rating the variables by sum (hint= `+̀ ).

odeSymm := proc(ODEs::{‘=‘, list(‘=‘), set(‘=‘)},

depvars::{function,list(function)})

local n, tt, xx, pp, k, vX, vPSI, syseqd, sol, lstGerad, valGerad, phi,

vphi, lpsi, vpsi,Hi, t, Sr, x0, r, aux, mapx, sys, xieta, sol2;

unprotect(Psi); unassign(’T’); unassign(’X’); unassign(’Psi’);

unassign(’psi’);

Hi:=subs(select(type,[args[3..-1]],‘=‘),hint);

if Hi=’hint’ then Hi:=‘+‘; fi;

n:=nops(depvars);

if n=1 then x0:=[depvars] else x0:=depvars fi;

t:=op(1,x0[1]);

r:=[]:

for aux in x0 do

for k from 1 by 1 while evalb(subs(diff(aux,t$k)=_zzz,ODEs)<>ODEs) do

od;

r:=[r[], k-1]:

od:

Sr:=sum(r[’i’],’i’ =1..n);

mapx:=[seq(x0[i]=_x[1+(sum(r[’k’],’k’=1 ..i-1))], i=1..n)];

mapx:=[mapx[],seq(seq(diff(x0[i],t$j)=_x[j+1+sum(r[’k’],’k’=1..i-1)],

j=1..r[i]-1),i=1..n)];

mapx:=[mapx[],seq(diff(x0[i],t$r[i])=_xx[i],i=1..n)];

mapx:=[seq(mapx[nops(mapx)+1-i],i=1..nops(mapx))];

sys:=subs(mapx,ODEs);

if n=1 then solve(sys,{_xx[1]})

else solve({sys[]},{seq(_xx[i],i=1..n)}) fi;

phi:=subs(%, [seq(_xx[i],i=1..n)]);

vphi:=Vector([seq([seq(_x[j],j=2+sum(r[’k’],’k’=1..i-1)..sum(r[’k’],

’k’=1..i)), phi[i]][],i=1..n)]);

x0:= [seq(_x[i], i = 1 .. Sr)];

if Sr>1 then lpsi:=[seq(psi[i],i=1..Sr)] else lpsi:=[psi] fi:

vpsi:=Vector[row](lpsi);

if member(’alldep’,[args[3..-1]]) then

tt:=t,op(x0),op(lpsi); xx:=tt; pp:=tt;

elif member(’mindep’,[args[3..-1]]) then

tt:=t; xx:=op(x0); pp:=op(lpsi);
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else tt:=t; xx:=t,op(x0); pp:=t,op(lpsi); fi:

if Sr>1 then vX:=Vector([seq(X[i](xx), i=1..Sr)]);

else vX:=Vector([X(xx)]); fi;

if Sr>1 then vPSI:=Vector[row]([seq(PSI[i](pp), i=1..Sr)]);

else vPSI:=Vector[row]([PSI(pp)]); fi;

syseqd:={ vpsi.( map(diff,vphi,t)*T(tt)

+Matrix([seq(map(diff,vphi,i),i=x0)]).vX

+vphi*diff(T(tt),t)-map(diff,vX,t) )+vPSI.vphi,

convert(-vPSI+(vpsi.vphi)*Vector[row]([seq(diff(T(tt),i),i=x0)])

-vpsi.Matrix([seq(map(diff,vX,i),i=x0)]), ’list’)[],

convert((vpsi.vphi)*Vector[row]([seq(diff(T(tt),i),i=lpsi)])

-vpsi.Matrix([seq(map(diff,vX,i),i=lpsi)]), ’list’)[]} minus {0}:

lstGerad:=[T(tt), convert(vX,’list’)[], convert(vPSI,’list’)[]];

if Hi=’nohint’ then sol:=pdsolve(syseqd, lstGerad);

else sol:=pdsolve(syseqd, lstGerad, HINT=Hi); fi;

if not member(’allconst’,[args[3..-1]]) then sol:=reduzConst(sol); fi:

valGerad:=subs(sol,lstGerad);

sol:=[(lstGerad[i]=valGerad[i])$i=1..nops(lstGerad)];

sol:=collect(expand(simplify(sol)),[t,op(x0),op(lpsi)]);

if not member(’showdep’,[args[3..-1]]) then

xieta:=[xi,seq(eta[i],i=1..n)];

sol:=subs(map(i->i=op(0,i),lstGerad),sol);

else xieta:=[xi(tt),seq(eta[i](xx),i=1..n)]; fi;

if n=1 then xieta:=subs(eta[1]=eta,xieta) fi;

sol:=subs(’PSI’=’Psi’, sol);

sol:=subs(map(i->rhs(i)=lhs(i),mapx),sol);

xieta:=subs(map(i->rhs(i)=lhs(i),mapx),xieta);

sol2:=[xieta[1]=rhs(sol[1]),

seq(xieta[i+1]=rhs(sol[2+sum(r[’k’],’k’=1 ..i-1)]), i=1..n)];

if member(’split’,[args[3..-1]]) then sol2:=[split(sol2)]

else sol2:=[sol2] fi;

if member(’showgen’,[args[3..-1]]) then sol:=[sol,sol2[]];

else sol:=sol2 fi;

if n=1 then x0:=op(0,depvars) else x0:=map(i->op(0,i),depvars)[] fi;

sol:=subs({map(i->i(t)=i,[x0,op(lpsi)])[]}, sol);

if member(’showt’,[args[3..-1]]) then

sol:=subs({map(i->i=i(t),[x0,op(lpsi)])[]},sol) fi;

return sol[];

end proc:
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