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Abstract

In this paper we present CoR a resource oriented computirdghtbat address
the question of how to integrate user-level fine-grainedtithuéading, commu-

nication and coordination into a cluster of symmetrical tipubcessor comput-
ers. To support the design of complex distributed appbecatising the proposed
paradigm we built pCoR a run-time system which has new ategsr¢presents
extensions to the strict shared memory and message passidglsrsupported
by other platforms: remote operations, dynamic domainsjraanication ports,

multithreading management, shared memory, replicati@hatition are some
of its distinguished features. In addition, it provides eetid-safe transport com-
munication layer to take advantage of modern high-perfoce@ommaodity hard-

ware/software like Myrinet network.

1 Introduction

The emerging field of parallel computing illustrated by thereased importance
of clustering technologies[1] puts strong demands to tlebdlpm of organizing
computation, communication and coordination. On largedesprojects where the
communication patterns cannot be determined in advancadireproblem is cor-
rectness, due to the non-determinism and concurrent attcessources. Another
issue that poses additional requirements to the task ofl@lapeogramming and
that can have a great impact upon performance is the needalolisks a wised
relationship between problem specification and decomipagiinto the hardware
of a parallel computer.
The rise of popular public domain software such as PVM[2] &fl[3] had

a major influence on the wide use of parallel computers, rapffom high per-
formance supercomputer to clusters of workstations or hoomeputers due to



the normalized application development environmentsleCtibns of worksta-
tions interconnected by a fast network, allow the farmingobs over a unified
logical virtual parallel machine. Even when the networkfpenance capability
is minimal, these tools provide an inexpensive testingaletfor classes of prob-
lems where the ratio computation/communication is verjhh@ther options are
available as high speed networking technology developethfge scale parallel
machines migrates to more inexpensive systems and corspitarore than one
processor that provide multiple simultaneous points otetien.

In what follows, we briefly present some of relevant techegand platforms
that can be used to identify and compare our approach to ti#em of organi-
zation computation, communication and coordination tot#sk of parallel pro-
gramming. Next, we introduce the principle contributioh€oR a new computing
model in the origin of this work. Finally, we present pCoR, altithread resource
oriented library aimed to provide a common framework in vahic exploit and
evaluate user level fine-grained computation and commtioicaver clusters of
shared-memory multiprocessors.

2 Background

Parallel programming is a challenging and complex desigeaihat enables pro-
grammers to deal with larger and more sophisticated prohletowever, they can
no longer rely on the simple and stable programming modeleafrivann cause
they have to face several new dimensions that usually dopp®ar in sequential
program development.

In areas where clustering are been primarily applied, toecejth the new
dimensions of complexity we need new models, tools and enmients in order
to help programmers in their activity to make the hardwareensable and appli-
cation more performing. As a matter of fact, in many casegh4pierformance is
difficult to achieve due to the lack of adequate software kgraent methodolo-
gies and tools[4].

2.1 Communication and Multithreading

As parallel distributed computing evolved it has come talemce that no mono-
lithic system can handle efficiently all the desired compateand communication
styles. The issue of threads has been widely discussed gubeliranted in slightly
different ways by various vendors and academics.

The use of threads to perform operations on behalf of theathegplication is
extremely convenient for several reasons: 1) threads ge@hatural implementa-
tion of a non blocking operation that may be applied both tmemnication, shar-
ing and coordination between different threads of conftlihreads are becoming
the dominant parallel programming model for symmetric iputicessing shared
memory computers; 3)threads can improve performance Ipjrtgehighly latency
systems to be more latency tolerant. Fortunately the PO&lixdard also known
asPthread$b] seems likely to become the most used programming defirgtfor



threads. The specification does not impose whether thestrr@duser or kernel
level; it is up to the threads implementation.

In MPI-2 threads were recognized as an important naturgraroming model
for symmetric multiprocessors[6] that separate a processa single address
space and one or more threads of control being an effectiyeavaide latency in
high-latency operations.

Platforms like TPVM[7], LPVMI[8], a modified version of P4[9Chant[10]
and Athapascan-0 [11] allow the creation of multiple the#itht interact using
global identifiers and send/receive primitives. The latdsaithe concept of ports
and requests so that any thread can receive a message sepaitiicalar port.
Panda[12], PM2[13] and Nexus[14] also include threads @mdlote execution
manage communication by executing handlers registeretidoyder. Nexus also
introduces the context as an important concept used tasteuapplications.

3 Overview of CoR

CoR (Resource oriented Computing) has been primarily ratt/by the need to
support the design and evaluation of the> (Cellular Computation Model)[15].
The model combines production systems with Petri Nets asyaevapecify and

regulate the overall activity of a distributed system viewas a multi-cellular

agent[16].

Another strong motivation is the need to provide adequatgatsaand program-
ming tools to assist parallel programmers, with varyingrdeg of understanding
and skills, in the job of producing structured and perforgngoftware. A third
motivation is the exploiting of fine-grained user-level qmutation, communica-
tion and coordination in large scale application desigredun on clusters of
shared memory multiprocessors. The final motivation is t@stigate and con-
struct a common frame-work in which to understand and etalaechitectural
and logical trade-offs of software/hardware interaction.

3.1 Resources

As a new computation model CoR introducesitgourceas a generic user meta-
phor that directly incorporates the notion of state, corengy, locality and distri-
bution. It also supports composition and coordination leetwapplications to deal
with the growing complexity of contemporary systems andiappions.

The resources are the abstractions we use to simplify prodexvelopment and
execution by freeing the user of the burden of explicitly aging the complex
relationships between the two phases typically involvedhtandevelopment of
large distributed parallel application prograresucturingandcomputing

Structuring is a series of separate stages ranging fromlgarolnalysis and
specification to the naming and design of the entities on pipiiGation. Comput-
ing is the continuous process of mapping the entities oredirdware and exe-
cuting the instructions of the distributed multi-threadeatrol parallel program
to inquire, transform and communicate the state of the naanétes.



Tasks and domains are physical resources that dim theitraaiboundaries be-
tween the physical hardware and logical software companéntask is the most
elemental unity of execution while domains delimit regiofisddressable physi-
cal space where interaction between logical and physisalrees occurs. Logical
resources includes: ports) a communication mechanisnddaseute the informa-
tion between domains, data) a general class of resourcd$aisentain structured
and unstructured pieces of information. Synchronizergjdra, transitions and
topologies area other logical resources suited to the t@fs&gnchronization and
coordination of large scale multi-threadead applications

A logical domain is a special case of logical resource derifrem MC? to
support the design of large, complex and modular applinatiti is used to orga-
nize resources in a hierarchy tree of dependencies, rogtdiaebfirst domain in
the application, where nodes ateuctured resourcelomains) and leavesmple
resourcesSeveral existing systems use groups, the equivalent afdbdomains,
for slightly different reasons[17, 3] allowing either fdatic or dynamic member-
ship allocation.

The aggregation of resources inside a domain may be viewadiest form of
composition equivalent to a program constituted by a buriaharules. Higher
level of composition may be achieved through the associadiod integration
at runtime of several applications through a designatetdbglomain (see sec-
tion 3.2).

3.2 Identification

An application is viewed as a system of distributed domaihen& domains pro-
vide for the identification and representation of the resesithey encompass.

The identification assigned to every resource is obtairmd themeta-domain
a special logical domain that acts as a central maintaingtgenerator of identi-
fiers belonging to the same application. Itis a universatiifier that comprehends
a macro-identificatiorand amicro-identification the late being used to uniquely
identify the resource in the application (its principalntiécation idp), whereas
the first encodes an index used to join and integrate on-ttfjgable resources,
belonging to different applications.

Resources are directly represented at the domain levey. g be constituted
by one or more built-in objects related witlomputer resourcedike containers
memoryport or operon (made of one or morexecutor¥ andbody, like synchro-
nizer, mail-box organizeror data(see figure 1).

3.3 Exchange of identity

With the exception of domains and tasks all other resouneesansidered passive
agents. Domain autonomy is related with the managementeprdsentation of
the computer resources used to support the entities of dicaign. Tasks are
autonomous agents whose activity results of the actiorfeimeed by arexecutor
— athread of control that executes a function — viewed atrtfpgementation level
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Figure 1: Resource anatomy.

as a computer resource.

All resource management and state transformation opesatite performed in
the context of a user executor or a proxy executor delegatedebrun-time sys-
tem. Executors are allowed to pursuit their action aftemadsg (or borrowing) the
principal identification of a target resource. Executorya dynamically allo-
cated or de-allocated at run-time, or statically assigonedrtewly created resource
as it happens every time a simple task is created.

Whenever an executor needs to operate a resource, distireglfrom the one it
gets the current principal identification, it executeseanhangeOfldentitgrimi-
tive that when successful gets the idp of the target resotioaeturn to the original
identity the executor must evocateeaurnOfldentityprimitive.

3.4 Replicas and partitions

Naming is the most elemental mechanism that can be usedntfideach indi-
vidual resource, thus promoting spatial concurrency. Aanmechanism based
onaliasis used to increase the concurrency at the identificatiosl kat fails to
produce real concurrency. In this case we are sharing thgdfadsolely resource
using different identifications.

However, in a system of distributed domains the need forieffay may deter-
mine the existence of multipleplica of the same body; as it happens when the
alias operation spawn multiple domains. In this situatio@ $ystem may auto-
matically manages both local and remote representatiotiseo$olely resource,
ensuring the consistency of replicas, according to a deda@lected policy.

As an alternative to replication, a complex resource (thevadent of a structure
in C) may be partitioned in such a way that eqehtition may be recognized as
an individual resource on itself, also represented by acjgral identification and a
body. This powerful mechanism has the potential to incréaseoncurrency and
reduce the communication overhead by maintaining the stersty of one sole
representation of the distributed shared body.

To manage all forms of user and system identification the ovidentification
(see section 3.2) may be seen as comprehending severattigids that may



be used to distinguish between the different idps of the s&seurce, irrespec-
tively of the representation scheme used to address a mseualias, replicas or
partitions.

As an example consider the use of a task whose mailbox idipagd between
multiple alias as an alternative to a task that shares a simpll-box between its
alias (see figure 2). The advantages of the first approaciviaent when it is nec-
essary to identify the real destination of a message. Inafbdata decomposition
over a system of distributed domains the first approach aeor$ concurrency
and has the potential for better efficiency when dealing laithe volumes of data.
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Figure 2: Task alias.

3.5 Asynchronous operation model

CoR offers programmers the choice between synchronoug/oclaonous mod-

els of operation for most of the calls it supports. If theiatidr of a call selects
the synchronous model it always suspends waiting the dpartd terminate to

resume execution. This mode of operation udtackingcalls are best suitable
to guarantee the determinism of a multithreaded paralt@mam. When selecting
the asynchronous model the operation immediately retutmasnaler to the ini-

tiator that may later be used to inquire the status of theesiga operation or to
revert to synchronous model of operation.

Asynchronous operation model provides the means to enhtheceoncurrency
within each domain to increase system responsiveness ficidrefy and in some
situations to avoid deadlocks. In a system of distributesh@ios, most non-local
operation are natural candidates to immediate calls duesteadnsiderable over-
head introduced by the transport communication layersd&stvdomains.

3.6 Message passing contexts

CoR communication model assumes that any resource, notasig, may send
a message to any other resource with the guaranty that nesssagt in the same
path are received in the order they are sent, without lossshiges are labeled with
a user-level supplied tag and a system-level tag along Wéldentification of the
sender. The user-tag allows discriminating between nialtigessages sent to the



same destination. The system-task may be used for libratgnvand user alike in
a way which is broadly equivalent to the use of a communidatbdtPI[3].

CoR uses the idps of domains (as they are unique and genbsatked system
at-runtime) as system-tags. This way messages are addi@ssceived through
a domain context does allowing for the creation of privategwnication spaces
where messages may not be sent/received outside the desigiwenain.

3.7 Ports

The aim of management in the world of clusters is the utiarabf computers
resources at the highest possible degree. In respect to gpitation sub-systems
CoR assumes that at each cluster node communication aslapagrbe divided
by the runtime library into a certain number of disjoint coommitation end-points
calledports Each portis a communication path to other hardware coilpgiorts
used to communicate with remote domains.

At run-time, inside each domain, fully abstracting from #pecific communica-
tion medium and protocols, sevesalft-portscan be open to share or exclusively
use the underlying communication adapters, and then cltoseglease the ports.
In figure 3 we show several domains each one having two sof$ gbaring the
available ports in the respective node.
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Figure 3: Transport layers in a system of distributed dosain

4 pCoR

pCoR is intended as a general purpose run-time system buwltgport and eval-
uate the proposed resource oriented computing paradigebésed on a former
effort to combine multithreading, message passing anceghraemory[18]. Cur-
rently is been used under SIRe (Scalable Information RetriEnvironment) a
research project partially supported by contract POSI/@HE39/2001, FCT/MCT



Portugal, and in classes by students of University of Mint Rolytechnics Insti-
tute of Braganca.

The overall design enhances portability and extensibidityproviding a pro-
grammatic interface to static and dynamic linker which carubed to bind and
unbind on-the-fly system shared libraries or user dynangcetables. By comb-
ing ELF Dynamic Linking with POSIX threads, GNU compiler atiker we
ensure the portability of the code and easy support for a vdadge of heteroge-
neous environments and operating systems.

4.1 Design issues

A pCoR application is a system of distributed domains tratesl into user pro-
grams and scheduled as processes at the cluster nodes. eS&&nRces are func-
tional implementations of CoR concepts, slightly devidiean the original, that
are created in the computing space delimited by physicakilwsn

Domains are containers that organize or structure otheuress and provide
for safe contexts and the execution on-the-fly of pluggabdeluies. Tasks are
user functions scheduled as autonomous threads of coh&bekploit dynamic
libraries to allow the binding of local functions by name ahtime. Data are
regions of contiguous memory viewed by programmers asldiséd shared mem-
ory (object-oriented) protected by the traditional acgind release operations of
the release consistency model.

Other resources were added to the runtime: ports, as tresgimitions barri-
ersfor synchronization purpose antutexedor defining mutual exclusion regions
of shared code.

4.2 System architecture

The core of domains consists of several independent si@mgdtmplemented as
an hierarchy of layers from the low-level interface of systependent services —
POSIX threads, dynamic libs and communication — to the hitghes| interfaces
of system and application APIs (see figure 4.2).

Taking advantage of the shared address space inside eacindmwost of the
local operations and services are executed directly by pi@o&y, reducing the
cost of scheduling system threads.

Each domain includes@ontroller, a thread responsible for the interconnection of
the application domains, and one or marailerswhich are responsible for mov-
ing messages from the transports communication layersetanternal messag-
ing system. Other system threads may be spawned in resppagtetnal service
requests or events.

4.3 Shortcuts and replication

All the resources including tasks have a principal idergtfan that makes them
visible outside the ascendant domain (usually a proceles)g avith a local name
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Figure 4: The core domain layers.

and membership index. In addition any resource can beconaer of another

ascendant (a domain) under a different namaliais — a proper new membership
index and name plus and a new principal identification. Heweviginal resources

and their alias share the same body.

Any time a pCoR primitive references a remote resource thetime provide
for the automatically creation of a local resource replicalging the consistency
of all the scattered replicas according to a release cemsigtmultiple reader-
single writer protocol. Within a domain the life time of eydocal replica is a sys-
tem dependent variable. However the programmer may infRisystem behavior
by asking for a local identifier of a resource shortcut— which has the effect
of create a consistent local replica of the target resouttielwis made perma-
nent until being explicitly discharged. Shortcut may notised outside the local
domain.

4.3.1 Resource tree

pCoR promote a unified approach to the task of distribute@lighrprogram-
ming by representing computing nodes and target architexthrough the same
metaphor that is used for the entities on the applicatioadidition, the same set
of primitives may be used to manipulate resources in theign model and
in the computer nodes. For example, the addition/deletianrede of a parallel
distributed computer is equivalent to the creation/desion of a resource.

Along with the representation of nodes, architectures hadirtual machine by
using logical domain, several other proxy resources camdadexd to registry infor-
mation about each node of the cluster like the amount of mgwrahe number of
processors. This kind of information may be of relevantriegéto programmers
as it may be used as an input, for example, to select the ndue®wo spawn new
physical domains.

Every pCoR running application draws a dynamic resourcexd@gncy tree that
may be used to determine or trace the established relatiprbstween all the liv-
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Figure 5: The hierarchy tree of dependencies.

ing resources. By following an absolute path initiated ofdRQor a relative path

initiated at any domain in the tree it is also possible to fifgmesources by index
or name.

In figure 5 the root of the tree represented by the constantR®@he ascendant
of both the METADOMAIN, that contains all domains in the apption, and the

VIRTUALMACHINE used as a sub-tree of logical resources ttegtresent cluster
resources. A logical domain named WORLD is always creatdioariirst applica-

tion domain, to ease the creation and access to global afiplicvariables.

5 Evaluation

In this section we present results of some preliminary sttliat should be viewed
as suggestive of pCoR performance behavior and are no wagiusire. The
experiments that we describe were designed to evaluateithéme system and
determine the potential gain of using shared memory, lo@ssage passing and
remote message passing. The experiments were realizeglitugirdual Pentium
[l workstations (733MHz) running Linux RedHat connectgdMyrinet and Fast
Ethernt networks.

The first experiment accounts for the time spent to synckeotvio tasks that
accesses a shared variable, by using mutexes and conditi@bles. Next, we
measure the time spent to synchronize and to send data lretweeasks in the
same domain. Finally we evaluate the performance of taskdk ¢ommunica-
tion between two nodes of the cluster using both UDP/Ethlierné GM/Myrinet
transport communication layers.

The picture (see figure 6) shows thtthe time to perform a synchronized
memory transfer between two tasks in the same domain is & indepen-
dently of the message siz2} the time to post and get a message from the internal
mailer message structure of an exchange of data (roundtpjeen two tasks in



the same domain, takes aboui3Q The overhead raises significantly when data
content is added (1 byte - 48, 32 bytes - 50s, 1kbyte - 9@s); 3) the time to
exchange data between two tasks in different nodes, overEtb&rnet is about
221us for a 0 byte message, 265 for a 32 byte message and 128%Xor a 1kbyte
message4) the time to exchange data between two tasks in differents)aer
GM/Myrinet is 72us for small messages and 103 for 1kbyte messages.
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Figure 6: Performance evaluation.

6 Conclusion

We have proposed a resource oriented computing model aineelp program-

mers in the task of develop large and complex parallel disted application to
run in clusters of symmetrical multiprocessors. The prgietrun-time provides an
integrated address space based on domains that integisitésited multithread-

ing and synchronization. It incorporates an autonomoussgstem[19] that allow

resources to interact through a thread-safe communiclibi@ry which supports

the message passing style and allows for safe contexts coration. In addition,

it takes advantage of existing commodity hardware/sofwggh-performance
networks like Myrinet while maintaining compatibility witUDP/TCP over Eth-

ernet. In future work we plan to extend the basic pCoR degigndorporate the

full functionality of the proposed paradigm. More signifitgperformance can be
achieved by reducing the cost of thread creation and scimgdaotroduced by cur-

rent implementations of POSIX threads on multiprocesseral§o plan to extend
the underlying communication sub-system with the goal fipsut Gigabit Ether-

net using VIA.
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