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Abstract

In this paper two adaptive algorithms are presented for the solution of systems of evolutive
one-dimensional Partial Differential/ Algebraic Equations (PDAEs). The temporal integra­
tion is coupled with a spatial adapting strategy. The identification of the spatial subdomains.
where a regridding technique is introduced. is done through the comparison of the solutions
computed with two fixed grids of different sizes. The subproblems generated are solved by
two aclaptive strategies: the Grid Refinement Method (GRM), that promotes the refinement
of the subgrids detected in the previous step, and the Moving Mesh Method (MMM) includes
an additional differential equation for the nodal mobility.

The two a1gorithms proposed were successfully applied to the solution of an nonisother­
mal tubular reactor pseudo-homogeneous model d~cribed by two PDEs referring to reagent
concentration and system temperature dynamics. The performance of each algorithm is com­
pared to the results obtained by [3], based on the application of a formulation of the Moving
Finite Elements Method. with cubic Hermite polynomials approximations.

KfYWOrdS: Adaptive methods, partial differential equations, finite difference approximations,
tubular reactor

AMS classification: 65M50

1 IntroductÍon

Several problems in Engineering can be properly simulated by the solution of evolutive Differen­

tial/Algebraic Systems where the influence of diffusionaljconvective phenomena is very impor­
tanto In the case of hyperbolic systems. the weight of the convective terms is dominant, which
may lead to the development of steep moving waves or shocks on the solution profiles.

The numerical strategies used in this work are based on the Method of Lines: the derivatives

over one of the independent variables (generally the spatial one) are estimated by algebraic for­
mulas (in this case, finite difference approximations). The original PDE problem is transformed

in a complex system of ODEs, that is integrated over the remaining independent variable (the

temporal one) by a numerical integrator software (the DASSL implicit BDF formula package

[6]). The finite difference weights are estimáted by a recursive scheme developed by Fornberg

[4],for arbitrarily spaced grids, and by a strategy inspired by Schiesser [8], for the evaluation of
weights associated with Neumann boundary conditions.

When the solution developes large non-static spatial gradients, the overall grid has to be
Verydense, to reproduce accurately the numerical results without introducing numerical insta­
bility, which leads to unreasonable computational times. Such problems can be overcome by

the introduction of a mobility criteria for the positions of the nodes in the grid, on the regions-:-------------
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of the domain where the spatial solution gradients are larger and the advanee of the temporal
integration is more diffieult. Therefore, the grid adapts itself to the specifie charaeteristics of the
solution in each region of the domain. Thus, these type of algorithms are designated by Adaptive
Methods.

ln this paper, two adaptive algorithms are developed, that basicaliy apply two important
regridding techniques, widely studied by several authors:

• Grid Refinement and Relaxation [5] - lntroduetion and elimination of nodes from an
initial grid. Based on a estimation diseretization error proeedure in eaeh time step, severa!
grids are eonstructed with various sizes or refinement levels through ali the spatial domlin,
over which the problem is solved. Nades are added in the areas of major solution activity
(Grid Refinement) and removed from regions where the spatial gradients are lower (Mesh
Relaxation) .

• Dynamical Node Displaeement [7] - Using selected properties of the solution, additional
partial differential equations are deduced, that deseribe the movement of the nodal positions
during the solution of the problem. These equations are computed together with the origina!
differential system, that obviously has to be transposed to the related dynamical coordinate
set of independent variables.

2 Adaptive Numerical AIgorithms

ln this paper, two adaptive mesh algorithms are deseribed for one-dimensional evolutive systems
of AIgebraic-Differential Equations that ean be resumed by the foliowing general model:

(2.1)

subjected to the boundary eonditions:
and the initial condition:

G(!f) = O

g(zL, t) = gL(t)

g(z, O) = gO(z);

and g(zR, t) = gR(t),

z E [zL, zRj.

(2.2)

Both algorithms are described in [1, 2] and ean be structured in two main stages: estimation
of the discretization error and identification of the adaptive subdomains; and solution of the
subproblems generated in the first stage, by the introduetion of an adaptive grid technique.

2.1 Stage 1- Discretization Errar Estimation

This stage is similar in both algorithms and it is based on the eomparison of the solution obtained
by solving the original problem on two different grids: a fine and a eoarse grid (Grids of levei 2
and 1, respectively). lnitially, the fine grid is eonstructed by the bissection of eaeh interval of
the eoarse one. The nodes in the levell grid, that do not satisfy the error eriterium, are grouped
together with the levei 2 nodes plaeed between them, to form the subdomains over which the
adaptive subproblems are generated and then solved.

2.2 Stage 11 - Adapti'l1e Integration of the Subproblems

The second stage refers to the actual adaptive procedure that is different for each algorithm
studied in this work.
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2.2.1 Grid Refinement Method (GRM)

This adaptive procedure is based on the work presented by Guiné [5], that generates subproblems
of increasing refinement leveI, by repeating the procedure deseribed in Stage I, until every node
in every grid verifies the tolerance condition associated with the error estimated by:

EUj,k+1 = Wh~,k+1 - W2hj,k+l; j = 1,'" ,N Pn-l, i= 1,'" ,NPDE
(2.3)

ln this case, EUj,k+1 rep~esents the ap~roximation to the spatial error, in a node j of a grid
of refinement levei n; Whj,k+1 and W2hj,k+! are the approximations to the component i of the
solution, obtained through integration between the times tk and tk+!, on the finer (leveI n) and
the coarser (levei n-1) grids, respectively; N Pn-1 is the number of nodes in the grid of leveI n-1;
and N P DE is the number of partial differentia! equations of the problem.

The subdomains oflevel n+l are obtained by joining alI nodes n-1 that satisfy the condition:

I EUj,k+! I> TOL;; i=l,"',NPDE (2.4)

ln each refinement procedure, the profiles of the solution are computed by interpolation of
the profiles of levei 2, at alI the intermediary positions.

The algorithm is coupled with a strategy for th'e treatment of boundary conditions in the
refinement subproblems that simply defines fixed Dirichlet conditions on each interna! bound.
The positions of each bound, for the refinement leveI n+1 (for n = 2"" : NMAX - 1, where
NM AX is the maximum refinement leveI) are coincident with the positions of the first nodes of
levei n-l that verify the specified tolerance. The constant value of the boundary conditions is
given by the solution obtained in the integration over the leveI n-l grid. This kind of procedure is
very simpie and prevents discontinuities on the overaIl profiles but tends to introduce significant
errors in the solution.

2.2.2 Moving Mesh Method (MMM)

ln this method, the subproblems are generated in Stage I and solved bya two step procedure:

1. Conversion of the problem to a moving set of coordinates by the relation:

ti = u.,. + Uz' Z (2.5)

2. lnclusion of a moving grid differentiaI equation in the transformed problem, that originates
. the dynamical problem that we want to solve.

The Moving Mesh Equations used here were deduced by Petzold [7]. In this case, the velocities
i are chosen to minimize the time rate of change of u and z in the new coordinates. The noda!

movement is smoothed by the addition of a penalty function to the minimization, which attempts
to give neighbouring nodes nearly equal velocities. Thus Z for the node j satisfies:

Il}in [lItijll~+a 'lIzjll~ + À. (IIZ~= z~_1112+ Ilzi+!- ZiI12)]J z, z,-l 2 Z'+l - Zj 2
(2.6)



The quadratic equation in i can be minimized in each mesh point. Therefore, for ;\ > 0,
leads to

I
J

I

Here, Q is a positive scaling parameter, usually set to 1. The effect of the penalty term is
to an extra diffusional factor that smoothes out differences in the mesh velocities and tries
keep points from crossing.

It is introduced an adjustement of the time step to prevent node crossings and a final re­
definition strategy of the leveI 2 base grid that locally refines the intervals where the spatia!
step exceeds a predetermined value: ~z > ~ZMAX, by equidistributing two additional nodes. or
moves away nodes that get too dose from one another: ~z < ~ZMIN •.

Additionally: it is adopted a procedure that allows a semi-free evolution of the solution on the
internal subproblems' boundaries, which is only constricted by the spatial derivatives estimation
operation that uses the time evolution of the solution on the externally adjacent nodes to the
subdomains, computed on the static integration step ofthe original problem. The temporal pro­
files are approximated by linear interpolation. This procedure does not garantee the continuity of
the overall profile. 50: this is actually an iterative procedure, where convergence is only reached
when a specific tolerance is verified on both boundaries of each dynamic subproblem.
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The algorithms briefly described in this section are resumed in Figure 2.1.

Figure 2.1: Schematic resume of the adaptilJe numencal algonthms.

3 Numerical Results

The two adaptive algorithms described in the previous section were applied to the solution
of a parabolic/hyperbolic system of two P.D.E.'s. The quality of the results, defined by the
profiles precision and the computational effort demanded, is established by comparison with the
results obtained with a formulation of the Moving Finite Elements Method (MFEM) developed
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by Duarte [3], based on Hermite polynomials approximations. The software designed for the

application of every algorithm analised in this work, was executed in the same computer, a
Workstation SUN Sparcstation of architecture RISC with 16 Mb of RAM memory.

3.1 Ezample: Non-Isothermal Tubular Reactor

This model [3] simulates the startup of an non-isothermal catalitic tubular reactor, subjected to
a step disturbance in the reagent concentration of the feed stream. The reagent is consumed in
a first order reaction A -+ .P and it is assumed that the influence ofaxial diffusion can not be

neglected. Thus, the problem is the following microscopic mass balance: .

Óu 1 Ó2u ÓU .(LI)- = -. - - - - Da . u . V· e-'l' • (3.1)ót Pe Óz2 6z

6v T Óv T (1 I) T- = --·-+-·;3·Da·u·v·e-""·.- --·Nwh·(V-Vw) (3.2)
ót Thl Óz Thl Thl

with the boundary conditions: óul~·t) = P€· (u -1) , óul~·t) = O and v(O,t) = 1,
and the initial conditions: u(z, O) = O and v(z, O) = 1.

Here, u and vare the concentration of component A and the f1uid's temperature, respectively,

normalized in relation to the feeding stream conditions; Vw is the normalized temperature of the
cooling f1uid in relation to its initial temperature; 1;e = 104 and Da = 0.7 are the Peclet and
Damkhõler adimensional numbers, respectively; i = 21.8 is the Arrhenius number; ;3 = 0.7 is

the adimensional adiabatic rising of the temperature; Nwh= 33.7 is the number of heat transfer

units on the wall of the reactor; and 1'~' = 2.08 X 10-4 is the relation between the propagation
speeds of the massic and thermic waves, respectively. All these values were taken from [3].

3.1.1 Grid Refinement Method

The example was solved by the Grid Refinement Method on a temporal domain divided in three

zones: Zone 1 - t E [O, 1.0[, Zone 2 - t E [1.0, 100[ and Zone 3 - t E [100, 1000]; under the following
conditions and parameters: biased upwind five points finite difference formulas for the spatial

discretization on both variables (u and v) that ensure the correct reproduction of the positive

movement of the fronts, specially the massic wave; tolerances - 0.005 in Zones 1 and 2 and 0.01
in Zone 3 for variable u and 0.001 in Zones 1 and 3 and 0.005 in Zone 2 for variable Vi linear

interpolations; and an uniform first leveI base grid with 31 nodes which implies that NMAX = 9.
The application of the GRM to this example, with the above conditions, originated the results

presented in Figures 3.1-3.4. lnitially, during the propagation period of the massic wave (t < 1.0)
the method reproduces reasonably (vd. Figure 3.1) the abrupt massic front introduced at the

reactor's feeding section (z = O) by the initial step disturbance in the concentration variable (u)

defined on that boundary. The influence of convective mass displacement is dominant (P€ = 104),

thus the moving fronts tend to be very steep. We can also notice the infuence of slight numerical

dissipation on the solution profiles because the fronts thickness is larger than expected. During
this period, the variation of the temperature profiles is very low, because the thermal wave

propagates with a much less speed than the massic one (vd. Figure 3.2). After t = 1.0 the
massic wave crashes with the right boundary of the spatial domain, and the massic profiles

become very smooth (vd. Figure 3.3) and slowly decrease until they stabilize at the final steady­

state (t ~ 1000). For larger values of time, the gradients on the temperature profiles become
more noticeable (vd. Figure 3.4). The hotspot moves slowly through the reactor until it stabilizes
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when the system reaches the final steady state (t R: 1000).

The refinement procedure demanded by the problem ia presented in Figures 3.5 and 3.6.
Initially, the method simply reveals some difficulties in dealing with the disturbance introduced
at the reactor's entrance (vd. Figure 3.5) by the left boundary condition (z = O). Afier the
propagation period of the massic front through the reactor (for t > 1.0), the method only showa
some activity near the reactors exit (vd. Figure 3.6), where it has to deal with the Neumann
boundary condition defined at that position (z = 1).

...•.

Figure 3.2: Temperature profiles (Tfinal = 1)•
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Figure 3.1: Concentration profiles (Tfinal = 1).
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Figure 3.3: Concentration profiles (Tfinal = 1000). Figure 3.4: Temperature profiles (Tfinal = 1000),
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Figure 3.5: Refinement distributíon (Tfinal = 1).
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Figure 3.6: Refinement dístribution (Tfinal = 1000).

3.1.2 Moving Mesh Method

The results obtained by the application of the MMM on a temporal domain partitioned in four
subintervals defined by: Zone 1 - t E [O,1.0[, Zone 2 - t E [1.0,10[, Zone 3 - t E [lO, 100[ and Zone
4 - t E [100, 1000]; with the following conditions: five points biased upwind discretizations for
both variables; absolute tolerances - 1 X 10-4 in zones 1-3 and 5 x 10-4 in Zone 4, for variable tL

and 5 x 10-4 in Zone 1, 1x 10-4 in Zone 2, 5 x 10-5 in Zone 3 and 1 X 10-5 in Zone 4, for variable
v: initial base grid nonuniform with 20 nodes, mainly concentrated near the left boundary; linear
type interpolations; D.ZMIN = 1 x 10-5 and D.ZMAX = 2.3 X 10-2; and internodal viscosity factor
À = 0.75, are depicted in Figures 3.7-3.12.
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The algorithm MMM reproduces correctly the steep massic fronts and their movement during
the massic wave propagation period (vd. Figure 3.7). We notice some slight oscillations for
earlier times that clearly disappear afterwards. The temperature profiles evolution is satisfatory
and does not represent any additional difficulties in the advance of the temporal integration (vd.
Figure 3.8). After the massic propagation period (t > 1.0), the results obtained for both variables
are very similar to the numerical profiles computed by the GRM algorithm (vd. Figures 3.9 and
3.10). During the initial subinterval (t < 1.0), the grid associated with the concentration variable
(u) shows significant activity (vd. Figure 3.11) and the nodal movement follows the massic wave
path through the reactor. On the other hand, the grid coupled with the temperature variable (v)
remains static (vd. Figure 3.12), because the temporal gradients of this variable are very smãll.
After the initial period (for t > 1.0) both grids hardly show any activity, due to the smoothness
of the profiles.

Figure 3.7: Concentration projilu (Tfinal = 1).
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Figure 3.8: Temperature profilu (Tfinal = 1).

Figure 3.9: Concentration projile8. (Tfinal = 1000). Figure 3.10: Temperature projilu (Tfinal = 1000).
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Figure 3.11: Temporal Eflolution 01 the grid (TI = 1 - u). Figure 3.12: Temporal evolution 01 the grid (TI = 1 - IJ).

3.1.3 Comparison af the Numerical Performance Obtained by Each AIgorithm

ln Table 3.1, we compare the perfomance of the developed algorthms with the numerical be­
haviour of the MFEM formulation presented by [3].

The GRM demands a reasonably large computational effort in dealing with the presented
example, and still introduces some numerical instability on the numerical results. The solution
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profiles obtained by the MFEM and MMM algorithms are very similar. However, MMM reveals
to be more effective in this case, because it exhibits lower computational time.

Table 3.1: Computational performancfs for thf fxamplf.

Mfthod II Tcpu(s)
G.R.M. 19180.2
M.M.M. 8711.9

M.F .E.M. [3] 10436.2

4 Conclusions

From the solution of the example presented in this work, we can conclude that the GRM alglr
rithm reveals some difficulties in describing high gradient profiles and it may develop numerical
dissipation, mainly due to the simplicity and imprecision of the Dirichlet boundary treatment
strategy for the refinement subproblems. On the other hand, it can be shown that GRM is a
very efficient method for models that involve relatively smooth profiles [1].

The MMM algorithm is suitable to reproduce moving abrupt fronts or waves. The results oh­
tained are very exact with hardly any numerical instability. The boundary condition procedure
coupled with the MMM algorithm, based on linear interpolations on time for the nodes near the
subdomain boundaries proved to be very effective aRd reliable.

As it was expected, linear interpolations are the most adequate to deal with abrupt fronts
characterized by large spatial variations, on the solution profiles.
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