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Abstract

In the present work an extended UNIFAC group contribution model is used to calculate activity coefficients in solutions containing alcohols,
water, carboxylic acids, esters, alkanes and aromatic hydrocarbons. The limiting expressions for the association contribution to the activity
coefficients at infinite dilution are presented and discussed. A new set of interaction parameters between associating and non-associating
functional groups is reported. This set of parameters is applied in the association model to predict vapor—liquid, liquid—liquid equilibrium and
infinite dilution activity coefficients.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction In the present work this UNIFAC association model (A-
UNIFAC) is extended for the calculation of activity coef-

Mengarelli et al[1] presented a modified UNIFAC model ficients in mixtures containing alcohols, water, carboxylic

that takes into account association effects in the computa-acids, esters, aromatic hydrocarbons and alkanes.

tion of liquid-phase activity coefficients. This model adds an

association term to the original UNIFAC combinatorial and

residua_l expressiorg,3]. _The qssogiation _term is based_on 2 Association term in the A-UNIFAC model

Wertheim’s theory for fluids with highly directed attractive

forces[4—7] and it follows the group contribution approach

proposed by Zabaloy et 48] and Gros et a[9] in the GCA-

EoS equation. A single hydroxyl (OH) hydrogen-bonding

group, the same for all alcohols and water, was used to cal-

culate association effects. This approach allowed self- and

cross-associations to be solved as a single self-associatio

problem for the alcohols and alcohols + water systems, with

an explicit mathematical solution for the fraction of non-

bonded OH groups.

The mechanism of association in Wertheim’s perturba-
tion theory is determined by the number of bonding sites
assigned to each associating molecule. For example, a one-
site association model describes dimerization of carboxylic
acids, while a two-site model is required to represent the for-
"mation of higher oligomers in alcohols. Similarly, in group-
contribution association moddlk,9] the number of bonding
sites in each functional group determines the type of asso-
ciation. The general expression for the association activity
coefficient term £255°§, which is derived from the associ-
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