
High performance multithreaded message
passing on a myrinet cluster

Albano Alves1, António Pina2, José Exposto1 & José Rufino1
1Instituto Polit́ecnico de Bragança, Portugal.
2Universidade do Minho, Portugal.

Abstract

The main purpose of this paper is to present the impact of pCoRthread level mes-
sage passing facilities on applications running in a Myrinet cluster.

To exploit Myrinet technology we use the GM library, which provides a lim-
ited number of ports as abstractions to name communication end-points. pCoR
communication layer multiplexes GM ports by using a dispatcher thread to handle
messages to/from a large number of communication entities (working threads).

Our approach combines polling operations executed by multiple threads to avoid
unnecessary context switching; a simple mechanism is used to engage working
threads into the polling scheme. We aim to reduce the total number of polling
operations required to hold message passing system performance.

1 Introduction

Low latency communication technologies and SMP workstations make possible to
build clusters that attain the performance of massively parallel machines. However,
software development for such systems is still a major concern because it is hard
to take full advantage of hardware capabilities.

pCoR [1] communication layer focus on two main aspects: userlevel commu-
nication and our particular concept of distributed multithreaded applications.

1.1 User level communication systems

Nowadays operating systems provide built in communicationabstractions to inter-
face a variety of network adapters. Operating systems communication primitives
inflict unacceptable delays because of excessive context switching and memory

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153403315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


copying. To overcome this limitation, several user level communication systems
have been developed; applications are allowed to directly interface network inter-
face cards bypassing the OS kernel. Furthermore, by means ofmemory registra-
tion mechanisms, data is moved from user address space to network through DMA
enabling zero-copy communication.

GM [2] and BIP [3] are well-known user level communication libraries designed
for high performance networking on Myrinet technology. Some VIA [4] imple-
mentations are also coming out making possible the exploitation of other commu-
nication technologies like Gigabit.

User level communication libraries provide low-level abstractions that are not
suitable for application development. For instance, GM is not thread safe and
imposes an event oriented model to send and receive messagesand BIP does
not provide any error recovery facility. Higher level libraries like MPICH-GM
[5] and VIA-GM [6] include some thread support but they don’tmanage buffers
efficiently; both copy user data into pre-registered memorybefore sending it.

To efficiently handle multithreading and communication, PM2 [7] and PANDA
[8] use specific user level thread libraries which include the ability to manage
communication. This approach limits the programmer because user level threads
may block the whole application when calling certain I/O operations and user level
thread libraries are not able to take full advantage of SMP systems.

1.2 Distributed multithreaded applications

Multithreading primary motivations are to exploit multi-processor machines and
to hide I/O latency in order to achieve lower execution timesfor applications.

Although several authors have been concerned about the usability of threads in
fine-grain parallelism, we intend to use threads as a structural element and for long-
term computation. Complex distributed parallel applications (information retrieval
systems, for example) can be designed to use a limited numberof processes and a
considerable number of threads. For each process, thread sets may be pre-assigned
to stages [9] avoiding complex mechanisms to evaluate the minimum computation
time that counterbalance the penalty of creating a new thread [10].

Distributed multithreaded applications require additional mechanisms for data
exchange and synchronization between threads that executeon different cluster
nodes. It is also important to have a unique set of user API primitives that can be
used besides the location of a thread (local to the process, local to the machine
or remote). pCoR combines shared memory and message passingover a commu-
nication layer that provides thread-to-thread communication for Myrinet clusters.
Future work will provide Fast Ethernet and Gigabit support by using VIA.

2 Message passing and multithreading

Flexibility and robustness are two important characteristics we planed to include in
pCoR that shape our preference for LinuxThreads and GM. LinuxThreads is part
of glibc and guaranties thread safety for all Linux I/O primitives. GM is available



from Myricom (the Myrinet equipment manufacturer) and provides error recovery.

2.1 Port multiplexing

Low-level communication facilities, like those provided by GM, are intended for
node-to-node communication. Thus few abstractions are available for the naming
of communication end-points. GM allows opening up to eight ports (per NIC),
which are really insufficient for multithreaded applications. Note that ports can’t
be shared among threads (GM is not thread safe).

pCoR multiplexes GM ports through a dispatcher thread; current pCoR imple-
mentation opens one GM port per process and launches a dispatcher thread to
manage that port. The dispatcher is essential for message reception. In fact, it’s
easy to implement GM port sharing among threads by using a single mutexif
we consider only message sending. Message reception is the difficult part; mes-
sages arrive asynchronously and network must be drained someway. Note that it is
not practicable to block any thread on a specific GM port because it would delay
sendings until a message arrival. Thus the dispatcher pollsthe GM port, enqueues
message handlers for received messages and wakes up threadswaiting for specific
messages.

Polling is a CPU consuming task and therefore different strategies must be
investigated in order to minimize pCoR communication layerimpact on applica-
tions performance. Nevertheless it is important to note that reducing polling cycles
(to free CPU for useful computation) may result in poor application performance
due to degradation of communication latency (see 3.3).

pCoR includes a primitive to configure the dispatcher behaviour; it is possible
to force CPU yielding after successful polls and to set the waiting time between
successive polls. Furthermore the dispatcher is able to detect when the majority
of the application threads are waiting for messages to increase the poll frequency.
Application threads may also collaborate on message dispatching calling another
special primitive that executes the dispatcher routine.

Some authors ([11], [12], [13]) propose the inclusion of polling mechanisms
into the thread scheduler. Our work aims to build an efficientplatform without
patching or substituting the LinuxThreads scheduler.

Port multiplexing further requires a naming service to map thread identifiers
into GM identifiers. pCoR accomplishes a basic naming service over TCP/IP. A
thread identifier is resolved the first time a message is sent to that specific thread
and the corresponding mapping is stored in a local cache.

2.2 Towards zero-copy

User level communication libraries allow zero-copy data exchanging between user
address spaces from different machines. GM forces the use ofDMAble memory
blocks to hold data to be sent to other nodes. At the receivingside pre-allocated
DMAblebuffers must also be available to store incoming data.

Higher level programming abstractions must integrate those low level facilities



to avoid extra copies. However, it is not an easy task to combine the GM commu-
nication model and a particular high-level communication abstraction. Sockets-
GM [14], VIA-GM and MPICH-GM, for instance, pre-allocateDMAblebuffers at
library start-up and copy application data to/from that buffers before/after send-
ing/receiving it (two copies are made).

In addition to traditional send and receive operations, pCoR communication
layer provides four extra operations to manage zero-copy communication: buffer
request, buffer probe, buffer immediate release and bufferdelayed release.

A buffer request returns a pointer to aDMAblememory block. A dynamic pool
of memory blocks is maintained to avoid memory allocation and memory regis-
tration operations. Any size (s) memory blocks may be requested for sending data
but pCoR will always allocate2n � 8 bytes (s � 2n � 8; n 2 N ) because we
consider that any block may be used for future reception and GM forces receiving
buffers to match this size restriction.

Programs compute new data into aDMAblememory block and whenever it is
necessary to send that data to a remote thread no memory copy will occur. Because
sending is an asynchronous operation, buffer probing is required to guarantee that
data is not changed while it is moved (by using DMA) to the NIC.

Buffer release operations are intended to reduce memory waste mainly caused
by receptions. In fact, at message arrival aDMAble block is used and it will be
necessary to provide a new block (with the same size) to the GMlibrary. If no
memory blocks are available from the pool, pCoR will allocate a new one. Since
pCoR receive operation returns to the user a pointer to aDMAbleblock, after read-
ing/using the received data the program must release the corresponding buffer so
that pCoR may reuse it. Delayed releases are used to notify the pCoR communica-
tion layer that it may reuse a specific buffer after the terminus of the corresponding
sending operation while immediate releases are used whenever a buffer may be
reused immediately.

2.3 Raw performance

Figure 1 presents raw performance obtained for message exchange between two
pCoR threads. GM performance for message exchange between nodes is also pre-
sented as a basis for comparison.

Evaluation was undertaken by using two dual Intel PIII workstations (733MHz),
running Linux RedHat 7.3 (kernel 2.4.18-3smp). The workstations were intercon-
nected by Myrinet LANai9 cards connected to 64bits/66MHz PCI slots.

It is important to note that pCoR message exchange incurs in aconstant penalty
– �55�s. The major part of that time is consumed on thread wake-up ateach
communication end-point. pCoR uses condition variables toblock threads until
message arrival and basic LinuxThreads evaluation confirmed that a single thread
wake-up (by using a condition variable) takes above 25�s on our SMP worksta-
tions. So, at least 50�s will be consumed waking-up the two application threads
responsible for a message exchange.



Figure 1: Raw performance for pCoR and GM.

3 Overlapping of computation and communication

Most of evaluation, tuning and comparison of message-passing systems rely on
simple latency and throughput tests, still programmers aremainly concerned about
the impact of communication on program computations.

Since there is not a general evaluation tool to use for distributed parallel environ-
ments testing, we developed a basic synthetic test to evaluate and tune pCoR. We
also intend to use this synthetic test to compare pCoR with other systems (MPICH,
PM2, PANDA and Athapascan [15]).

3.1 The synthetic test

In our test, tokens travel across cluster nodes consuming CPU cycles, every time
they arrive to a node.

A single cluster node is used to produce tokens at start-up, which are sent to
random destinations chosen from the remaining cluster nodes. On those nodes
several threads are created by using a certain number of processes (according to
test parameters). A valid destination for a token is a threadrunning in a specific
process on a specific node.

Each token carries a random seed, a time to live and a work level. The seed and
the time to live are used at each arriving node to randomly compute the next token
destination. The computing time required by each token is determined by the work
level. The time to live is decremented at each node and when itreaches zero the
token is returned to the producer node.

The producer node computes the elapsed time between the generation of the
first token and the return of the last one. By varying the number of processes at
each node we can evaluate the impact of using a different number of GM ports.



By varying the number of threads per process it is possible toquantify port mul-
tiplexing overhead. To find how computation overlaps with pCoR communication
we use different token work levels.

3.2 Evaluation

To evaluate pCoR implementation we ran our synthetic test using five cluster nodes
with technical specifications similar to that pointed in 2.3. Four cluster nodes were
used to execute multiple combinations of processes (P ) and threads (Th) per node
(P � Th j P 2 f1; 2; 4g ^ Th 2 f1; 2; 4; 8g). The fifth cluster node was used to
produce 32 tokens (Tk) with 256 bytes length, carrying a 10000 time to live (TTL)
and a work levelW 2 f0; 1; 10g. A W work level is equivalent to(W � 145) �s
of computation, to be consumed whenever a token arrives to a node.

For each scenario, the execution time may be estimated by theexpression[(Tk�TTL�W � 145)�max(P � Th; 2) + Ct℄ �s, assuming that tokens will visit
uniformly all nodes and considering that two processors areavailable per node.
Communication time (Ct) could be estimated by[Tk�TTL�(RoundTrip�2)℄�s (using values from 2.3), but it would be to assume in advancethat message
transfer latency is independent from computation and multithreading. Therefore
we define communication time as the time required to exchangemessages plus the
overhead inflicted on application execution.

Figure 2 presents communication times for all possible scenarios. Values were
calculated by subtracting token processing times from synthetic test execution time
(STt): Ct = STt� [(Tk � TTL�W � 145)�max(P � Th; 2)℄.

Figure 2: Test results for different scenarios.

As expected communication time increases whenever we forcea higher work
level per token. On the one hand, the dispatching system consumes CPU cycles



reducing the computing node power. On the other hand, computing cycles required
to process each token delay the dispatcher raising message latency.

Another relevant conclusion is that thread context switching has a major impact
on application performance as we increase the number of application threads. In
fact, the OS thread scheduler assigns less CPU cycles to the pCoR dispatcher
whenever the total number of threads increases.

It is also important to note that when we used two processes per node and one
thread per process poor performance was achieved. Additional testing is required
to come to a precise conclusion but we suspect that some drawback exist on GM
NIC multiplexing.

3.3 Polling strategies

As we mentioned in 2.1, pCoR allows different polling strategies. To evaluate the
impact of polling we run the synthetic test for a specific scenario (Tokens=32,
TTL=10000, Processes=1, Threads=8, Work=10) using different polling strate-
gies.

A particular polling strategy is defined by a tupleD=A j D 2 fp; y; lg ^ A 2f0; 5; 10; 100; 1000g). D characterizes the thread dispatcher behaviour:p andy
means respectively that the thread dispatcher will pause for 20�s or yield the pro-
cessor after polling whilel is used to point that the dispatcher enter an infinite loop
polling the GM port at maximum rate .A quantifies the number of polls performed
during token processing, in order to help the dispatcher thread. Application threads
accomplish polling by calling the pCoR dispatcher routine as mentioned in 2.1.

Figure 3 presents total execution time and average number ofpolls (per node)
for each run.

Figure 3: Impact of different polling strategies.



Note that lower polling rates will result in poor application performance because
thread-to-thread latency will increase significantly. On the other hand, excessive
polling will drop computing power resulting in poor performance too.

It is important to note that strategiesy=0 andl=0 produced similar performance
results despite of the different number of polls. Although yielding the processor
after polling the GM port results in a lower number of polls, we must take into
account that yielding the processor consumes CPU cycles.

We should also emphasize that the number of polls is not proportional to the
final application execution time. Strategiesp=10, p=100 andy=0 are fair examples:
similar execution times and different number of polls or vice versa may occur
because beyond the total number of polls it is important to know when to poll.

For applications that exchange few messages, to pause the dispatcher and engage
application threads on port polling will result in lower CPUutilisation and will
increase application performance. Our synthetic test requires 320000 messages to
be sent in a short period of time and obviously it is not a good example to show
this advantage.

4 Thread libraries

Available thread libraries rely on one of three models: 1:1,N:1 and N:M. Linux-
Threads uses the 1:1 approach, which means that a user threadmatches a kernel
thread. This allows taking full advantage from SMP workstations and guarantees
total safety when calling I/O primitives. As a disadvantagewe must point out that
LinuxThreads achieves poor performance on context switching and thread syn-
chronisation.

NGPT (Next Generation Posix Threading) [16] is an emerging thread library
(for Linux), which relies on the N:M model. It will be possible to execute applica-
tions compiled for LinuxThreads and new applications will able to combine user
threads and kernel threads. Context switching and synchronisation for user threads
is significantly faster but NGPT developers sustain that NGPT kernel threads out-
perform those from LinuxThreads.

4.1 NGPT vs LinuxThreads

Although NGPT is still under development, we designed a simple multithreading
evaluation test to compare LinuxThreads and a NGPT beta release. It would be
obviously more reasonable to evaluate pCoR by using each of the thread libraries,
but it is yet not possible to use the GM driver and the NGPT thread library because
NGPT requires a kernel version still not supported by GM.

The evaluation test consists of one producer thread generating events and several
consumer threads handling those events. This way we simulate the pCoR commu-
nication environment where a single library thread dispatches messages to several
application threads.

The producer generates 100000 events and delivers them randomly to the avail-
able consumers. After delivering an event the producer enters a loop in order to



produce a 10�s delay. Consumers wait for events by blocking themselves using
condition variables.

Figure 4: Event handling using LinuxThreads and NGPT.

Figure 4 presents total production and handling times alongwith production
and handling delays. Production and handling times refer respectively to the time
required by the producer to generate all the events and to thetime required by all
consumers to handle those events. Production delays are calculated by subtracting
the instant an event should be generated from the instant it is effectively generated
(each event should be generated 10�s after the deliver of the previous one). Han-
dling delays are calculated by subtracting the instant the event was generated (the
produced time-stamps each event) from the instant it is handled.

Our test shows that by using NGPT it is possible to achieve better production and
handling times whenever we use a large number of threads. Production and han-
dling delays are significantly higher than those achieved byusing LinuxThreads,
mainly if few consumers exist. However, since we have only used NGPT kernel
level threads we consider NGPT a promising platform to manage pCoR threads.

5 Conclusions

The communication layer developed to pCoR allows message passing between
threads residing on any node of a Myrinet cluster. Multiple threads may collabo-
rate to accomplish a single message exchange in order to minimize the impact of
port multiplexing. Zero-copy facilities provided by the low-level communication
library were integrated with higher level programming abstractions to guarantee
low latency and high throughput.

We have developed a basic synthetic test to evaluate and tunepCoR, since there
is not a general tool for the purpose of evaluating distributed parallel platforms.
The synthetic test proved to be very useful and we intend to use it to compare
pCoR with other systems.



Thread context switching imposes significant overhead on thread-to-thread mes-
sage passing. Preliminary testing points that by using NGPTit will be possible to
reduce pCoR communication layer overhead.

References

[1] Pina, A., Oliveira, V., Moreira, C. & Alves, A. pCoR - a Prototype for
Resource Oriented Computing. submitted to HPC ’02, 2002.

[2] Myricom. The GM Message Passing System, 2000.
[3] Prylli, L. & Tourancheau, B. BIP: a new protocol designedfor high speed per-

formance networking on Myrinet. Workshop PC-NOW, IPPS/SPDP98, 1998.
[4] Compaq Computer Corp., Intel Corporationnand & Microsoft Corporation.

Virtual Interface Architecture Specification, 1997.
[5] Gropp, W. & Lusk, E.Installation and User’s Guide to MPICH, a Portable

Implementation of MPI, 2001.
[6] Myricom. VI-GM: Virtual Interface on Myrinet, 2002.
[7] Namyst, R. & Méhaut, J. PM2: Parallel Multithreaded Machine. A computing

environment for distributed architectures. InParCo’95, 1995.
[8] Bhoedjang, R., Rühl, T., Hofman, R., Langendoen, K. & Bal, H. Panda: A

Portable Platform to Support Parallel Programming Languages. InUSENIX
Symposium on Experiences with Distributed and Multiprocessor Systems
(SEDMS IV), 1993.

[9] Welsh, M., Culler, D. & Brewer, E. SEDA: An Architecture for Well-
Conditioned, Scalable Internet Services. InEighteeth Symposyum on Oper-
ating Systems Principles (SOSP-18), 2001.

[10] Cohen, W., Patel, C. & Seshagiri, A. Cost of User and Kernel Level Threads
Operations on Linux, 1998.

[11] Langendoen, K., Romein, J., Bhoedjang, R. & Bal, H. Integrating Polling,
Interrupts, and Thread Management. In6th Symp. on the Frontiers of Mas-
sively Parallel Computing, 1996.

[12] Hansen, J. & Jul, E. Latency Reduction using a Polling Scheduler. InSecond
Workshop on Cluster-Based Computing, pages 27–31. ACM, 2000.

[13] Danjean, V., Namyst, R. & Russel, R. Linux Kernel Activations to Support
Multithreading. In18th Interbational Conference on Applied Informatics (AI
2000), 2000.

[14] Myricom.Sockets-GM, 2002.
[15] Briat, J., Ginzburg, I. & Pasin, M.Athapascan-0 User Manual, 1998.
[16] Abt, B., Desai, S., Howell, D. & McCracken, D. Next Generation POSIC

Threading: Moving Linux to the Enterprise, 2002.


