
CoR’s Faster Route over Myrinet

António Pina, Albano Alves, Vı́tor Oliveira, Cecı́lia Moreira
Grupo de Engenharia de Computadores

Dep. Informática, Universidade do Minho
Campus de Gualtar, Braga, Portugalfpina,albano,vspo,cecig@gec.di.uminho.pt

Abstract

In this paper we concentrate in the efforts made to ex-
ploit the performance of Myrinet to build a faster communi-
cation route into CoR1. By accessing the Myrinet interface
through GM2, we achieved low latency and high bandwidth
message passing without the overhead of a higher level pro-
tocol stack, system calls or interrupts. CoR is an ongo-
ing project unique in its design goal of combining multi-
threading, message passing and distributed shared memory
with facilities to dynamically select from different transport
media and protocols the one that best fits communication
and interaction requirements. The ability to mix CoR and
PVM calls in the same program brings numerous benefits
to the application developer familiar with PVM, notably:
1) new transport communication layers; PvmRouteMyrinet
and PvmRouteUdp; 2) migration mechanisms for exploiting
fine grain message passing; 3) thread-safe communication
PVM API; 4) object-oriented distributed shared memory.
Keywords: clustering, multithreading, message routes.

1. Introduction

Application areas such as computer graphics and multi-
media, information systems, decision support and transac-
tion processing are likely to see a tremendous transforma-
tion as a result of the vast computer power available at low
cost through parallel computing.
The overhead of initiating and receiving communication is
greatly influenced by the extent to which the necessary tasks
can be performed by hardware rather than being delegated
to software, particularly the operating system. The tech-
nology breakthrough that represents the potential of clus-
ters taking on an important role in the large scale parallel
computing is a scalable low-latency interconnect, similarin

1Resource oriented Computing
2A message-based communication system for Myrinet

quality to that available in parallel machines, but deployed
like a local-area network.
A major influence on clusters has been the rise of popular
public domain software, such as PVM[7] and MPI[6], that
allow users to farm jobs over collection of machines or to
run a parallel program on a number of machines connected
by an arbitrary local-area or even wide-area network. Al-
though the communication performance capability is quite
small, typical latencies are 1 millisecond or more for even
small transfers and the aggregate bandwidth is often less
than 1 Mbytes, these tools provide an inexpensive vehicle
for a class of problems with a very high ratio of computa-
tion to communication.
As distributed computing has evolved, it has come to evi-
dence that no one monolithic system can handle efficiently
all the desired communication styles. We have also learnt
that to better manage flexibility and interoperability and
achieve critical performance the semantics of a particular
message style must be decoupled from the low-level infras-
tructure.
Most distributed applications use TCP/IP suite of protocols
because they are well understood and widely available. But
they focus more on data integrity and sequenced delivery
rather than low latency, which makes them less appropri-
ated for distributed applications since low latency and small
messages transferring bandwidth are major concerns here.
The high speed networking technology developed for large
scale parallel machines has migrated down into a number
of widely used local area networks (LANs). In addition,
a number of higher bandwidth, lower latency system based
networks are becoming to be known assystem area network
(SAN). As opposed to tightly packaged parallel machine
network or widely dispersed local area network, SAN net-
works have been commercialised, such as Myrinet[4] and
SCI[5], which operate over shorter physical distances.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153403313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Overview of CoR

CoR is an evolving project aimed to translate the
vast computer power available at low cost through multi-
threaded parallel computing into greater performance and
expanded capability. It has been primarily motivated by the
need of creating a parallel computer environment to support
the design and evaluation of applications that conforms with
theMC2 (Cellular Computation Model)[11]. The model
combines production systems with Petri Nets as a way of
specifying and regulating the overall activity of a distributed
system viewed as a multi-cellular agent[12]. The final goal
is to investigate and construct a common framework to un-
derstand and evaluate architectural and logical trade-off,
making it possible to undertake quantitative as well as qual-
itative studies of software/hardware interaction.
CoR introduces theresource as its sole metaphor that shifts
the traditional boundaries between hardware (physical re-
sources) and software (logical resources) to make program-
ming task easier and performance more robust. The speci-
fication, coordination and execution of applications lay on
the definition of a variety of physical and logical resources,
such as domains, tasks, data, ports, transitions, synchroniz-
ers, barriers, topologies, etc.
CoR can be viewed as an extension to the process abstrac-
tion that usesdomains, tasks, ports and data basic re-
sources to achieve structured fine-grained computation and
communication with control and object-oriented distributed
shared memory. A task is an execution resource while do-
mains delimit regions of addressable space where interac-
tion between resources occurs. Ports are communication
abstraction mechanisms used to route the information be-
tween domains. Data resources are a general class used to
deal with a great variety of different types of structured and
unstructured pieces of information.

2.1 Domains

In a system of distributed domains, every resource is
defined by abody comprising various elements and an
idp which is an application universal identifier. This idp
is sub-divided into amacro-identificationand a micro-
identification; the last being used to uniquely identify the
resource of a distributed application, whereas the first en-
code an index being used to join and integrate on-the-fly
pluggable resources, belonging to different applications. As
resources always exist within the context of domains, the
system also provides for a local identification – a string
nameand anindex relative to the resourceascendant do-
main which is also a resource owning an universal identifier.
The programmer can arbitrarily use either local or universal
identifiers to designate a resource, however the semantic of
the operation is most of the times identifier dependent, as it

is the case with the communication operations.
The local naming facilities offered by domains are extended
by logical domains– that only serve as “shells” or environ-
ments to other resources to come into existence. A logical
domain is simply a set of resources attached to a particu-
lar idp with an order and name provided on this set. Sev-
eral existing systems use groups (the equivalent of a logical
domain) for slightly different reasons[3, 6], allowing either
static or dynamic membership allocation.

2.2 PVM interoperability

As a first effort to get CoR running we make it compat-
ible with PVM, taking advantage of existent commodity
hardware/software communication layers.
The approach brings enormous benefits to users. First, it
provides a migration mechanism for application developers
familiars with PVM. Existing programs can be ported in
stages to CoR as the developer learns more about CoR
functionality.
Secondly, by mixing CoR and PVM calls in the same
program the platform brings numerous benefits to the
application developer familiar with PVM, notably: 1) new
transport communication layers; PvmRouteMyrinet and
PvmRouteUdp; 2) migration mechanisms for exploiting
fine grain message passing; 3) thread-safe communication
PVM API; 4) object-oriented distributed shared memory.

3 CoR system architecture

CoR’s environment prototype is based on a former
effort to combine multithreading, message passing and
shared memory to: 1) exploit small scale SMP, 2) refine
the grain of parallelism and 3) overlap computation and
communication on a single processor[10].
CoR overcomes several disadvantages of the process
oriented model by offering smaller granularity and lower
task initialisation and scheduling costs. Support of multiple
resource representations schemes eases the transition from
a concurrent programming model using shared memory
to a distributed resource-oriented run-time system with
support to message passing. On each domain running on
a uniprocessor or a scalable SMP, adomain corerelying
on POSIX threads schedules both domain threads and
user-tasks.
The core consists of several independent subsystems each
one dedicated to a different service realized in hierarchy
layers from a low-level interface of system dependent
services – POSIX threads, dynamic libraries, PVM and
other network transport communication agents – to the
higher level interfaces of the system and application APIs
(see figure 1). It supports both local and remote operations



among resources that spawns the entire parallel machine
offering the potential for fine-tuning computing and over-
lapping of communication and computation.

Services Intra-Domains

GM UDP PVM

IPC

CoR Prototype API

High-level
ConsistencyDistribution Operation

Low-level
Message-passing

Domain-Core

Control
Events Inter-Domains

Communication

PortsResources Management

Dynamic Libs Posix Threads IP - Internet

Myrinet EthernetOperation System

Figure 1. Domain layers hierarchy.

3.1 Programming model

CoR is an emerging paradigm that simplifies program-
ming description and execution by freeing the user from
the burden of explicitly managing the complex relationships
between the two phases, typically, involved on the develop-
ment of a new application program –structuringandcom-
puting.
By structuring we mean the definition of a variety of logi-
cal/physical structures and the naming of the entities used
by the application. Computing is related to a continuous
process of inquiring, transforming and communicating the
state of the named entities by executing the instruction of a
distributed multi-threaded control parallel program.
Logical domains are used to support the design of large,
complex and modular applications, by organizing resources
in a hierarchical tree of dependencies, where nodes are
structured resources(domains) and leavessimple resources.
CoR communication model assumes that any task can send
a message to any other task within any domain in the paral-
lel machine. Each message is labelled with a user supplied
tag before sending. The receiver task matches on this tag
(and on the source of the message), thus allowing to dis-
criminate between multiple messages arriving at the same
time. In order to generalize it is also important to allow
the use of parallel libraries in conjunction with application
message-passing; however the communication required by
the library must be isolated from other application commu-
nication.
The support for parallel libraries is broadly similar to that
of MPI[6] where messages are addressed through a domain

resource which can be viewed as a bundle of a message con-
text and a resource group. The defining property of a con-
text is that a message cannot be received in a context other
than within which it was sent. CoR assigns different mes-
sage contexts and resource groups to each domain in the
parallel machine, providing a safe space for library writer
and user alike.
The idp of a domain resource can be used along with
the user-tagarbitrarily assigned by the programmer as a
context-tagassigned by the system, which has the effect
of dividing messages into separate communication spaces.
The sender (receiver) of a message must always be spec-
ified as a parameter of the communication operation call.
When the domain is used as a context-tag the source (desti-
nation) of a message must be specified as a local identifier
(to the domain). In alternative the source (destination) may
be supplied as an universal identifier.

4 Fast message passing

CoR is designed to support a multi-user parallel pro-
cessing environment based on a message passing paradigm
which guarantees that messages originated from the same
path are received in the order they are sent, without loss.
In each node of the parallel machine each communication
hardware interface is assumed to be partitioned by the un-
derlying system into a certain number of disjoint partitions
calledports that are hardware and software dependent com-
munication routes. Each port is a connectionless communi-
cation path to other hardware compatible ports used to com-
municate with other domains in the parallel machine.
At run-time, inside each domain, to fully abstract from the
specific communication medium and protocols, severalsoft-
portscan be open to share or exclusively use the underlying
communication network hardware, and then closed releas-
ing the ports. In figure 2 we show several domains each
one having two ports sharing the available interfaces in the
respective node.

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��

��
��
����
��
��
����
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
���
��
��

��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

. . .

Node

Interface 1 Interface 0

Distributed Domains

Node

Interface 0 Interface 0Interface 0Interface 0
0 1 2 3 . N. 0 1 2 3 . N. 0 1 2 3 . N.

Switch
Ethernet

Switch

Domain Resource Port

Switch

0 1 2 3 . M. 0 1 2 3 . P. 0 1 2 3 . M.

OtherMyrinet

Figure 2. CoR parallel machine.



4.1 Multiple communication ports

In most cases an application needs not to be aware of
the number and type of ports used because the library at-
tempts to optimise ports utilization to prevent the loss of
concurrency and bandwidth. However, this may not be
the optimal situation when there are some aspects of the
communication that are required to be satisfied, such as
the domain’s total aggregated bandwidth, or fast commu-
nication requirements. In those situations soft-ports may
be explicitly bounded to specific communication port inter-
faces and optionally selected the communication protocol.
A conventional domain has a single soft-port bounded to
a hardware communication interface appropriated for most
applications. The reasons for supporting multiple-ports fall
into two categories: those motivated by the need of isolat-
ing communication between different communication paths
and those motivated by application concurrency. In the first
category, user tasks and system threads may link to pre-
assigned ports on a per-domain base to get high-bandwidth
or low-latency communication.
The second reason for multiple-ports is application require-
ments of concurrency. Many applications are best struc-
tured as several independent tasks that keep moving from
request to request to satisfy many resource interactions in
progress. In this case the existence of multiple soft-ports
bounded to an equivalent number of ports or schedule by
the available ports may be the most suitable solution to en-
sure the concurrency and the responsiveness of the system.

4.2 New message routes

In our laboratory we are running a low-cost high-
performance parallel machine using PC commodity hard-
ware. We decided to use Myrinet, which is not a commod-
ity hardware product, because low CPU overhead, low la-
tency and high bandwidth are fundamental concerns on dis-
tributed parallel computing.
Considering the technical difficulties to reach raw perfor-
mance using directly the lower layers of Myrinet hardware,
we chose to build the route using a low message passing
layer. There are several different implementations of mes-
sage passing layers on Myrinet such as GM[8, 2], FM[9]
and PM[13].
GM provides reliable ordered delivered between communi-
cation endpoints, called “ports”. The model is connection-
less however GM maintain reliable connections between
each pair of nodes in the network by multiplexing the traf-
fic between ports over those reliable connections. Since it
is possible to obtain TCP/IP running over GM, the current
version of CoR based on PVM can run over Myrinet. How-
ever, due to the expensive protocol overhead, the result is
inefficient parallel execution.

As a first tentative to study scalability we built another ba-
sic route based on UDP (on top of IP Ethernet and GM) that
runs independently from other TCP/IP socket parts of the
CoR environment over the two networks.
Following the same approach used to write the UDP-
oriented communication layer, we created a message route
directly over GM to bypass the TCP/IP protocol stack.
Finally, by comparing and refining those two communica-
tion layers we produced a common message passing inter-
face specification and rewrote the two final –CoRudpRoute
andCoRgmRoute– portable run-time pluggable communi-
cation modules[3].
CoR allows new and existing PVM application programs to
benefit from the new message routes by extending the PVM
API call pvmsetoptwith two new options:PvmRouteDi-
rectUDPandPvmRouteDirectMyrinet, without making any
modification to the underlying communication subsystem.

4.3 Core domain communication

In CoR every domain in the parallel machine has the
potential to perform local and remote communication sup-
ported by a core communication layer in a per-domain base.
The maximum number of ports available on each domain is
communication interface dependent, as is the mapping strat-
egy used to assign soft-port to hard-ports. For each existent
connection to a hard port (see figure 2) the domain creates
a certain number of communication servers (core threads),
whose purpose is twofold: 1)listen for incoming messages,
storing the data in message buffers previously allocated and
signal the reception of the message, 2) process anddispatch
the messages coming from the user layer to a remote do-
main signalling the termination of the operation.
CoR provides several basic primitives to handle task-to-task
communication (see figure 3). This set of primitives as-
sumes an asynchronous communication model; any send or
receive operation returns immediately a handle. Later, the
handle may be used for test or wait for operation comple-
tion. We assume a general communication module where
send and receive buffers of acceptable size must reside in
the communication core, explicitly allocated by a parame-
terised call to the library.

4.4 Communication protocol

The special case of point to point resource interaction oc-
curs by means of standard communication operations called
by tasks when the source and the destination tasks reside in
disjoint domains.
As depicted in the figures 4 and 3,Ts andTr are, respec-
tively, the sender and the receiver tasks that we will use
to explain the general interaction mechanism used by re-
sources. The numbers in parentheses are the same used in



ReceivingSending

[...]
hdl = sendI(ctx, B, Tr,

hdl = recvI(ctx, A, Ts,setTransport(Myrinet);

ptr = getBuffer(type, n);

}

[...]
while(!test(hdl)){

[...] }

[...]
while(!test(hdl)){

[...]
tag, type, n, &ptr);

tag, type, n, ptr);

Task Lib PortNetworkLoop

sendI

test

Ts

Domain A

recvI

test

Tr

3

7

10

12

1

3

10

8

1
Domain B

Kernel

User

getBuffer

Figure 3. Task-to-task communication.

the figures 4 and 3 for the sending and the receiving do-
mains. An asynchronous sending operation comprises three
steps in CoR. First the senderTs must allocate (1) a send
buffer, second the buffer must be filled, third the complete
message (user tag, context, data type ... ) is sent (3) to the
receive task. As we are dealing with an immediate opera-
tion the sender receives a handle that can, later, be used to
probe (10) for the completion of the initiated operation.
At the other side of the operation, the receiver taskTr, in
a remote domain, executes an immediate receive (1) oper-
ation set to accept a specific message from taskTs. As
above, it receives a handle that may be used latter in the
same way (8) as the sending operation call.
In the communication core of the domain ofTs, the library
allocates (2) the requested buffer internally registering (4) in
the request queue theTs sending (3). Every sent message
is divided in two: a control message (5) requesting a buffer
on the peer communication server of the peer domain and a
data message containing the data to be sent in (6). Finally a
handle that uniquely identifies the request is returned toTs
(7). Step (8) produces a status code – the combined result of
(5) and (6) – used as the code completion of the operation in
(9) to update the request queue. Finally, whenTs inquires
the status of the sending operation (10), using the respective
handle, the library dispatcher probes the operation (11) re-
turning to (12) the code produced on step (8).
In the communication core of the domain ofTr the library

dispatches the receive call as a conventional asynchronous
operation by internally registering it in the request queue
(2) and returning toTr (3) a handle that uniquely iden-
tify the pending request. As a response to the send con-
trol coming from the peer domain the interface communi-
cation hardware asynchronously activate the library listener
(4) that manages to allocate the requested buffer (5). It also
receives the data (6) and registers the completion status in
the request queue (7). Steps (9) and (10) repeat the equiv-
alent steps in the sending node but in this case applied to a
receive asynchronous operation.

Task LibBuffers PortRequests Network

Domain A

Receiving

3- sendI
4- regist operation
5- send control
6- send data
7- return handle

9- regist op. end

12- return status

1- receiveI

3- return handle

5- buffer allocation

9- probe (handle)
10- return status

6- receive (data)

4- receive (control)

7- ok (operation)
8- test

1- getBuffer

Sending

2- regist operation2- buffer allocation

Tr

6

1

8

3 9 10
2

5

7

4

1

3
10

2

1211

9

8

5
6

7

4

U
se

r
K

er
ne

l

8- ok (control + data)

10- test
11- probe (handle)

Ts
Domain B

Figure 4. Detailed view of task-to-task com-
munication.

5 Evaluation

To conduct a set of general evaluation performance tests,
we used a PC cluster comprising eight Intel Pentium II
350Mhz dual-processor nodes with 128 MB RAM, running
RedHat 6.1 Linux with kernel 2.2.15 SMP. The network in-
frastructure was based on both Fast Ethernet and Myrinet
network interfaces. The Myrinet interface used is based on
LANai 4.2, PCI 32bit, 33Mhz.
The tests measured a message passing operation between
two selected nodes and domains, after executing a large



number of iterative sequences, not taking into account pro-
gram setup nor the time to prepare/process sending/receive
data. All communications occurs at the user level; messages
go from user address space to user address space, as we are
more concerned on higher-level communication facilities.

10
0

10
00

10
00

0

1 2 4 8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

message size (bytes)

ro
un

d-
tr

ip
 ti

m
e 

(
µµs

)

UDP/Eth UDP/Myr
GM CoR/UDP/Eth
CoR/UDP/Myr CoR/GM

0
20

0
40

0
60

0

1 2 4 8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k

message size (bytes)

tr
an

sf
er

 r
at

e 
(M

bi
ts

/s
)

UDP/Eth UDP/Myr
GM CoR/UDP/Eth
CoR/UDP/Myr CoR/GM

Figure 5. Round-trip time and transfer rate
comparison.

We performed both round-trip and transfer rate tests. The
transfer rate was not calculated based on round-trip tests
(ping-pong bandwidth) because we were interested on one-
way communication. This avoids the overlap of some mes-
sages due to full-duplex capacity when using several com-
munication entities on each node. The overhead of the un-
derlying communication subsystem due to the use of more
than one communication pair and more than one port of the
communication interface was also measured.

5.1 Raw performance

We started by comparing the raw performance of mes-
sage passing between the different message routes. The
message round-trip and transfer occurs at the kernel com-
munication core between pairs of system threads located
across the two domains. We exclude the overhead at the
domain user communication layer level; this corresponds to

0
20

0
40

0
60

0
80

0

1 4 16 64 256 1k 4k 16k 64k 256k 1M 4M

message size (bytes)

tr
an

sf
er

 r
at

e 
(M

bi
ts

/s
)

1 port 2 ports 3 ports 4 ports

0
20

0
40

0
60

0
80

0

1 4 16 64 256 1k 4k 16k 64k 256k

message size (bytes)

tr
an

sf
er

 r
at

e 
(M

bi
ts

/s
)

1 task 2 tasks 4 tasks 8 tasks 16 tasks

Figure 6. Transfer rate for CoR/GM.

basic distributed programming, where each communication
entity uses only one port.
Starting with UDP, for UDP over Ethernet IP in figure
5 (top) we notice an approximate 212�s small messages
round-trip, while for UDP over GM IP round-trip times al-
most reduces to half on longer messages. Using GM block-
ing receives, a round-trip time above 122�s was obtained3.
Comparing transfer rates in figure 5 (bottom), it can be seen
that the peak values are 80 Mbit/s (16kbytes messages), 210
Mbit/s and 600 Mbit/s (64kbytes messages) for UDP over
Ethernet IP, UDP over GM IP and GM, respectively. It
is important to note that performance is highly dependent
on message size and Myrinet’s bandwidth can only be effi-
ciently exploited using longer messages.
In figure 6 (top) we present transfer rate values for 1, 2, 3
and 4 ports utilization in GM (one thread for each port). We
intended to evaluate the overhead when using several com-
munication pairs and ports. This is relevant because a high
number of distributed applications use several communica-
tion entities, thus requiring different GM ports. As we can
see in figure 6, the transfer rate increases with the number of
ports and doesn’t degrade significantly with the number of
tasks. With two ports the graphic presents the total transfer

3Using thgm allsize utility provided by GM package, we obtained
latency values above 23�s for non-blocking receives.



rate obtained with both threads.

5.2 Task communication

Next we evaluated the two new communication routes
under CoR using the same parameters as the raw perfor-
mance tests, measuring the influence of multi-task competi-
tion both at the domain level and at the machine level. Later
we decided not to take into account the machine level, be-
cause there is not a significant difference between the two
levels with the Linux implementation of Posix threads.
The domains contained the same number of send/receive
user-tasks, which varied between experiments. Each CoR
domain also contains the system thread responsible for han-
dling all the port-to-port communications: listening for in-
coming data containing the messages received from the re-
mote domain and dispatching the sending request with ori-
gin on the user(s) task(s).
Each user-task is engaged on communicating with a paired
user-task within a remote domain. Considering that for
each pair of user-tasks one is select as the initial sender and
the other is selected as the initial receiver, the communica-
tion proceeds as a loop that repeatedly executes the follow-
ing steps:1) each pair of user-tasks activate the dispatcher
thread by entering an asynchronous send message passing
call; 2) the listener thread on the receiver domain processes
the incoming messages and delivers them to the receiver
user-task, who has already called an asynchronous receive
operation;3 ) each pair of user tasks exchange the initial
role;4) re-enters the loop.
In figure 5 we show that CoR overhead at the domain user
level of the communication layer is minimum. In this ex-
periment we used two domains and one task per domain.
In figure 6 (bottom) we present the overhead of CoR library
when using several tasks per domain. It is important to
notice that with 2 or 16 tasks we achieve almost the same
transfer rate, which doesn’t degrade with the increase of the
number of tasks.

6 Conclusions

PC clusters using high-speed network are very cost ef-
fective but, nevertheless, are able to achieve a performance
comparable to that of expensive massively parallel ma-
chines. A multi-user distributed parallel programming en-
vironment can be realized using software such as PVM and
MPI on top of TCP/IP suite of protocols. However, this ex-
pensive protocol overhead results is inefficient parallel exe-
cution.
The CoR prototype provides a robust environment and base
for future extension of its distributed multithread-oriented
run-time system. In this paper we present our efforts to en-
hance CoR with new scalable and faster message passing

routes over Myrinet network[1].
The first effort based on UDP protocols lead to the develop-
ing of a scalable and portable direct message route on top
of IP. IP is also implemented by Myrinet API enabling the
new route to be used both with Fast Ethernet and Myrinet.
By comparing the performance of point-to-point message
passing obtained on both networks we notice a significant
improvement when using Myrinet. The second effort us-
ing GM – a low-level message-based communication sys-
tem for Myrinet – conduced to the built of a much faster
message passing route than the one obtained with UDP.

References

[1] CoR World Wide Web Page. http://www.gec.di.uminho.pt/.
[2] Myrinet world wide web page. http://www.myri.com/.
[3] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and V. Sun-

deram. Recent Enhancements to PVM.International Jour-
nal of Supercomputing Applications and High Performance
Computing, 1995.

[4] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz,
J. Seizovic, and W. Su. Myrinet: A gigabit-per-second local
area network.IEEE Micro, 15(1):29–38, February 1995.

[5] M. Fischer and J. Simon. Embedding SCI into PVM. In
Recent Advances in Prallel Virtual Machine and Message
Passing Interface, volume 1332 ofLecture Notes in Com-
puter Science. Springer, November 1997.

[6] M. Forum. MPI: A Message-Passing Interface Stan-
dard. Internacional Journal of Supercomputer Application,
8(3/4):165–416, 1994.

[7] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
and V. Sunderam.PVM: Parallel Virtual Machine. A Users
Guide and Tutorial for Networked Parallel Computing. Sci-
entific and Engineering Computation. MIT Pres, 1994.

[8] Myricom. The GM Message Passing System, 1999.
[9] S. Pakin, M. Lauria, and A. Chein. High performance mes-

saging on workstations: Illianois fast messages (fm) for
myrinet. InProceedings of Supercomputing ’95 San Diego
California, 1995.

[10] A. Pina, V. Oliveira, and C. Moreira. Domains, Threads and
Shared Memory in a message passing environment. Tech-
nical report, Departamento de Informática, Universidadedo
Minho, Braga, Portugal, May 1997.

[11] A. M. Pina. MC2 – Modelo de Computação Celular.
Origem e Evolução. PhD thesis, Departamento de In-
formática, Universidade do Minho, Braga, Portugal, 1997.

[12] A. M. Pina, J. M. Fernandes, and R. J. Machado. Genetic
regulatory mechanisms by means of Extended Interactive
Petri Nets. InIEEE International Conference on Systems,
Man, and Cybernetics (SMC’97), Hyatt Orlando, Orlando,
Florida, USA,, 1997.

[13] H. Tezuka, A. Hori, and Y. Ishikawa. Pm: A high per-
formance communication library for multi-user parallel en-
vironments. Technical report, Tsukuba Research Center,
RWCP, Japan, 1996.


