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Abstract

The laminar flow of Newtonian fluids in axisymmetric diffusers has been numerically investigated to evaluate the pressure-loss coef-
ficient as a function of Reynolds number, diffusion angle and expansion ratio. The numerical simulations were carried out with a finite-
volume based code using non-orthogonal collocated grids and second order accurate differencing schemes to discretize all terms of the

transport equations.
The calculations were carried out for Reynolds numbers between 2 and 200, diffusion angles from 0� to 90� and expansion ratios of 1.5
and 2 and the data are presented in tabular form and as correlations. A simplified 1D theoretical analysis helped explain the various
contributions to the loss coefficient and its difference relative to the reversible pressure variation due to differences between the actual
and fully developed friction losses, distortions of the velocity profiles and pressure non-uniformity upstream and downstream of the
expansion section.
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1. Introduction

Many industrial applications require piping systems to
provide energy and deliver products and often these take
place under laminar flow conditions for sub-critical Rey-

mined and this requires accurate values for the loss
coefficient.

Classical fluid dynamics textbooks and references such
as Runstadler et al. (1975), Crane Co. (1979), Gibson
(1930), Massey (1989) and Tsui and Wang (1995), all pres-
nolds numbers. It is also generally the case for miniaturized ent the same expressions for the local loss coefficient in dif-

fluid mechanical devices where the operation is almost
exclusively under laminar flow conditions. A common
component of such systems is the expansion, which can
be sudden or gradual, and it is necessary to understand
in more detail its laminar flow characteristics, especially
for the diffuser for which the literature is scarce. In engi-
neering calculations it is usually the pressure drop, the pipe
velocity, and/or the pipe diameter that has to be deter-
fusers which were derived on the basis of an inlet uniform
velocity profile and negligible shear stresses. That expres-
sion compares well with data for turbulent flow, but is
not appropriate for laminar flow due to non-negligible
shear stresses, amongst other things.

This study is a numerical investigation on laminar dif-
fuser flows of Newtonian fluids aimed at quantifying the
irreversible loss coefficient CI and extends previous
research of Oliveira and Pinho (1997) on sudden expansion
flows at low Reynolds numbers. For sudden expansions
they found large discrepancies between their local loss coef-
ficient and the expressions from the literature, which were
also based on fast flow redevelopment, negligible shear
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Nomenclature

A cross-section area
C normalised pressure coefficient, C � p

1
2q�u

2
1

DCF friction contribution into the irreversible loss
coefficient

DCI correction to theoretical loss coefficient
DCb distortions of velocity profiles
DCp0 nonuniform pressure effects
CF fully developed pressure coefficient
CI irreversible pressure coefficient
CI c corrected irreversible pressure coefficient
CI th theoretical irreversible pressure coefficient
Cp pressure coefficient
Cp01;Cp02 normalised area-averaged pressure coefficient

at cross-sections 01 and 02, respectively
CR reversible pressure coefficient
CT total pressure coefficient
D1, D2 diameter of inlet and outlet pipes, respectively
f Darcy friction factor
fx, fy, fz geometrical expansion factors for mesh spacing
L length

Nx, Ny, Nz number of internal cells of computational
grid

p2, p1 pressure at inlet and outlet planes respectively
DpF fully developed pressure drop
Dp0F actual wall friction pressure drops
DpI irreversible pressure drop
DpR reversible pressure decrease
DpT total pressure drop
u axial velocity component
u1; u2 bulk velocity in the inlet and outlet pipes
X1a, X1b mark beginning and end of fully-developed

flow in the upstream pipe
X2S marks beginning of region of fully-developed

flow in downstream pipe
a, b profile shape factors for energy ða � u3=u3Þ and

momentum ðb � u2=u2Þ
h half-angle of diffuser
l fluid dynamic viscosity
q fluid density
r area ratio ð� D2

1=D
2
2Þ

Fig. 1. Gradual expansion geometry and its control volume.
stresses and uniform velocities at inlet and outlet. The sus-
picion that a similar situation would occur for diffusers
motivated the present work.

More specifically, the purpose here is to numerically
evaluate the variation of CI in diffusers as a function of
the Reynolds number, diffuser angle (a) and expansion
ratio (D2/D1), using a finite volume code. We will also
attempt to explain and understand the variations found,
using one-dimensional energy and momentum balances.

The next section presents this one-dimensional theory
and defines the problem and relevant quantities. This is fol-
lowed by an outline of the numerical procedure and the
specification of the calculation domain and boundary con-
ditions. The presentation and discussion of the numerical
results are preceded by an assessment of their uncertainties
and by validation and verification against other computed
quantities, experimental data and correlations from the lit-
erature. A useful correlation for the local loss coefficient is
proposed at the end before the summary of the main
conclusions.

2. One-dimensional theory

We concentrate on laminar flow in an axisymmetric
gradual expansion with fully-developed conditions at the
inlet pipe, which is located far upstream of the diffuser in
order for the flow to adapt more realistically to the geom-
etry. A schematic representation of the control volumes
used in the following one-dimensional theory is shown in
Fig. 1. This theoretical analysis is an adaptation of that
derived by Oliveira and Pinho (1997) for sudden
expansions.
In pressure drop calculations, it is engineering practice to
consider that the flow is fully developed in straight pipes or
ducts, with all other effects, such as flow distortions and
flow redevelopment downstream of fittings introduced via
their respective local loss coefficients. The total pressure
variation between cross-section planes 1 and 2 (see Fig. 1)
is decomposed into a reversible pressure increase (DpR),
an irreversible pressure drop (DpI), and the pressure varia-
tion due to fully developed friction on the upstream and
downstream pipes (DpF). After normalization with the
upstream dynamic pressure ð1=2q�u21Þ, this decomposition
is written as

CT ¼ CR � CI � CF ¼ CRI � CI ð1Þ
Note that CI includes a friction effect, because the actual
friction between planes 1 and 2 ðDp0FÞ is different from
the corresponding fully developed friction (DpF).

Integral conservation of longitudinal momentum
applied to the control volumes between stations 1 and 01,
and planes 02 and 2 of Fig. 1 are expressed by Eqs. (2)
and (3), respectively.



p1A1 þ qA1b1u1
2 ¼ p01A1 þ qA1b01u01

2 þ
Z

s01–1 � dS1 ð2Þ

p02A2 þ qA2b02u02
2 ¼ p2A2 þ qA2b02u2

2 þ
Z

s02–2 � dS2 ð3Þ

where the profile shape factor for momentum, b � u2=u2 is
used. s01�1 and s02�2 represent the local wall shear stress
between planes 01 and 1 and planes 02 and 2, respectively,
and the overbar denotes area-averaged quantities. The inte-
grals of the wall shear stresses are transformed into pres-
sure differences as in Eq. (4)Z

s01–1 � dS1 ¼ s01–1 � S1 ¼ Dp0F1 � A1 and

Z
s02–2 � dS2 ¼ s02–2 � S2 ¼ DP 0

F2 � A2 ð4Þ

with S1 and S2 representing the pipe wall area acted
by area-averaged shear stresses s01–1 and s02–2, respec-
tively.

Defining the area ratio, r � A1/A2, and considering
mass conservation ðA1u1 ¼ A2u2Þ, the combination of the
above momentum balances as (Eq. (2)) + r (Eq. (3)) leads
to Eq. (5) after division by A1 and the upstream kinetic
energy

CT � p2 � p1
1
2
� q � u12

¼ 2ðb1 � b01Þ � 2r2 � ðb2 � b02Þ

� Dp0F2 þ Dp0F1 þ ðp01 � p02Þ
1
2
� q � u12

ð5Þ

The total pressure coefficient is given in Eq. (1) and the
reversible pressure coefficient (CR = a1 � a2r

2) is obtained
from the energy equation assuming a reversible flow (Ber-
noulli equation), where the profile shape factor for energy
is a � u3=u3. Combining CR with Eqs. (1) and (5) gives the
corrected loss coefficient based on this approximate 1-D
theory (CI c), which is different from the correct loss coeffi-
cient (CI) obtained in numerical simulations with the full
set of two-dimensionalmomentumand continuity equations

CI c ¼ a1 � a2r
2 � CF � 2ðb1 � b01Þ þ 2r2 � ðb2 � b02Þ

þ C0
F2 þ C0

F1 þ Cp01 � Cp02 ð6Þ

This expression can be cast in the form of a sum of correc-
tions to the reversible pressure coefficient

CI c ¼ CR � ðDCF þ DCb � DCp0Þ ð7Þ

where DCF represents the difference between the fully
developed friction CF and the actual friction CF0 due to a
variable wall shear stress in the downstream and upstream
pipes, respectively, i.e.

DCF ¼ DCF1 þ DCF2 with

DCF2 ¼ CF2 � C0
F2 and DCF1 ¼ CF1 � C0

F1. ð8Þ
The fully-developed and the actual friction coefficients are
given by

CF1 ¼
DpF1
1
2
qu12

¼
f1

L1
D1

u1
2

2
q

1
2
qu12

¼ f1
L1

D1

; CF2 ¼
DpF2
1
2
qu12

¼ r2f2
L3

D2

C0
F1 ¼

Dp0F1
1
2
qu12

¼ 4L1

D1

sW 1

1
2
qu12

; C0
F2 ¼

Dp0F2
1
2
qu12

¼ 4L3

D2

sW 2

1
2
qu12

ð9Þ
DCb accounts for the differences in momentum immedi-
ately upstream and downstream of the gradual expansion
(DCb = DCb1 + DCb2) due to distortions of the velocity
profiles. For a parabolic velocity profile a1 = a2 = 2, and
b1 = b2 = 4/3 leading to:

DCb1 ¼ 2ðb1 � b01Þ ¼ 2
4

3
� b01

� �
and

DCb2 ¼ �2r2ðb2 � b02Þ ¼ �2r2 4

3
� b02

� �
ð10Þ

Finally, DCp0 quantifies the effect of non-uniform pressure
at the planes immediately upstream and downstream of the
expansion

DCp0 ¼ ðCp01 � Cp02Þ ð11Þ
To determine these corrections from the results of the
numerical simulations, b0i and Cp0i are calculated by
numerical integration of the velocity and pressure profiles
at the plane 0i (i = 1,2), respectively. Note that Eq. (7) is
a simplified method to quantify the local loss coefficient
but still it can be used to help understand its various
contributions.

The correct irreversible coefficient (CI) is determined
from the axial variation of pressure obtained in the numer-
ical solution of the full Navier–Stokes equations, as fol-
lows: the energy equation between stations 1 and 2 (see
Fig. 1) reads as

P 1 þ
1

2
qa1V 2

1 þ qgZ1 ¼ p2 þ
1

2
qa2V 2

2 þ qgZ2 þ
1

2
qV 2

1 � CI

þ f1
L1

D1

q
V 2

1

2
þ f2

L3

D2

q
V 2

2

2
ð12Þ

After simplification we obtain the following extrapolated
pressures at planes 01 and 02, respectively by fitting to
pressure variations only along the fully-developed regions
upstream and downstream of the diffuser: p01 �
p1 � f1

L1
D1
q

V 2
1

2
and p02 � p2 þ f2

L3
D2
q

V 2
2

2
. Then, we calculate

CI using Eq. (13)

CI ¼
p01 � p02

1
2
qu12

þ 1� r2 ¼ Cp01 � Cp02

� �
þ 1� r2 ð13Þ

This method is identical to that used by Oliveira and Pinho
(1997) in the context of sudden expansions.

The loss coefficient usually found in books (CI th in Eq.
(14)) was derived assuming inlet and outlet uniform veloc-
ity profiles and negligible shear stresses within the domain.
The multiplicative factor 2.6 sinh was obtained by Gibson



(1930) for small diffuser angles and is equal to 1 in the other
cases. This coefficient is a good approximation for turbu-
lent flows according to Shames (1992), but leads to values
widely in error for laminar flow, as will be shown.

CI th ¼
ð1� rÞ22:6 sin h h 6 22:5�

ð1� rÞ2 22:5� < h 6 90�

(
ð14Þ

The difference between this coefficient and the corrected
pressure drop, Eq. (7) can be better understood by rewrit-
ing CI c as

CI c ¼ CI th � DCI ð15Þ
with DCI = DCF + DCb � DCp0 + DCh and DCh given by

DCh ¼
ð1�rÞ22:6sinh�CR

¼ð1�rÞ22:6sinh�2ð1�r2Þ h6 22:5�

ð1�rÞ2�CR ¼ð1�rÞ2�2ð1�r2Þ 22:5� < h6 90�

8><
>:

ð16Þ
3. Numerical procedure, uncertainties and validation

The numerical calculations were carried out with a stan-
dard finite-volume code extensively described by Issa and
Oliveira (1992) and briefly explained here. The mass and
momentum differential transport equations were discre-
tised by a control volume based finite difference scheme
described in Patankar (1980), and later adapted by Peric
(1985) for non-staggered, non-orthogonal grids. The main
code is interfaced with a mesh generation pre-processor
as described by Oliveira (1992) and adequate data post-
processors. The basic differencing schemes were all second
order accurate: central differencing for the diffusion terms
and the Linear Upwind Differencing Scheme (LUDS), also
called Second Order Upwind, for the convective terms. For
stability reasons, the convective flux was calculated explic-
itly from values of the previous iteration and combined
Fig. 2. Computational domain

Table 1
Some grid characteristics for h < 45� (D2/D1 = 2; h = 30�)

Grid Block I Block II

Nx/fx Ny/fy Nx/fx

Coarse 25/0.793293 25/1 15/1.050443
Normal 50/0.890670 50/1 30/1.024911
Fine 100/0.943753 100/1 60/1.012379
with first order convective fluxes using the first order
Upwind Differencing Scheme following the deferred cor-
rection technique of Khosla and Rubin (1974). The pres-
sure–velocity coupling was based on the SIMPLEC
algorithm of Van Doormal and Raithby (1984) and modi-
fied by Issa and Oliveira (1992) to account for time-march-
ing, since this steady flow calculation was stabilised by a
pseudo-transient method instead of under-relaxation. The
discretized equations were solved iteratively using the con-
jugate gradient method preconditioned with an incomplete
LU decomposition for the pressure and the bi-conjugate
gradient method for the velocities.

Tests with different meshes were initially performed to
assess the adequacy of the computational domain and grid
to obtain accurate and grid independent results. For sim-
plicity a uniform velocity was set at the inlet and the flow
allowed to develop well upstream the beginning of the dif-
fuser. The grids, shown in Fig. 2, were built from three
patched structured blocks and two types of grids were used
for diffuser angles (h) less and larger than 45�, respectively.
In both cases the first block corresponded to the inlet pipe.
For h < 45� (see Fig. 2(a)), the second block corresponded
to the expansion zone and the third block mapped the out-
let pipe, whereas for h > 45� (see Fig. 2(b)) the second
block only mapped the geometry downstream of the first
block, and the third block mapped the region downstream
the expansion wall.

The inlet pipe diameter was 10 mm and its length was 50
diameters (L1 = 50D1). The length of the outlet pipe was
L3 = 100D1 and two diameter ratios of 1:1.5 and 1:2 were
investigated. The diffuser length L2 changed with the
expansion ratio and diffuser angle, but the number of com-
putational cells within the diffuser was such as to maintain
the required mesh fineness. The calculations were carried
out for Reynolds numbers ranging from 2 to 200, as it
is known that for Re > 200 the first instabilities appear
in the flow downstream of the expansion. The Reynolds
for: (a) a < 45�; (b) b > 45�.

Block III

Ny/fy Nx/fx Ny/fy

25/1 50/1.101989 25/1
50/1 100/1.049757 50/1
100/1 200/1.024576 100/1



Table 2
Some grid characteristics for h > 45� (D2/D1 = 2; h = 75�)

Grid Block I Block II Block III

Nx/fx Ny/fy Nx/fx Ny/fy Nx/fx Ny/fy

Coarse 25/0.793293 13/1 60/1.095687 13/1 60/1.095687 13/1
Normal 50/0.890670 26/1 120/1.04675 26/1 120/1.04675 26/1
Fine 100/0.943753 52/1 240/1.02311 52/1 240/1.02311 52/1

Table 3
CI values for different grids compared with Richardson extrapolation (ER)

Re 0 = 30� and D2/D1 = 2 h = 75� and D2/D1 = 2

Coarse erel (%) Normal erel (%) Fine erel (%) ER Coarse erel (%) Normal erel (%) Fine erel (%) ER

2 13.4261 26.6 11.3304 6.9 10.7859 1.7 10.6026 8.1410 6.0 7.8140 1.8 7.7139 0.5 7.6789
5 5.4041 15.7 4.8494 3.8 4.7151 1.0 4.6707 3.3500 6.9 3.3240 6.1 3.1898 1.8 3.1337
12.5 2.2976 16.0 2.0667 4.4 2.0021 1.1 1.9799 1.5670 4.9 1.6017 7.2 1.5264 2.2 1.4938
50 1.0463 3.9 1.0396 3.2 1.0166 1.0 1.0070 1.1350 16.3 1.0541 8.0 0.9981 2.2 0.9763
100 0.9317 0.0 0.9531 2.3 0.9385 0.7 0.9318 0.9980 6.8 0.9930 6.3 0.9518 1.9 0.9345
150 0.9095 �0.8 0.9317 1.6 0.9218 0.5 0.9172 0.9650 1.8 0.9600 1.3 0.9515 0.4 0.9481
200 0.9032 �2.3 0.9282 0.4 0.9262 0.1 0.9248 0.9610 0.7 0.9580 0.4 0.9552 0.1 0.9540
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Fig. 3. Evolution of the calculated loss coefficient and comparison with
the theory Darcy friction coefficient for laminar flow for a very small
expansion angle (h = 0.5�).
number is here defined on the basis of inlet bulk velocity
and pipe diameter.

To estimate the uncertainty of the numerically obtained
loss coefficients, calculations of CI were carried out for two
diffusers (h = 30�, 75�) having the same expansion ratio.
For each geometry CI was determined using three consec-
utively refined meshes (coarse, medium and fine) and it
was further improved by using Richardson�s deferred
approach to the limit (Richardson, 1927). Tables 1 and 2
summarize the grid characteristics listing the number of
internal cells in the streamwise (NX) and radial (NY) direc-
tions and the corresponding geometric expansion (or con-
traction) factors for mesh spacing (fx, fy). These factors
enabled mesh refinement in regions where large gradients
were expected. Given the azimuthal flow symmetry a single
cell was used in this direction with symmetry boundary
conditions set at the two corresponding cell faces, i.e, the
calculations were 2D.

Table 3 presents results of the calculated CI in the three
meshes and the extrapolated value (ER). All errors (erel)
were calculated in relation to this extrapolated value and
for the finer mesh show uncertainties not exceeding 2.2%
at intermediate Reynolds numbers for h = 75�, decreasing
to less than 1% at lower and higher Reynolds numbers.
For h = 30� the uncertainties are even lower. Therefore,
the finer mesh was used in all calculations to maintain sim-
ilar levels of accuracy. The calculations were carried out
with a Pentium III at 1 GHz and each simulation typically
took about 1200 min of CPU time.

For validation we investigated two limiting cases for
which there are data in the literature: flow in a diffuser
tending to a pipe (i.e. h ! 0 and D2/D1 ! 1) and flow in
a sudden expansion (h = 90�). For the former, Fig. 3 shows
the evolution of CI toward the Darcy friction factor expres-
sion 64/Re for fully developed laminar flow in pipes, as the
diameter ratio is reduced to 1 for diffusers with 0.5� half-
angle. Calculations for fully developed pipe flow collapsed
with the analytical solution.

For the sudden expansion (h = 90�) our results match
those of Oliveira et al. (1998) as is shown in Fig. 4. Here,
we also see the progression of CI as the diffuser angle
increases and for h = 80� it is clear that CI is already very
close to that for a sudden expansion.
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4. Results

The variation of CI with Reynolds number and diffuser
angle for Newtonian fluids is presented in Figs. 5 and 6
for D2/D1 = 1.5 and D2/D1 = 2, respectively. The behav-
iour of CI is strongly influenced by diffuser angle and
the relation between viscous and inertial forces. As the
angle increases CI decreases at a constant Reynolds num-
ber, whereas at a constant diffuser angle CI decreases with
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Fig. 5. Calculated CI as function of Reynolds number and diffuser angle
for D2/D1 = 1.5.
increasing Reynolds number. When viscous forces pre-
dominate the pressure variation scales with a viscous
stress, hence the normalisation with the kinetic energy
leads to CI varying linearly with 1/Re. For instance, CI

increases 12 times, from 2.41 to 28.26 when Re decreases
from 25 to 2, for h = 10� and D2/D1 = 2. In contrast, at
high-Reynolds numbers the pressure variation scales with
the kinetic energy and CI tends to constant values: for
instance, when Re increases from 50 to 200, CI only
decreases by a mere 6%, from 1.00 to 0.94 for h = 40�
and D2/D1 = 2.

At low-Reynolds numbers, CI increases significantly
when the diffuser angle decreases. As an example, for
D2/D1 = 2 and Re = 5, the value of CI at h = 50� is 16%
higher than for h = 90�, whereas for h = 10�, CI is 310%
higher than at h = 90�. CI is less sensitive to h at large Rey-
nolds numbers, since the separated flow region becomes
longer than the diffuser: for Re = 150 and the same diam-
eter ratio CI only varies 1% when h increases from 10� to
90�.

The variations of CI with h may appear in contradiction
with common knowledge that diffusers are more efficient
the smaller their angle. This stands from CI accounting
for all perturbations to the flow, which take place over dif-
ferent lengths of pipe for different diffuser angles. As h
increases the diffuser length L2 decreases, so the various
contributions to CI vary in opposite directions: for
instance, the frictional pressure drop within the diffuser
drops to zero at h = 90� but, in contrast, the irreversible
loss of energy due to inefficient flow deceleration and the
velocity and pressure distortions increase significantly with
h. The relative weight of these contributions depend criti-
cally on the Reynolds number and diffuser angle as will be
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shown. To correctly compare the losses in different diffus-
ers, the true pressure variation over the same length of
duct must be compared and the flow must be fully-devel-
oped at inlet and outlet. This is carried out in Fig. 7,
where the normalized total pressure variation (CT) is plot-
ted as a function of diffuser angle (h P 5�) for different
Reynolds numbers and constant D2/D1. Now it is clear
that the overall loss is higher for more open diffusers, with
a stronger variation of CT at low angles and Reynolds
numbers because of larger variations in flow separation
under these conditions. It is possible that for h 6 5� a min-
imum in CT will be observed, because the duct becomes
extremely long, thus increasing frictional losses by more
than the reduction in the other contributions. We did
not perform simulations for h < 5� given the very long
computational domains and corresponding large CPU
times required.

From the results of the numerical calculations, we can
quantify the corrective terms DCF, DCb, DCp0 derived in
the approximate 1D-theory and assess their relevance to
the corrected coefficient CI c given in Eq. (7), which is then
compared with the calculated CI (also called correct or true
CI).

The effects of the distorted velocity profiles upstream
and downstream of the diffuser are quantified by DCb1

and DCb2, respectively and depend on the profile shape
factors for momentum b01 and b02 plotted in Figs. 8
and 9, respectively. These were determined by numerical
integration of the calculated velocity profiles at planes
01 and 02. b1 decreases with h from the fully-developed
value of 4/3, with inertia reducing the magnitude of its
variation and of the correction DCb1 (see Eq. (10)). At
the expansion outlet, the behavior is qualitatively differ-
ent: both b02 and DCb2 increase with h and the Reynolds
number from the fully-developed values of b = 4/3 and 0,
respectively.

Differences between fully developed and actual friction
at the inlet (DCF1) and outlet (DCF2) pipes are represented
in Figs. 10 and 11, respectively. As inertia dominates the
flow DCF1 decreases to a negligible contribution at high
Reynolds numbers, whereas at small Reynolds numbers
the distortion of the upstream flow by diffusion leads to
values of DCF1 as important as those of DCF2, but of oppo-
site sign. At high-Reynolds numbers, the distortion of the
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inlet pipe flow is negligible and the main friction correction
comes from the outlet pipe, DCF2 (Fig. 11), because of the
strong recirculation and long development lengths. For dif-
fuser angles larger than 60� note that there is always a
downstream recirculation, even at low Reynolds number
flows.

The correction due to non-uniform pressure distribu-
tions at the inlet and outlet planes, DCp0, is plotted in
Fig. 12 and is especially relevant at low Reynolds numbers
because of the role of diffusion in distorting the pressure
profiles. At high-Reynolds numbers, in contrast, the flow
is parallel to the straight pipes, the pressure variation in
the radial direction decreases and the pressure profiles
become uniform. As the diffuser angle increases to 45�,
DCp0 decreases intensively, but for h > 45�, DCp0 tends to
become independent of h, since the flow downstream the
diffuser is basically determined by the recirculation and is
insensitive to the expansion wall orientation, as already
mentioned.

For some representative diffuser angles and Reynolds
numbers, Table 4 compares the values of the true (CI)
and corrected (CI c) loss coefficients (Eq. (7)), of CR and
of the coefficient usually found in the literature, CI th in
Eq. (14), including values of the various corrective terms.
The differences between the corrected and true loss coeffi-
cients are small, never exceeding 1% for the listed cases,
thus confirming the appropriateness of the approximate
1-D theory in spite of its simplifications. Regarding the
coefficient of Eq. (14), its value differs significantly from
the true CI (always by more than 50%), especially at low
Reynolds numbers, and so it can be concluded that it is
not an appropriate expression to be used under laminar
flow conditions.

Finally, we list in Table 5 all the calculated values of CI

as a function of the Reynolds number and diffuser angle,
which constitutes the main deliverable of this work. For
ease of use and to compact these data, the correlations of
Eq. (17) were derived: for D2/D1 = 1.5 the expression pro-
vides values which generally do not differ from those in
Table 5 by more than 7% (it does for the sudden expansion,
but here an adequate correlation can be found in Oliveira
et al. (1998)), whereas for D2/D1 = 2 the difference between
Eq. (17) and data in Table 5 can be as large as 20%. If
higher accuracy is necessary we recommend the direct use
of Table 5 or fitting the data under more strict conditions
(say, for constant diffuser angles).



CI ¼
11:1ðsin hÞ�0:824

Re�2:23ðsin hÞ3þ2:98ðsin hÞ2�0:874ðsin hÞþ1:04
þ 81:6ðsin hÞ4 � 213ðsin hÞ3 þ 180ðsin hÞ2 � 52:6ðsin hÞ

þ 3:01ð�75:8ðsin hÞ4 þ 196ðsin hÞ3 � 166ðsin hÞ2 þ 50ðsin hÞ � 3:13Þ logRe
þð17:7ðsin hÞ4 � 45:4ðsin hÞ3 þ 38:5ðsin hÞ2 � 11:86ðsin hÞ þ 0:851ÞðlogReÞ2; D2=D1 ¼ 1:5

CI ¼
16:4ðsin hÞ�0:703

Re1:54ðsin hÞ
3þ3:33ðsin hÞ2�2:24ðsin hÞþ1:24

þ 202ðsin hÞ4 � 559ðsin hÞ3 þ 550ðsin hÞ2 � 217ðsin hÞ

þ 21:9ð�173ðsin hÞ4 þ 470ðsin hÞ3 � 456ðsin hÞ2 þ 179ðsin hÞ � 18:3Þ logRe
þð37:1ðsin hÞ4 � 99:6ðsin hÞ3 þ 96ðsin hÞ2 � 37:8ðsin hÞ þ 4:06ÞðlogReÞ2; D2=D1 ¼ 2
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Table 4
Predicted CI, corrections and corrected theoretical loss coefficients at the diffuser

Re CI (CI � CI th/CI th) DCF DCb DCp0 DCh CIc (CI � CIc/CIc)

h = 10� and D2/D1 = 1.5, CI th = 0.1393, CR = 1.605

2 22.5427 16077% �0.3779 0.0972 20.6570 �1.4656 22.5427 0.00%
25 1.9254 1282% 0.0485 0.1279 0.5000 �1.4656 1.9284 0.16%
150 0.6074 336% 0.2859 0.4009 �0.3091 �1.4656 0.6090 0.26%

h = 40� and D2/D1 = 1.5, CI th = 0.3086, CR = 1.605

2 8.2848 2584% �0.5776 0.3593 6.4000 �1.2963 8.2232 0.75%
25 0.8615 179% 0.2273 0.4701 �0.0375 �1.2963 0.8701 0.98%
150 0.4727 53% 0.4082 0.6191 �0.1030 �1.2963 0.4746 0.40%

h = 70� and D2/D1 = 1.5, CI th = 0.3086, CR = 1.605

2 5.7004 1747% 0.6502 0.6172 5.3254 �1.2963 5.6630 0.66%
25 0.6843 122% 0.37917 0.6327 0.0945 �1.2963 0.6875 0.48%
150 0.4747 54% 0.44683 0.6538 �0.0266 �1.2963 0.4777 0.63%

h = 10� and D2/D1 = 2.0, CI th = 0.2540, CR = 1.875

2 28.2570 11027% �0.2612 0.08048 26.2260 �1.6210 28.2817 0.09%
25 2.4121 850% 0.0033 0.06298 0.6214 �1.6210 2.4301 0.74%
150 0.9511 274% 0.2045 0.28707 �0.4266 �1.6210 0.9569 0.61%

h = 40� and D2/D1 = 2.0, CI th = 0.5625, CR = 1.875

2 9.3119 1555% �0.6762 0.2481 7.0000 �1.3125 9.3032 0.09%
25 1.2434 121% 0.1362 0.3175 �0.1750 �1.3125 1.2463 0.23%
150 0.9543 70% 0.3387 0.4681 �0.1075 �1.3125 0.9607 0.66%

h = 70� and D2/D1 = 2.0, CI th = 0.5625, CR = 1.875

2 7.8206 1290% �0.2837 0.4665 6.1145 �1.3125 7.8067 0.18%
25 1.1130 98% 0.2470 0.4850 �0.0244 �1.3125 1.1187 0.51%
150 0.9490 69% 0.3696 0.5032 �0.0475 �1.3125 0.9547 0.59%

Table 5
Calculated CI data

Re/h 5 10 20 30 40 50 60 70 80 85 90

D2/D1 = 1.5
2 43.2391 22.5427 12.8351 9.9301 8.2848 6.8179 6.1918 5.7004 5.3449 5.2200 4.9270
5 17.3225 9.0438 5.1668 3.8648 3.1839 2.7589 2.4998 2.3310 2.1947 2.1307 2.0222
12.5 6.9670 3.6746 2.1443 1.6338 1.4116 1.2224 1.1091 1.0530 0.9969 0.9728 0.9350
25 3.5421 1.9254 1.2068 0.9992 0.8615 0.7725 0.7221 0.6843 0.6597 0.6491 0.6301
50 1.8620 1.0934 0.7561 0.6581 0.5972 0.5686 0.5557 0.5405 0.5304 0.5257 0.5183
100 1.0656 0.7194 0.5687 0.5312 0.5063 0.4913 0.4884 0.4865 0.4849 0.4831 0.4841
150 0.8223 0.6074 0.5175 0.4882 0.4727 0.4708 0.4686 0.4747 0.4723 0.4737 0.4745
200 0.7079 0.5572 0.4939 0.4804 0.4725 0.4620 0.4609 0.4646 0.4674 0.4675 0.4738

D2/DI = 2.0
2 53.9367 28.2570 15.1903 10.7859 9.3119 8.5715 8.1662 7.8206 7.5951 7.4853 7.2540
5 21.6133 11.3354 6.3392 4.7151 3.8608 3.5533 3.3605 3.2298 3.1416 3.0954 2.9988
12.5 8.6936 4.6084 2.6179 2.0021 1.7960 1.6408 1.5788 1.5386 1.5096 1.4967 1.4584
25 4.4149 2.4121 1.6137 1.3477 1.2434 1.1624 1.1331 1.1130 1.1116 1.1103 1.0951
50 2.3298 1.4654 1.1337 1.0166 1.0004 0.9835 0.9853 0.9822 0.9896 0.9914 0.9897
100 1.3831 1.0352 0.9323 0.9385 0.9595 0.9519 0.9494 0.9490 0.9568 0.9608 0.9632
150 1.1280 0.9511 0.9196 0.9218 0.9543 0.9360 0.9471 0.9490 0.9554 0.9565 0.9605
200 1.0221 0.9234 0.9055 0.9262 0.9438 0.9488 0.9499 0.9475 0.9569 0.9567 0.9604



5. Conclusions

An extensive set of numerical calculations was carried
out for laminar Newtonian fluid flow in diffusers at Rey-
nolds numbers from 2 to 200, diffuser angles from 5� to
90�, and two different diameter ratios of 1.5 and 2 in order
to quantify the loss coefficient, which is listed in Table 5
with an estimated uncertainty of less than 3%. A correla-
tion fitting these data with differences never exceeding 7%
is also presented in Eq. (17) for ease of use. The CI data
show a strong dependence on the Reynolds number with
CI increasing as Re and diffuser angle both decrease, but
increasing with radius ratio.

The simplified 1-D theory of Oliveira and Pinho (1997)
for sudden expansions was generalized to a diffuser and
used to help understand the observed variations of CI in
terms of corrections to the reversible loss coefficient. The
differences between CI and CR or CI th are accounted for
by the role of diffusion in distorting velocity and pressure
profiles and by differences between real and fully-developed
friction. Large discrepancies were found between the
reversible and the calculated loss coefficients and between
the calculated loss coefficient and the values given by an
often-quoted expression from the literature, which is not
adequate for laminar flows given its assumptions of invis-
cid flow with uniform fully-developed profiles at inlet and
outlet.
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