-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by Biblioteca Digital do IPB

High performance multithreaded message
passing on amyrinet cluster

Albano Alves, Antonio Pind, José Exposto& José Rufind
Lnstituto Policnico de Braganca, Portugal.
2Universidade do Minho, Portugal.

Abstract

The main purpose of this paper is to present the impact of p@odad level mes-
sage passing facilities on applications running in a Mytrahester.

To exploit Myrinet technology we use the GM library, whichopides a lim-
ited number of ports as abstractions to name communicatidrpeints. pCoR
communication layer multiplexes GM ports by using a dispat¢hread to handle
messages to/from a large number of communication entitiesk{ng threads).

Our approach combines polling operations executed by pteltireads to avoid
unnecessary context switching; a simple mechanism is usetdage working
threads into the polling scheme. We aim to reduce the totaibau of polling
operations required to hold message passing system pexficen

1 Introduction

Low latency communication technologies and SMP workstetimake possible to
build clusters that attain the performance of massivelglfelimachines. However,
software development for such systems is still a major canbecause it is hard
to take full advantage of hardware capabilities.

pCoR [1] communication layer focus on two main aspects: lesel commu-
nication and our particular concept of distributed mutgtded applications.

1.1 User level communication systems

Nowadays operating systems provide built in communicadlustractions to inter-
face a variety of network adapters. Operating systems caruation primitives
inflict unacceptable delays because of excessive contdidhsmg and memory

https://core.ac.uk/display/153403315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

copying. To overcome this limitation, several user levahowunication systems
have been developed; applications are allowed to direatrface network inter-
face cards bypassing the OS kernel. Furthermore, by meameiwiry registra-
tion mechanisms, data is moved from user address spacaxorkehrough DMA
enabling zero-copy communication.

GM [2] and BIP [3] are well-known user level communicatidorhries designed
for high performance networking on Myrinet technology. SOWiA [4] imple-
mentations are also coming out making possible the exilmitaf other commu-
nication technologies like Gigabit.

User level communication libraries provide low-level abstions that are not
suitable for application development. For instance, GM a¢ thread safe and
imposes an event oriented model to send and receive mesaageBIP does
not provide any error recovery facility. Higher level libies like MPICH-GM
[5] and VIA-GM [6] include some thread support but they damanage buffers
efficiently; both copy user data into pre-registered menbafpre sending it.

To efficiently handle multithreading and communication,PM] and PANDA
[8] use specific user level thread libraries which include #bility to manage
communication. This approach limits the programmer bezaiser level threads
may block the whole application when calling certain I/O igt®ns and user level
thread libraries are not able to take full advantage of SMitesys.

1.2 Distributed multithreaded applications

Multithreading primary motivations are to exploit multigzessor machines and
to hide 1/O latency in order to achieve lower execution tifesapplications.

Although several authors have been concerned about théitysabthreads in
fine-grain parallelism, we intend to use threads as a stral@lement and for long-
term computation. Complex distributed parallel applizasi (information retrieval
systems, for example) can be designed to use a limited nuofilpeocesses and a
considerable number of threads. For each process, thresaghag be pre-assigned
to stages [9] avoiding complex mechanisms to evaluate thenmim computation
time that counterbalance the penalty of creating a new ¢hiEa.

Distributed multithreaded applications require addiéibmechanisms for data
exchange and synchronization between threads that exeoutéferent cluster
nodes. It is also important to have a unique set of user Alpifivies that can be
used besides the location of a thread (local to the procesal to the machine
or remote). pCoR combines shared memory and message passing commu-
nication layer that provides thread-to-thread commuracabr Myrinet clusters.
Future work will provide Fast Ethernet and Gigabit suppgrtibing VIA.

2 Message passing and multithreading

Flexibility and robustness are two important charactiesste planed to include in
pCoR that shape our preference for LinuxThreads and GM.XTihteads is part
of glibc and guaranties thread safety for all Linux I/O primitive$1@& available

from Myricom (the Myrinet equipment manufacturer) and pdes error recovery.

2.1 Port multiplexing

Low-level communication facilities, like those provideg 8M, are intended for
node-to-node communication. Thus few abstractions ardaée for the naming
of communication end-points. GM allows opening up to eigbttg (per NIC),
which are really insufficient for multithreaded applicaiso Note that ports can’t
be shared among threads (GM is not thread safe).

pCoR multiplexes GM ports through a dispatcher thread;etunpCoR imple-
mentation opens one GM port per process and launches a alispdhread to
manage that port. The dispatcher is essential for messagptien. In fact, it's
easy to implement GM port sharing among threads by using glesmutexif
we consider only message sending. Message reception isfficaltpart; mes-
sages arrive asynchronously and network must be draineevgaynNote that it is
not practicable to block any thread on a specific GM port beediuwould delay
sendings until a message arrival. Thus the dispatcher{h@I&M port, enqueues
message handlers for received messages and wakes up tivegtag for specific
messages.

Polling is a CPU consuming task and therefore differenttesias must be
investigated in order to minimize pCoR communication laypgpact on applica-
tions performance. Nevertheless it is important to noterérducing polling cycles
(to free CPU for useful computation) may result in poor aggtibn performance
due to degradation of communication latency (see 3.3).

pCoR includes a primitive to configure the dispatcher bahayiit is possible
to force CPU yielding after successful polls and to set thigimgtime between
successive polls. Furthermore the dispatcher is able tectathen the majority
of the application threads are waiting for messages to aser¢he poll frequency.
Application threads may also collaborate on message disipat calling another
special primitive that executes the dispatcher routine.

Some authors ([11], [12], [13]) propose the inclusion oflipgl mechanisms
into the thread scheduler. Our work aims to build an effici@atform without
patching or substituting the LinuxThreads scheduler.

Port multiplexing further requires a naming service to magead identifiers
into GM identifiers. pCoR accomplishes a basic naming serwicer TCP/IP. A
thread identifier is resolved the first time a message is sethiatt specific thread
and the corresponding mapping is stored in a local cache.

2.2 Towards zer o-copy

User level communication libraries allow zero-copy datelenging between user
address spaces from different machines. GM forces the uB&/étble memory
blocks to hold data to be sent to other nodes. At the recesiihg pre-allocated
DMADblebuffers must also be available to store incoming data.

Higher level programming abstractions must integrated¢how level facilities

to avoid extra copies. However, it is not an easy task to camtlie GM commu-
nication model and a particular high-level communicatibsteaction. Sockets-
GM [14], VIA-GM and MPICH-GM, for instance, pre-allocaBMAblebuffers at
library start-up and copy application data to/from thatfers before/after send-
ing/receiving it (two copies are made).

In addition to traditional send and receive operations, R@ommunication
layer provides four extra operations to manage zero-copynmonication: buffer
request, buffer probe, buffer immediate release and bd#kyed release.

A buffer request returns a pointer taaAble memory block. A dynamic pool
of memory blocks is maintained to avoid memory allocatiod axemory regis-

tration operations. Any size\ memory blocks may be requested for sending data

but pCoR will always allocate@™ — 8 bytes ¢ < 2" — 8, n € N) because we
consider that any block may be used for future reception aiddsces receiving
buffers to match this size restriction.

Programs compute new data intd& Able memory block and whenever it is
necessary to send that data to a remote thread no memory dbpgaur. Because
sending is an asynchronous operation, buffer probing igired to guarantee that
data is not changed while it is moved (by using DMA) to the NIC.

Buffer release operations are intended to reduce memongwaainly caused
by receptions. In fact, at message arrivdDslAble block is used and it will be
necessary to provide a new block (with the same size) to theliGfdry. If no
memory blocks are available from the pool, pCoR will allecatnew one. Since
pCoR receive operation returns to the user a pointe(XMAbleblock, after read-
ing/using the received data the program must release thespmnding buffer so
that pCoR may reuse it. Delayed releases are used to naify@oR communica-
tion layer that it may reuse a specific buffer after the tetraiof the corresponding
sending operation while immediate releases are used wheaevwffer may be
reused immediately.

2.3 Raw performance

Figure 1 presents raw performance obtained for messagamegetbetween two
pCoR threads. GM performance for message exchange betwees is also pre-
sented as a basis for comparison.

Evaluation was undertaken by using two dual Intel Pl weakisns (733MHz),
running Linux RedHat 7.3 (kernel 2.4.18-3smp). The wortksies were intercon-
nected by Myrinet LANai9 cards connected to 64bits/66MHz §iGts.

It is important to note that pCoR message exchange incurs@mstant penalty
— ~55us. The major part of that time is consumed on thread wake-wgaci
communication end-point. pCoR uses condition variableslock threads until
message arrival and basic LinuxThreads evaluation conditime a single thread
wake-up (by using a condition variable) takes aboves26n our SMP worksta-
tions. So, at least 5 will be consumed waking-up the two application threads
responsible for a message exchange.

us)

RoundTrip Time (
g
1

—— GM (node-to-node)
20 pCoR (thread-to-thread)

0 T T T T T T T

512 1024 1536 2048 2560 3072 3584 4096

Message Size (bytes)

Figure 1: Raw performance for pCoR and GM.

3 Overlapping of computation and communication

Most of evaluation, tuning and comparison of message-pgssistems rely on
simple latency and throughput tests, still programmerseaialy concerned about
the impact of communication on program computations.

Since there is not a general evaluation tool to use for istieid parallel environ-
ments testing, we developed a basic synthetic test to desdunal tune pCoR. We
also intend to use this synthetic test to compare pCoR witbratystems (MPICH,
PM2, PANDA and Athapascan [15]).

3.1 Thesynthetic test

In our test, tokens travel across cluster nodes consumingjcyeles, every time
they arrive to a node.

A single cluster node is used to produce tokens at start-bhaare sent to
random destinations chosen from the remaining cluster sx00a those nodes
several threads are created by using a certain number oégses (according to
test parameters). A valid destination for a token is a threading in a specific
process on a specific node.

Each token carries a random seed, a time to live and a work [Eve seed and
the time to live are used at each arriving node to randomlypdeithe next token
destination. The computing time required by each tokentisrdeéned by the work
level. The time to live is decremented at each node and wheradhes zero the
token is returned to the producer node.

The producer node computes the elapsed time between theagieneof the
first token and the return of the last one. By varying the nunabgrocesses at
each node we can evaluate the impact of using a different auefhGM ports.

By varying the number of threads per process it is possibtgmtify port mul-

tiplexing overhead. To find how computation overlaps wittoP&ommunication
we use different token work levels.

3.2 Evaluation

To evaluate pCoR implementation we ran our synthetic tésgdse cluster nodes
with technical specifications similar to that pointed in.Z8ur cluster nodes were
used to execute multiple combinations of procesggs0d threadsi{h) per node
(PxTh|Pe{1,2,4} NTh € {1,2,4,8}). The fifth cluster node was used to
produce 32 tokend{k) with 256 bytes length, carrying a 10000 time to IX/&I{L)
and a work level? € {0,1,10}. A W work level is equivalent W x 145) us
of computation, to be consumed whenever a token arrives tala.n
For each scenario, the execution time may be estimated exgressiof(T 'k x
TTL x W x 145) + maz(P x Th,2) + Ct] us, assuming that tokens will visit
uniformly all nodes and considering that two processorsazeglable per node.
Communication time't) could be estimated 0"k x TT L x (RoundT rip-+2)]
s (using values from 2.3), but it would be to assume in advadnaemessage
transfer latency is independent from computation and thuétading. Therefore
we define communication time as the time required to excharggsages plus the
overhead inflicted on application execution.
Figure 2 presents communication times for all possible &ges. Values were
calculated by subtracting token processing times fromtstitt test execution time
(STt): Ct = STt — [(Tk x TTL x W x 145) +~ maz(P x Th,2)].

6e+7
4e+7

2e+7

i s
Communication Time ()

Processes x Threads

Figure 2: Test results for different scenarios.

As expected communication time increases whenever we Btigher work
level per token. On the one hand, the dispatching systemucoes CPU cycles

reducing the computing node power. On the other hand, cdngpeycles required
to process each token delay the dispatcher raising messagey.

Another relevant conclusion is that thread context switghiias a major impact
on application performance as we increase the number oicagiph threads. In
fact, the OS thread scheduler assigns less CPU cycles toGbR plispatcher
whenever the total number of threads increases.

It is also important to note that when we used two processesque and one
thread per process poor performance was achieved. Addlitiesting is required
to come to a precise conclusion but we suspect that some dchvaxist on GM
NIC multiplexing.

3.3 Poalling strategies

As we mentioned in 2.1, pCoR allows different polling stgigs. To evaluate the
impact of polling we run the synthetic test for a specific seén(Tokens=32,
TTL=10000, Processes=1, Threads=8, Work=10) using @iffepolling strate-
gies.

A particular polling strategy is defined by a tugl®/A | D € {p,y,l} N A €
{0,5,10,100, 1000}). D characterizes the thread dispatcher behavipand y
means respectively that the thread dispatcher will paus2Qes or yield the pro-
cessor after polling whiléis used to point that the dispatcher enter an infinite loop
polling the GM port at maximum rated quantifies the number of polls performed
during token processing, in order to help the dispatcheswithrApplication threads
accomplish polling by calling the pCoR dispatcher routiaereentioned in 2.1.

Figure 3 presents total execution time and average numbaolisf (per node)
for each run.

140 1,2e+8

r 1,0e+8

r 8,0e+7

80 4

Execution Time - 6,0e+7
Number of Polls

60

Number of Polls

r 4,0e+7

Execution Time (s)

40 4

20 1 r 2,0e+7

0 .— - 0,0

pi0 p/5 pMO pf100 p/1000 y/0 yA10 y/H00 y/1000 1O

Polling Strategy

Figure 3: Impact of different polling strategies.

Note that lower polling rates will result in poor applicatiperformance because
thread-to-thread latency will increase significantly. @a bther hand, excessive
polling will drop computing power resulting in poor perfoamce too.

Itis important to note that strategigg0 and!/0 produced similar performance
results despite of the different number of polls. Althougélding the processor
after polling the GM port results in a lower number of pollss wiust take into
account that yielding the processor consumes CPU cycles.

We should also emphasize that the number of polls is not ptiopal to the
final application execution time. Strategje& 0, p/100 andy /0 are fair examples:
similar execution times and different number of polls oreviersa may occur
because beyond the total number of polls it is important twkwhen to poll.

For applications that exchange few messages, to pausesgrschier and engage
application threads on port polling will result in lower CRltllisation and will
increase application performance. Our synthetic testireg320000 messages to
be sent in a short period of time and obviously it is not a goathgple to show
this advantage.

4 Thread libraries

Available thread libraries rely on one of three models: N1, and N:M. Linux-
Threads uses the 1:1 approach, which means that a user thegeldes a kernel
thread. This allows taking full advantage from SMP workista and guarantees
total safety when calling 1/0 primitives. As a disadvantagemust point out that
LinuxThreads achieves poor performance on context switchind thread syn-
chronisation.

NGPT (Next Generation Posix Threading) [16] is an emergingadd library
(for Linux), which relies on the N:M model. It will be posséto execute applica-
tions compiled for LinuxThreads and new applications wllleato combine user
threads and kernel threads. Context switching and synidation for user threads
is significantly faster but NGPT developers sustain that N&&rnel threads out-
perform those from LinuxThreads.

4.1 NGPT vsLinuxThreads

Although NGPT is still under development, we designed a 8mpultithreading
evaluation test to compare LinuxThreads and a NGPT betaseldt would be
obviously more reasonable to evaluate pCoR by using eadtedhtead libraries,
but it is yet not possible to use the GM driver and the NGPTatilibrary because
NGPT requires a kernel version still not supported by GM.

The evaluation test consists of one producer thread géngeatents and several
consumer threads handling those events. This way we sientlatpCoR commu-
nication environment where a single library thread dispasomessages to several
application threads.

The producer generates 100000 events and delivers theroméytb the avail-
able consumers. After delivering an event the producengm@doop in order to

produce a 1Qus delay. Consumers wait for events by blocking themselvegyus
condition variables.

160000 m 15000
140000 10000 -
120000 5000 4
100000 n

=
=

Time (s)

IRNEN) al

2 8 32 128 2 8 32 128

Number of Threads (LinuxThreads) Number of Threads (NGPT)

Figure 4: Event handling using LinuxThreads and NGPT.

Figure 4 presents total production and handling times aleitly production
and handling delays. Production and handling times refgraetively to the time
required by the producer to generate all the events and tiinieerequired by all
consumers to handle those events. Production delays ardated by subtracting
the instant an event should be generated from the instangitéctively generated
(each event should be generatediBafter the deliver of the previous one). Han-
dling delays are calculated by subtracting the instant Weetwas generated (the
produced time-stamps each event) from the instant it islednd

Our test shows that by using NGPT it is possible to achieviebetoduction and
handling times whenever we use a large number of threadduBtion and han-
dling delays are significantly higher than those achieveddigg LinuxThreads,
mainly if few consumers exist. However, since we have ongdudGPT kernel
level threads we consider NGPT a promising platform to manmégpR threads.

5 Conclusions

The communication layer developed to pCoR allows messagsinabetween
threads residing on any node of a Myrinet cluster. Multipleeads may collabo-
rate to accomplish a single message exchange in order tonimathe impact of
port multiplexing. Zero-copy facilities provided by thealdevel communication
library were integrated with higher level programming aastions to guarantee
low latency and high throughput.

We have developed a basic synthetic test to evaluate ang@oie, since there
is not a general tool for the purpose of evaluating distedyparallel platforms.
The synthetic test proved to be very useful and we intend &itus compare
pCoR with other systems.

Thread context switching imposes significant overhead aathto-thread mes-
sage passing. Preliminary testing points that by using N&®Rill be possible to
reduce pCoR communication layer overhead.

References

[1] Pina, A., Oliveira, V., Moreira, C. & Alves, A. pCoR - a Raiype for
Resource Oriented Computing. submitted to HPC '02, 2002.

[2] Myricom. The GM Message Passing Syst@®00.

[3] Prylli, L. & Tourancheau, B. BIP: a new protocol desigrfedhigh speed per-
formance networking on Myrinet. Workshop PC-NOW, IPPS/8BB), 1998.

[4] Compag Computer Corp., Intel Corporationnand & Micrbgdorporation.
Virtual Interface Architecture Specification, 1997.

[5] Gropp, W. & Lusk, E.Installation and User’s Guide to MPICH, a Portable
Implementation of MRI12001.

[6] Myricom. VI-GM: Virtual Interface on Myrinet2002.

[7] Namyst, R. & Méhaut, J. PR Parallel Multithreaded Machine. A computing
environment for distributed architectures.RarCo’95 1995.

[8] Bhoedjang, R., Ruhl, T., Hofman, R., Langendoen, K. &,B&4 Panda: A
Portable Platform to Support Parallel Programming LanggathUSENIX
Symposium on Experiences with Distributed and MultiprecesSystems
(SEDMS 1V) 1993.

[9] Welsh, M., Culler, D. & Brewer, E. SEDA: An Architectureoff Well-
Conditioned, Scalable Internet ServicesHighteeth Symposyum on Oper-
ating Systems Principles (SOSP-13)01.

[10] Cohen, W., Patel, C. & Seshagiri, A. Cost of User and leébrevel Threads
Operations on Linux, 1998.

[11] Langendoen, K., Romein, J., Bhoedjang, R. & Bal, H. ¢m&ing Polling,
Interrupts, and Thread Management6ith Symp. on the Frontiers of Mas-
sively Parallel Computingl 996.

[12] Hansen, J. & Jul, E. Latency Reduction using a Pollingesiziler. InSecond
Workshop on Cluster-Based Computipgges 27-31. ACM, 2000.

[13] Danjean, V., Namyst, R. & Russel, R. Linux Kernel Actigans to Support
Multithreading. In18th Interbational Conference on Applied Informatics (Al
2000) 2000.

[14] Myricom. Sockets-GIM2002.

[15] Briat, J., Ginzburg, I. & Pasin, MAthapascan-0 User Manugl 998.

[16] Abt, B., Desai, S., Howell, D. & McCracken, D. Next Geagon POSIC
Threading: Moving Linux to the Enterprise, 2002.

