
Scalable Multithreading in a Low Latency

Myrinet Cluster�

Albano Alves1, António Pina2, José Exposto, and José Rufino

1 Instituto Politécnico de Bragança
albano@ipb.pt

2 Universidade do Minho
pina@di.uminho.pt

Abstract. In this paper we present some implementation details of
a programming model – pCoR – that combines primitives to launch
remote processes and threads with communication over Myrinet. Basi-
cally, we present the efforts we have made to achieve high performance
communication among threads of parallel/distributed applications. The
expected advantages of multiple threads launched across a low latency
cluster of SMP workstations are emphasized with a graphical application
that manages huge maps consisting of several JPEG images.

1 Introduction

Cluster computing is a new concept that is emerging with the new advances
in communication technologies; several affordable heterogeneous computers may
be interconnected through high performance links like Myrinet.

Using these new computing platforms several complex problems, which in
the past have required expensive mainframes, may now be solved using low
cost equipment. Particularly, we are interested in providing cluster solutions
for informational problems that require a combination of massive storage and
moderate computing power.

1.1 Resource Oriented Computing – CoR

The CoR computing model has been primarily motivated by the need of cre-
ating a parallel computer environment to support the design and evaluation of
applications conforming to the MC2 (Cellular Computation Model) [17].

A full specification of CoR and an initial prototype – pCoR – were presented
in [14] and [18]. CoR paradigm extends the process abstraction to achieve struc-
tured fine-grained computing using a combination of message passing, shared
memory and POSIX threads. Specification, coordination and execution of appli-
cations lie on the definition of a variety of physical and logical resources, such
as domains, tasks, data, ports, synchronizers, barriers, topologies, etc.
� Research supported by FCT/MCT, Portugal, contract POSI/CHS/41739/2001, un-

der the name ”SIRe – Scalable Information Retrieval Environment”.

J.M.L.M. Palma et al. (Eds.): VECPAR 2002, LNCS 2565, pp. 579–593, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153403314?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

580 Albano Alves et al.

First attempts to introduce high performance communication into CoR, ex-
ploiting Myrinet, were presented in [1]. Preliminary results and validation were
obtained with the development of a distributed hash system [19] and a global file
system to exploit a local Myrinet cluster particularly for information retrieval.

1.2 Multithreading and Message Passing

Multithreading and message passing are two fundamental low-level approaches
to express parallelism in programs. The first approach proved to be convenient
in SMP workstations and the latter is widely used to program applications that
distribute computations across networked machines.

Considering that most clusters are built from multiprocessor machines, there
is a strong motivation to use a hybrid approach, combining multithreading,
shared memory and message passing. This is not an easy task because message-
passing primitives of most communication libraries are not thread safe. For in-
stance, the device driver to interface Myrinet and the set of primitives provided
by Myricom are not thread safe. However, we do believe that programmers could
benefit from hybrid approaches because some applications can be easily struc-
tured as a set of concurrent/parallel tasks. That was the major motivation that
led us to the investigation of a scalable communication strategy to support mas-
sive multithreaded applications in a cluster environment.

2 Background

Last decade many projects aimed to exploit the full computing power of networks
of SMP workstations. In what follows we briefly present some key ideas that
influenced nowadays cluster computing.

2.1 Distributed Multithreaded Programming

To run a distributed multithreaded program it is necessary to have a runtime
system and a set of primitives to interface it1. Those primitives and their func-
tionality highly influence the way programmers structure distributed applica-
tions.

MPI [21] programmers structure their applications according to the SPMD
model and they are familiar with processor-to-processor message passing.
PVM [10] permits some high level abstractions by introducing the notion of task.
Communication takes place between tasks. The runtime system maps tasks to
hosts.

Other platforms like TPVM [8], LPVM [23], a modified version of P4 [7],
Chant [12] and Athapascan-0 [6] allow the creation of multiple threads. Commu-
nication occurs between threads using thread identifiers and send/receive primi-
tives. Athapascan adds the concept of ports and requests: ports are independent
1 Some distributed programming environments also include specific compilers.

Scalable Multithreading in a Low Latency Myrinet Cluster 581

from threads and so any thread can receive a message sent to a particular port;
requests are used to test termination of asynchronous communication.

Panda [4], PM2 [16] and Nexus [9] also include thread support but they
manage communication in a different manner; messages are delivered executing
handlers previously registered by the user. This way programs are not forced to
explicitly receive messages (via blocking or nonblocking primitives). These run-
time systems are also able to automatically launch threads to execute handlers.

Remote service requests are another paradigm for remote execution and data
exchange that some platforms do support. RPCs are asynchronous and match
perfectly the communication paradigm of Panda, PM2 and Nexus, which obvi-
ously support this facility. Chant and Athapascan also implement RPCs.

Nexus provides an extra abstraction - the context - used to group a set of
threads, which is an important concept for structuring applications. A context
is mapped to a single node.

For thread support two different approaches may be used: developing a thread
library or selecting an existent one. Panda and PM2 developed specific thread
libraries in order to integrate communication and multithreading in a more
efficient way. Chant manipulates the scheduler of existing thread packages
(pthreads, cthreads, etc) to take message polling into account when schedul-
ing ready threads. Cilk [5], which provides an abstraction to threads in explicit
continuation-passing style, includes a work-stealing scheduler.

2.2 Efficient Message Handling

Using recent communication hardware, it is possible to send a message from
one host to another in a few microseconds while throughput between hosts can
achieve hundreds of Mbytes2.

However, operating systems usually take advantage of internal buffers and
complex scheduling techniques to deliver data to user level programs. For that
reason low-level communication libraries have been developed to directly inter-
face the hardware. GM [15], BIP [11] and LFC [2] are communication libraries
that take full advantage from Myrinet technology, by means of zero-copy com-
munication.

On the other hand, distributed applications manipulate complex entities and
use several threads/processes of control. Messages incoming to a specific host
must be redirected to the right end-point and so context-switching overheads
may decrease performance. Active messages [22] are a well-known mechanism to
eliminate extra overheads on message handling. Upcalls and popup threads are
two techniques to execute message handlers [3] used in Panda.

The choice between polling or interrupts for message reception [13] may also
have significant impact on program performance. LFC uses both mechanisms,
switching from one to another according to the system status.
2 Myrinet latency is less then 10µs and one-way throughput is near 250MB/s.

582 Albano Alves et al.

2.3 pCoR Approach

pCoR aims to efficiently combine existent POSIX threads implementations (ker-
nel Linux Threads, for example) and low-level communication facilities provided
by hardware vendors (GM, for example). The goal is to provide a platform suit-
able for the development and execution of complex applications but we do not
intend to directly support threads or to develop specific communication drivers.

Using Linux Threads we can take full advantage of multiprocessor systems
and ensure compatibility with existent sequential routines. By implementing tra-
ditional send/receive primitives over a well-supported low-level communication
facility as GM we guarantee performance and extendibility.

3 Thread-to-Thread Communication

pCoR runtime system distinguishes between inter and intra-node communica-
tion. Intra-node communication may occur between threads sharing the same
address space (intra-process communication) or between threads from different
processes (inter-process communication).

To manage communication, pCoR runtime system must be aware of thread
location in order to select the most efficient mechanism for data sending. As
a consequence the communication subsystem must be perfectly integrated on
pCoR runtime system. It would be particularly difficult to use an existent thread-
to-thread communication facility in an efficient manner because it would be
necessary to integrate it with pCoR naming service.

At present we support two ports: UDP (for Ethernet devices) and GM (for
Myrinet hardware).

3.1 Communication Channels

The development of a communication library to overcome pCoR communication
needs must address two main issues:

1. identification – global process and thread identifiers, provided by pCoR re-
source manager, must be combined to produce unique identifiers to assign
to communication end-points;

2. port virtualisation – low-level communication libraries to interface network
adapters provide port abstractions to identify receivers and senders, but
those abstractions are limited in number (GM library, for instance, only
supports up to 8 ports).

In pCoR, identification is handled by a distributed service running on every
process belonging to the same application. Basically, this is a directory service
responsible to map pCoR identifiers into low-level identifiers used to route data
at network interface level. To route information between components of the
directory service, pCoR uses alternative communication facilities over TCP/IP.
The impact of that solution is minimized through the use of local caches.

Port virtualisation will be explained in section 4.

Scalable Multithreading in a Low Latency Myrinet Cluster 583

3.2 Low-Level Interface

Communication between pCoR remote entities is implemented through a few
primitives that use GM facilities to send and receive data. Although CoR speci-
fies high-level abstractions to interconnect computing resources, it is possible to
use these primitives to transmit and receive data in pCoR applications.

Senders must specify the destination using a pair <pCoR process id, pCoR
thread id>, a tag and the address of the data to be sent. Data can be copied
from its original address or it can be directly delivered to the GM library if it
resides on a DMAble memory block. The reciprocal is valid for receivers.

Because both send and receive primitives are asynchronous, a test commu-
nication primitive with two modes – blocking or non-blocking – is provided.

int hndl = sendCopy(int trgt_pid, int trgt_thid, int tag, void *data,

int size)

sendDMA(...)

int hndl = recvCopy(int src_pid, int src_pid, int tag, void *data,

int size, int *apid, int *athid, int *atag, int *asize)

recvDMA(..., void **data, ...)

int status = testHandle(int handle, int mode)

4 Message Dispatching

Port virtualisation introduces the need to create a dispatching mechanism to
handle messages from/to an arbitrary number of entities. Our approach uses
a dispatcher thread per port to make possible several threads to share the same
communication facility.

4.1 Dispatcher Thread

Send and receive primitives, executed by concurrent/parallel threads, interact
with the dispatcher thread through queues. The send primitive enqueues mes-
sages for future dispatch whereas the receive primitive dequeues messages if
any is available. Synchronous operation is supported through thread blocking
mechanisms. Figure 1 shows the main aspects of message dispatching.

The dispatcher thread detects message arrival, via GM, using polling or
blocking primitives. Every new message arriving to a port is enqueued in the
receive queue and blocked threads (waiting for specific messages) are awak-
ened. Whenever pending messages are detected in the send queue, the dispatcher
thread initiates their transmission via GM.

Since we provide two approaches3 to interface GM – polling and blocking
primitives – the dispatcher operates in one of two modes: non-blocking or block-
ing.
3 Currently available as compile options.

584 Albano Alves et al.

Queue
Receive

Queue
Send

R.5

dispatching cycle receive cycle send cycle

R.1

R.2

R.3

DMA bufferDMA buffer

S.3 R.4S.1

S.2

S.4

S.5

GM

send(...) recv(...)

Fig. 1. Message dispatching mechanism

The non-blocking dispatcher uses a sole thread to execute an infinite loop
sending and receiving messages. After polling the GM port for events4 the dis-
patcher tries to find messages to transmit.

The blocking dispatcher must overcome a basic problem: if pCoR blocks itself
waiting for message arrival, it will be impossible to send out any messages until
a network event occurs because GM primitives are not thread safe. Experience
proved that if a thread is blocked (after calling a GM blocking primitive) it is
possible for another thread to send out messages if we use an additional GM
port. Thus the blocking dispatcher uses two threads and two ports – one to
receive and another to send messages. A thread waits for messages (from other
nodes) issuing a GM blocking primitive while the other blocks itself waiting for
messages to be sent to other nodes.

4.2 Segmentation and Retransmission

To transmit messages over GM, it is necessary to copy data into DMAble mem-
ory blocks5. pCoR supports the transmission of arbitrary size messages, i.e.,
the communication layer must allocate DMAble arbitrary size buffers. Because
processes cannot register all their memory as DMAble, we use buffers up to
64kbytes requested on library start-up. This means that long messages must be
segmented.

Segmentation involves reassembling message fragments at destination and
it implies that sequence numbering to identify fragments belonging to the same
message is needed. Sequence numbers are managed by the interface developed to
4 GM events signal network activity (message arrival, acknowledgment, etc).
5 Program data stored in DMAble memory is transmitted as a zero copy message.

Scalable Multithreading in a Low Latency Myrinet Cluster 585

manage the queues used by the dispatcher. Every fragment is handled as a simple
message by the dispatcher; dequeue and enqueue operations are responsible for
fragmentation and reassembling.

Message sequencing is used to overcome another problem: fragment/message
retransmission. Although GM guarantees the correct delivery of messages, the
lack of resources at destination may not permit reception at a specific time. In
those cases it is necessary to retry transmission after a certain period of time.

4.3 Multiple Routes and Message Forwarding

Cluster nodes may have installed multiple network interfaces from different ven-
dors6. It is also possible that not all nodes from a cluster share a common
communication technology. Even clusters on different locations may be inter-
connected using Internet protocols.

For those scenarios, it is desirable to allow computing entities to select at run-
time the appropriate communication protocol and to provide forwarding capabil-
ities to overcome cluster partitions (Madeleine [20] addresses these topics). It is
also important to provide mechanisms to choose the better location for comput-
ing threads according to host-to-host link capabilities. For instance, for a cluster
fully connected with Fast Ethernet but having part of the nodes connected with
Myrinet, it would be desirable to have the runtime system responsible to start
on Myrinet nodes those threads with higher communication demands.

pCoR uses a straightforward mechanism to provide multiple routes on het-
erogeneous clusters. At start-up each node registers its communication ports and
builds a simple routing table containing information about protocols and gate-
ways available to reach each remote node. As pCoR allows to dynamically add
nodes to an application, the runtime system rebuilds the routing table at each
node every time a start-up event is received.

Message forwarding is accomplished by the dispatcher thread. pCoR message
headers include the final destination (process id) of the message along with the
information pointed out in figure 2.

5 Data Structures

Message dispatching requires appropriate data structures to guarantee low-
latency reception and sending. The pCoR communication layer architecture uses
two main queues per port to store messages. Those queues must minimize re-
quired memory size and must permit fast access to store/retrieve data.

5.1 Message Reception

The recv primitive used in pCoR, executed concurrently by an arbitrary num-
ber of threads, searches for messages according to certain attributes: originator
6 It’s common to connect cluster nodes to both Ethernet and Myrinet switches.

586 Albano Alves et al.

target
thid

source
thid

source
pid

tag

Message
Data

status

Pool

Message
Fragment

Hash Table

hash()

Message Control

data

size msgidtag

thread
target

id
thread
source

id
process
source

id

nextprevious

Fig. 2. Data structures for message reception

process, originator thread and message tag. As we use an only receive queue per
process the destination thread identifier is also automatically included to search
for a specific message.

A tuple <source process, src. thread, target thread, tag> is used
to calculate a hash index to access a vector of pointers to message control blocks.
The message control blocks are stored in a fixed size array which means that
a limited number of messages can be pending for reception. Collisions resulting
from the application of the hash function and messages addressed to the same
thread from the same origin and with the same tag are managed as a linked list
of message control blocks as shown in figure 2.

Message control blocks contain message attributes, a pointer to the message
data, sequencing information and fragmentation status. For fragment tracking
32 bits are used – 1 bit for each fragment – supporting messages up to 2095872
bytes7.

5.2 Message Sending

The send primitive enqueues messages for future dispatch whereas the dispatcher
thread dequeues those messages for sending over GM. Because message dispatch-
ing uses FIFO order, at first sight we might think that a simple queue would be
adequate to hold pending messages. However, since segmentation and retrans-
mission are provided, the dispatcher needs some mechanism to access a specific
message. Actually, segmentation requires the ability to dequeue single message
fragments whereas delivery acknowledgment events from GM layer, handled by
the dispatcher, require the ability to set message status for a specific message.

For short, data structures for message sending will be analogous to those used
for message reception, but it is necessary to have a dequeue operation performing
according to FIFO.
7 Maximum message size results from (64k − (fragmentheadersize)) ∗ 32.

Scalable Multithreading in a Low Latency Myrinet Cluster 587

pCoR Round-Trip

10
10

0
10

00

0 4096 8192 12288 16384

Message size (Bytes)

R
o

u
n

d
-T

ri
p

T
im

e
(µµ µµ

s)

pCoR (blk)
pCoR (nblk)
GM (blk)
GM (nblk)

pCoR One-Way Throughput

0
65

13
0

0 4096 8192 12288 16384

Message size (Bytes)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

GM (nblk)
pCoR (nblk)
pCoR (blk)
pCoR (blk+copy)
GM (blk)

Fig. 3. Round-Trip and Throughput in pCoR

6 pCoR Raw Performance

Although pCoR provides high-level abstractions, like remote thread creation and
definition of complex organizers, it is important to evaluate the raw performance
obtained when transferring data between threads.

The results we present were obtained using a simple benchmark program
that engages on communication two pCoR tasks (threads) executing on different
machines. We used two dual PIII 733MHz workstations, connected by Myrinet
(LANai9 64bits/66MHz interfaces), running Linux RedHat 7.2 (kernel 2.4.7-
10smp). The tests were performed with no additional load at each workstation.

Figure 3 presents round-trip times and one-way throughput for messages from
1byte to 16kbytes. Values for the GM low-level interface performance (host-to-
host communication) are also presented to better understand the overhead of
thread-to-thread communication. The experiments took into account the two
mechanisms GM provides to receive events - polling and blocking receives8.

It is important to note the impact of message dispatching9. For each message
exchange, the pCoR runtime system must wake up two blocked threads; the
dispatcher must signal the message arrival to a specific thread. Using some simple
POSIX threads tests, we evaluated the overhead of waking up a thread blocked
on a condition variable (using linuxthreads-0.9, libc-2.2.4). We concluded that
this overhead exceeds 35µs. This explains round-trip times obtained in pCoR;
a message exchange in pCoR incurs in a 70µs penalty due to thread wake up.

It is also important to note the result of using blocking primitives to interface
the GM library. Although the use of blocking primitives has the advantage of
freeing the processor for useful computation, message reception incurs in a 15µs
penalty (30µs for a message exchange) due to interrupt dispatching.

8 In the charts legends blk and nblk stands for blocking and non-blocking.
9 Legend items order correspond to the placement of chart curves; the top curve

corresponds to the first legend item and vice-versa.

588 Albano Alves et al.

Throughput tests showed that GM guarantees 120Mbytes/s10 using non-
blocking primitives (polling). The use of GM blocking primitives produces poor
and unpredictable results. pCoR can achieve almost the same throughput as
GM for messages longer than 4kbytes and the use of blocking primitives did not
produce the same negative impact that we noticed when using GM directly.

Surprising results were obtained when we decided to test the pCoR non-zero-
copy communication primitives11. For data residing on non-DMAble memory,
pCoR must allocate a memory block and perform a data copy. In spite of this
overhead, pCoR outperforms the throughput obtained in GM host-to-host tests
using blocking primitives.

We conclude that GM blocking primitives can behave nicely when several
threads share the same processor.

7 Case Study

To emphasize the importance of thread-to-thread communication we present an
application intended to manage (display) huge maps. Those maps are composed
of several 640x480 pixel JPEG images.

In our case study we used a 9600x9600 pixel map consisting of a 15x20 matrix
of JPEG images. The main objective is the visualization of arbitrarily large map
regions. Regions larger than the window size require the images to be scaled
down.

The architecture we propose to manage this kind of maps takes into account
the following requisites: high computing power to scale down images, large hard
disk capacity to store images and high I/O bandwidth to load JPEG images
from disk.

7.1 Multithreading

Assuming we have an SMP machine with enough resources to handle those huge
maps a multithreaded solution can be developed to accelerate the decompression
of JPEG images and the reduction of image bitmaps.

Figure 4 shows two C++ classes used to model a simple multithreaded solu-
tion. An object imgViewer is used to display a map region, according to a spec-
ified window size, after creating the corresponding bitmap. The bitmap is cre-
ated using an object imgLoader which creates a thread to execute the method
startFragLoad. The imgViewer calls the method startFragLoad from class
imgLoader for each JPEG image required to create the final bitmap.

To display a 9600x9600 pixel map region, for instance, 300 threads will be
created to load the corresponding JPEG images and to scale them down. Using
a 600x600 window to display the final bitmap, each thread will scale down 16
10 Our Myrinet configuration would reach 1.28Gbits/s, due to switch constraints, but

the workstations PCI bus cannot guarantee such performance.
11 In the legend of the throughput graph blk+copy stands for blocking with buffer

copy.

Scalable Multithreading in a Low Latency Myrinet Cluster 589

startFragLoad()

waitForLoads()

loadImgFrag()
virtual

threadStartup()
static

imgLoader

loader

img

... ...

createImage()

imgViewer

loadImgFrag() loadImgFrag()

imgTLoader imgCLoader

loadImgFrag()

imgDaemon

...

loadImgFrag()

imgDaemon

Fig. 4. Object model for multithread loading of huge maps

times an original 640x480 JPEG image in order to produce a 40x30 bitmap frag-
ment. The object imgViewer is responsible for bitmap fragment reassembling.

7.2 Scalable Multithreading

Assuming we have a cluster with enough disk space at each computing node it
is possible to spread all the JPEG images across all the nodes. Thus we will
overcome disk capacity limitations and each node will be able to produce local
results, without requesting images from a centralized server, taking advantage
from cluster nodes computing power and local I/O bandwidth. Of course we will
need some mechanism to discover which node holds a specific image, but it can
be done using a simple hash function.

Figure 4 depicts imgDaemon object instances corresponding to daemons run-
ning on each cluster node to load and transform images according to requests
received from a remote imgLoader. The imgLoader used in our cluster environ-
ment requests bitmap fragments from remote cluster nodes instead of loading it
directly from disk.

The imgLoader class is in fact a virtual class used to derive two classes:

1. imgTLoader – multithreaded loader to use in a single SMP machine;
2. imgCLoader – multithreaded broker to use in a cluster.

Note that the development of the multithreaded solution to use in a cluster
environment, assuming we had already developed a solution to use in a single
SMP machine, was a trivial task:

– a virtual class imgLoader was introduced to permit the use of the same
imgViewer object;

590 Albano Alves et al.

Table 1. Hardware specifications

Specifications SMP server cluster node

Processor 4x Xeon 700MHz 2x PIII 733MHz

Memory 1Gbyte 512Mbytes

Hard Disk Ultra SCSI 160 UDMA 66

Network LANai9 Myrinet, 64bits/66MHz

– a new class imgCLoader was derived to handle requests and to receive data
from remote threads;

– the code from class imgTLoader responsible for JPEG image loading and
scaling down is placed in a daemon program (object imgDaemon) to execute
at each cluster node.

This approach can be used to scale many multithreaded applications primar-
ily developed to use in a single SMP machine.

7.3 Performance Evaluation

Performance evaluation was undertaken using a four node Myrinet cluster and
an SMP server connected to cluster nodes, all running Linux. Table 1 summarises
hardware specifications for our test bed.

Figure 5 presents computation times required to display 7 different map re-
gions using a 600x600 window. The left side of the figure shows 7 map regions
consisting of 2 to 300 JPEG images. Those regions, marked from 1 to 7, corre-
spond respectively to 1:1, 1:2, 1:4, 1:5, 1:8, 1:10 and 1:16 scaling factors. The
right side of the figure presents the results obtained using:

7

6

5

4

2
1

3

JPEG image map region
1 2 3 4 5 6 7

4x2p3x2p2x2p4p1x2p
0

2000

4000

6000

8000

10000

12000

T
im

e
(m

s)

Map
Region

Processors

Fig. 5. Performance measurements for differrent scenarios

Scalable Multithreading in a Low Latency Myrinet Cluster 591

– a single 4-processor SMP machine (an imgTLoader object instance is used
by the application) identified as 4p;

– 1 to 4 cluster nodes (an imgCLoader object instance is used by the applica-
tion) identified as 1x2p, 2x2p, 3x2p and 4x2p.

It is important to point out that the results obtained using the cluster solu-
tion based on 2 nodes (4 processors) supersede the results from the multithreaded
solution based on a 4-processor SMP server. The main cause is the higher band-
width available to load JPEG images from disk.

It is also important to emphasize the results obtained using the cluster so-
lution based on 4 nodes (8 processors). As expected better performance was
achieved for the majority of region maps tested, but it was not possible to out-
perform the result achieved with 3 cluster nodes for 9600x9600 region maps. That
happens because the object imgCLoader, executing 300 threads to receive results
from cluster nodes, is not fast enough to process incoming messages because of
thread contention accessing communication library.

8 Conclusions

Using the current pCoR implementation it is possible to achieve communication
between threads residing on any node of a cluster.

Thread scheduling is still a high CPU consuming task, particularly when
using Linux Threads. Port virtualisation is consequently somewhat inefficient.
Nevertheless, we do believe that it is convenient to program multithreading so-
lutions to run in a cluster environment using Linux kernel threads because they
can take full advantage of multiprocessor systems and I/O can easily overlap
computation.

For applications demanding a high level of parallelism it is possible to develop
traditional multithreaded solutions (to use in a single SMP machine). Consid-
ering that in most cases data sharing among threads is not a high requisite,
because data can be easily spread among computational entities, it is possible to
implement thread synchronization using messages. For those applications pCoR
provides support for scalable multithreading.

References

[1] A. Alves, A. Pina, V. Oliveira, and C. Moreira. CoR’s Faster Route over Myrinet.
In MUG ’00 - First Myrinet User Group Conference, pages 173–179, 2000. 580

[2] R. Bhoedjang. Communication Architectures for Parallel-Programming Systems.
PhD thesis, Advanced School for Computing and Imaging, Vrije Universiteit,
2000. 581

[3] R. Bhoedjang and K. Langendoen. Friendly and Efficient Message Handling. In
29th Hawaii International Conference on System Science, pages 121–130, 1996.
581

592 Albano Alves et al.

[4] R. Bhoedjang, T. Rühl, R. Hofman, K. Langendoen, and H. Bal. Panda:
A Portable Platform to Support Parallel Programming Languages. In
USENIX Symposium on Experiences with Distributed and Multiprocessor Sys-
tems (SEDMS IV), 1993. 581

[5] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and Y. Zhou. Cilk:
An Efficient Multithreaded Runtime System. Journal of Parallel and Distributed
Computing, 37(1):55–69, 1996. 581

[6] J. Briat, I. Ginzburg, and M. Pasin. Athapascan-0 User Manual, 1998. 580
[7] A. Chowdappa, A. Skjellum, and N. Doss. Thread-safe message passing with p4

and MPI. Technical report, Computer Science Department and NSF Engineering
Research Center, Mississippi State University, 1994. 580

[8] J. Ferrari and V. Sunderam. TPVM: Distributed Concurrent Computing with
Lightweight Processes. In 4th IEEE Int. Symposium on High Performance Dist.
Computing - HPDC ’95, 1995. 580

[9] I. Foster, C. Kesselman, and S. Tuecke. The Nexus Approach to Integrating Mul-
tithreading and Communication. Journal of Parallel and Distributed Computing,
37(1):70–82, 1996. 581

[10] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM: Parallel Virtual Machine. A User’s Guide and Tutorial for Networked
Parallel Computing. Scientific and Engineering Computation. MIT Pres, 1994.
580

[11] P. Geoffray, L. Prylli, and B. Tourancheau. BIP-SMP: High Performance Mes-
sage Passing over a Cluster of Commodity SMPs. In SC99: High Performance
Networking and Computing Conference, 1999. 581

[12] M. Haines, D. Cronk, and P. Mehrotra. On the Design of Chant: A Talking
Threads Package. In Supercomputing ’94, 1994. 580

[13] K. Langendoen, J. Romein, R. Bhoedjang, and H. Bal. Integrating Polling,
Interrupts, and Thread Management. In 6th Symp. on the Frontiers of Massively
Parallel Computing, 1996. 581

[14] C. Moreira. CoRes - Computação Orientada ao Recurso - uma Especificação.
Master’s thesis, Universidade do Minho, 2001. 579

[15] Myricom. The GM Message Passing System, 2000. 581
[16] R. Namyst and J. Méhaut. PM2: Parallel Multithreaded Machine. A computing

environment for distributed architectures. In ParCo’95, 1995. 581
[17] A. Pina. MC2 - Modelo de Computação Celular. Origem e Evolução. PhD

thesis, Departamento de Informática, Universidade do Minho, Braga, Portugal,
1997. 579

[18] A. Pina, V. Oliveira, C. Moreira, and A. Alves. pCoR - a Prototype for Resource
Oriented Computing. In Seventh International Conference on Applications of
High-Performance Computers in Engineering, 2002. 579

[19] A. Pina, J. Rufino, A. Alves, and J. Exposto. Distributed Hash-Tables. PADDA
Workshop, Munich, 2001. 580

[20] B. Planquelle, J. Méhaut, and N. Revol. Multi-protocol communications and
high speed networks. In Euro-Par ’99, 1999. 585

[21] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI - The
Complete Reference. Scientific and Engineering Computation. MIT Pres, 1998.
580

[22] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Active Messages:
A Mechanism for Integrated Communication and Computation. In 19th In-
ternational Symposium on Computer Architecture, pages 256–266, Gold Coast,
Australia, 1992. 581

Scalable Multithreading in a Low Latency Myrinet Cluster 593

[23] H. Zhou and A. Geist. LPVM: A Step Towards Multithread PVM. Concurrency:
Practice and Experience, 10(5):407–416, 1998. 580

	Scalable Multithreading in a Low Latency Myrinet Cluster
	Introduction
	Resource Oriented Computing -- CoR
	Multithreading and Message Passing

	Background
	Distributed Multithreaded Programming
	Efficient Message Handling
	pCoR Approach

	Thread-to-Thread Communication
	Communication Channels
	Low-Level Interface

	Message Dispatching
	Dispatcher Thread
	Segmentation and Retransmission
	Multiple Routes and Message Forwarding

	Data Structures
	Message Reception
	Message Sending

	pCoR Raw Performance
	Case Study
	Multithreading
	Scalable Multithreading
	Performance Evaluation

	Conclusions

