
VisualLISA: Visual Programming Environment
for Attribute Grammars Specification

Nuno Oliveira∗, Pedro Rangel Henriques∗, Daniela da Cruz∗, Maria João Varanda Pereira†,

∗ University of Minho - Department of Computer Science,
Campus de Gualtar, 4715-057, Braga, Portugal

Email: {nunooliveira, prh, danieladacruz}@di.uminho.pt
† Polytechnic Institute of Bragança

Campus de Sta. Apolónia, Apartado 134 - 5301-857, Bragança, Portugal
Email: mjoao@ipb.pt

Abstract—The benefits of using visual languages and
graphical editors are well known. In some specific domain it
is really crucial to program with graphical representations,
icons, geometric objects, colors and so on. Nowadays it is
possible to easily implement a visual language, construct-
ing, automatically, visual editors for it.

In this paper we want to emphasize how it is possible
to easily specify a huge amount of complex information,
associated with an attribute grammar, using graphical
objects and a very intuitive modular approach. For that
purpose we present a new visual language to specify
attribute grammars (called VisualLISA) and we present
also a modular approach that uses VisualLISA in an
integrated editor to draw attribute grammars.

I. INTRODUCTION

Attribute Grammars (AG), introduced by Knuth [1],
are Context-Free Grammars (CFG) where productions
are augmented by semantic rules, so that the terminal
and non-terminal symbols can have attributes associated
which have different values depending on the context
they appear in.

In this paper we will present a new Visual Language
(VL) and a Visual Programming Environment (VPE) to
visually draw Attribute Grammars — VisualLISA. We
constructed such an environment following a systematic
approach based on the compiler construction theory [2]
and resorting to DEViL1, in order to generate the en-
vironment with little effort. Although we present some
steps on the development of VisualLISA, our focus is on
the user interaction with this environment.

VisualLISA’s main purpose is to be used as a graphical
front-end for LISA [3]. The environment is generated
from the specification of a visual language, and ensures
the possibility of drawing, syntactically and semanti-
cally correct, attribute grammars, in an integrated editor.
The visual specification of the attribute grammar is
production-oriented and incremental.

1http://devil.cs.upb.de

Semantic rules are drawn, together or separately, over
the syntactic layout (in the form of a tree) of the respec-
tive production. Attribute declarations are collected and
gathered from tree nodes. Moreover, the editor translates
the drawn attribute grammar into LISA notation or, alter-
natively, into a universal XML representation designed
to support AG specifications.

The remainder of this paper is organized as follows.
In Section II, visual languages theme is addressed. Visu-
alLISA, is presented in Section III; although have been
formalized by an AG, in this section we just define its
syntax and semantics. In Section IV, the user interaction
is illustrated step-by-step through an example. In Sec-
tion V, the usability of the language is discussed based
on the Cognitive Dimensions Framework. We close the
paper, in Section VI, with conclusions about the usage
of visual languages and in specific about our visual
environment and associated language.

II. VISUAL LANGUAGES

There is not a consensual definition for visual lan-
guages. The intuition says that almost everything that
uses composition of figures, instead of words, in order
to transmit a message, can be considered a VL. In this
sense, there are many types of VL. Examples cover a
large range from the daily used musical scores or traffic
signals, and those more specific like modeling languages
for definition of Entity-Relation Diagrams (ERD), Class
Diagrams, and so forth.

Modeling Languages fall within a restrict area of
VLs: the Visual Programming Languages (VPL). A
VPL aims at offering possibilities of solving problems
by describing their properties or their behavior using
graphical/iconic definitions [4]. Icons are used to be
composed in a space with two or more dimensions,
defining sentences that are formally accepted by parsers.
The shape, color and relative position of these icons are
relevant issues.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital do IPB

https://core.ac.uk/display/153403269?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


VPLs are used in many areas of computing. In
databases, the main usage of visual languages is to help
on drawing the tables and relations between them, rather
then using SQL notation. In software development, they
are mostly used to draw the system’s structure and its
behavior with modeling languages as referred before. In
interface design for stand-alone or web-based applica-
tions, visual programming languages that allow the drag,
drop and composition of interface elements like buttons,
textboxes, windows, and so on.

Roughly speaking, VPLs can be classified [5] con-
cerning the language paradigm (functional, imperative,
rule-based, etc), and visual representation in use (dia-
grammatic, iconic, pictorial sequences or sound-based).
The VL/HCC Symposium bibliography—reachable at
the URL http://web.engr.oregonstate.edu/∼burnett/vpl.
html—has become a widely-used resource for people
seeking information on visual languages, visual pro-
gramming, visual software engineering, human use of
programming languages and tools, and so on. There,
papers on Software Visualization are classified according
to Margaret Burnett’s criteria based on the following
parameters: Technique (interaction with the user, output
generation); Applications; Performance; and Visualiza-
tion Domains (kind of drawings, kind of visualizations
and kind of source language).

Textual languages are the common artifacts used to
develop programs and complex systems. The history
says that programming languages have passed through
many conceptual levels, from machine level to higher
levels, but all of them with a common characteristic:
specifications are sequential (from left to right) compo-
sitions of textual characters. This implies the knowledge
of different syntaxes and the necessity of being aware of
little details like semicolons at the end of instructions,
matching of braces, among others. Also, it is needed
to know reserved words or constructors that are always
different from language to language. For example, the
SQL notation to create tables and the relations between
them may be very complex, because it is needed to know
how a table is created, how the several fields are declared
and how the primary or foreign keys are defined. In
the other way around, visual programming frees the
developers from these small details. The creation of a
table in a database is as simple as dragging an icon into
a drawing area. To create a relation between tables is as
simple as connecting two tables with an arrow, a line,
and so forth.

However, the specification of a VL is costly. While a
traditional language can be defined only by an attribute
grammar, a visual language must be specified resorting
to an attribute grammar (or other formalism) that builds
the syntax, images that define the language icons, visual
patterns to compound the layout and interaction, among

other things related to the construction of the program-
ming environment associated. The processing of visual
specifications also takes more time than processing tex-
tual specifications.

III. VISUALLISA

In this section we present a brief overview about
VisualLISA, adressing its architecture, the formal spec-
ification of various aspects concerning the implementa-
tion and the implementation resorting to a systematic
approach. For more details about the implementation,
see [6].

A. The Concept

VisualLISA is a visual programming environment for
specification of AGs. It has not a complex architec-
ture because its purpose is to be a graphical front-
end for LISA and other compiler-generators. As shown
in Figure 1, an editor, where the attribute grammar
is specified, mechanisms used to validate the grammar
drawn, and a processor to translate the iconic sentences
into LISA notation or XML, compose the programming
environment. The generated LISA specifications can be
passed straightforward to LISA system in order to create
the compiler for the language defined in VisualLISA.
The development of an XML dialect to support the
abstract structure of AGs gives the system more versa-
tility, because it allows a functional separation between
VisualLISA and the compiler generator tools. Moreover,
this XML notation opens doors for new ways of using
VisualLISA, rather then just as an AG specification tool.

Fig. 1. Architecture of VisualLISA

B. Specification

The specification of the VisualLISA’s environment
is directly related with the formal specification of the
VL. That specification lies on three main definitions:



the syntax, the semantics, and the translation. As the
description of the development process of this tool is not
in the scope of this article, we are not going to focus in
detailing this formal specification. However, we present
a brief overview of what was done.

We used the Picture Layout Grammars (PLG) [7]
formalism to formalize the syntax of VisualLISA, which
can be described by the following summary: The termi-
nal and non-terminal symbols of the Right-Hand Side
(RHS) of a production should be connected to the Left-
Hand Side (LHS) symbol. The production should be
decorated with attributes, so, connections between the
terminal/non-terminal symbols and the attributes are
mandatory to understand to which symbol the attribute
belongs. At the end, the attributes should be associated to
semantic rules defining their values. These rules should
be defined reusing the layout of a production, but in a
separated view.

Besides of being used to define this visual aspect of
the language, PLG was also used to define hard syntactic
constraints concerning the connections between the sym-
bols. The semantic constraints (or contextual conditions)
of VisualLISA are directly related with the attributes of
the language and their values in each context. Inside
these contexts, the attribute values must converge to hold
a condition. The most important constraints that must
hold in VisualLISA are concerned with the correct spec-
ification of an AG. These constraints can be separated
into two major groups: one concerns with the syntactic
rules and another with the respective semantic rules. The
complete set of constraints, with their formal specifica-
tion, can be found in [8]. The following sentences present
two examples of these constraints.

1) Each production should have one and only one
LHS symbol;

2) The data-type of an assigned attribute must match
with the data-type of the operation’s output.

Once the drawing of an AG is complete and seman-
tically correct, it can be translated into textual notation.
A translation (Ls → τ → Lt) is the transformation
of a source Language (Ls) into a target language (Lt).
τ is the mapping between the productions of the Ls

(in our case VisualLISA) and the fragments of Lt.
LISA and XML are the target languages of VisualLISA’s
translation process.

LISA is a compiler generator tool based on attribute
grammars. It generates a compiler from the specification
of an AG, and also other tools, as can be seen in [9].
Based on the CFG of the LISA language we were able
to find sections that divided the language into fragments.

Based on the knowledge about attribute grammars, and
in the study made to conceive the structure of LISA,
the definition of an XML notation to support attribute
grammars in an abstract way was a straightforward

task. We defined such dialect, XAGra — XML dialect
for Attribute Grammars — resorting to a schema. The
complete structure of XAGra can be separated into five
elements: i) symbols - where terminal, non-terminal
and the start symbol are declared; ii) attributesDecl
- where the attributes are associated to the symbols;
iii) semanticProds - where the productions and the
semantic rules are defined; iv) importations - used to
store the modules or packages necessary to perform
computations and v) functions - where the users should
declare their auxiliary functions.

C. Implementation

In order to achieve a systematic and effortless im-
plementation of VisualLISA, we submit VPE tools to
some experiments. From these experiments we chose
DAViL because it gave us more comfort about the
features, usage and final output. With DEViL (but not
exclusively because of it) the development of the VL
and associated VPE can be systematized in four main
steps: i) Abstract Syntax Specification; ii) Interaction and
Layout Definition; iii) Semantics Implementation and iv)
Code Generation.

To define the abstract syntax we translated the
PLG formal definition of VisualLISA into the modular
(object-oriented AG) notation of DEViL. In order to
make possible the specification of separated computation
rules, it was used a DEViL specific feature: the coupling
of structures [10]. This feature copies a part of the
main structure and maintains synchronization between
the original structure and the copied one. In VisualLISA
it means that the layout of production is replicated for
every semantic rule and both are always synchronized.
The specification of the layout and the interaction con-
sists in the definition of the buttons of the dock and the
creation of figures to define the icons of the language.
Figure 2 shows a button (rectangular shape) and an icon
of the language (cloud shape), which was used to identify
the LHS symbols of VisualLISA’s productions.

Fig. 2. Example of a Button (rectangular-shaped image) and an Icon
(cloud-shaped image) of VisualLISA Interface.

In DEViL, besides these steps we also specified views
of the language, in order to ease the comprehension
and the modularity of it. All the layout specifications
are based in the inheritance of already made interfaces
called Visual Patterns [11]. From the abstract structure,
DEViL creates an Abstract Syntax Tree (AST). This



allows the definition of a tree-walker function in order
to traverse the tree and execute some actions in given
contexts. With this approach we defined the module of
semantic verification based on the constraints specified
before. However, for implementing the code generation
(or translation) module, it is used the traditional AG
approach. We defined the semantic rules to translate the
iconic sentences into text, associating some necessary
attributes to the grammar symbols.

As seen in the specification, there could be found some
static fragments in the target code notations. Regarding
this, we used template files to structure out the output.
This eases the translation process and future maintenance
of this module. Besides the templates, we used auxiliary
functions so that we could solve problems like ordering
the RHS of a production based on their position along
the X-axe. With the specification of these four modules,
we were able, using DEViL, to generate VisualLISA as
a stand-alone visual programming environment.

IV. USER INTERACTION THROUGH AN EXAMPLE

In this section, the interaction with VisualLISA editor
will be shown using an example. Although bigger gram-
mars have been tested, we use this small example for an
easier explanation of the interaction. In this example, the
source text defines a set of students and for each student
a name and an age are specified. The objective of the
example is to visually define the AG (henceforth called
Students Grammar) where the sum of the ages will be the
generated output. For Instance, taking a concrete source
text like the one shown in Listing 1, the output will be
37.

Listing 1. Source Text Example for the Students Grammar
1

2 P e t e r G a b r i e l 12
3 John Lennon 13
4 Maria C a l l a s 12

Listing 2 shows the context-free grammar in BNF
notation for the Students Grammar, and also presents the
semantic rules associated to each production in order to
calculate the sum of the ages. The terminal symbols must
be lexically defined as [a-zA-Z ]+ and [0-9]+ for name
and age respectively.

Listing 2. Formal Specification of the Students Grammar
1

2 P1 : S t u d e n t s : S t u d e n t S t u d e n t s
3 {S t u d e n t . sum = S t u d e n t s . sum + S t u d e n t . sum}
4 P2 : | S t u d e n t
5 {S t u d e n t s . sum = S t u d e n t . sum}
6 P3 : S t u d e n t : name age
7 {S t u d e n t . sum = name . v a l u e}

A. Developing with VisualLISA

Before starting the specification, we present Visual-
LISA’s work-area interface in Figure 3.

In this image are represented the four windows used
for an AG specification in VisualLISA. The first window
(rootView) is the one presented when a new specification
is started. Here the user can declare productions and
access the global definitions of the AG being specified.
The latter (defsView) corresponds to the second win-
dow in Figure 3 and it is where the user defines the
global lexemes, functions, new data-types and modules
to import. The third window (prodView) is used to
model the productions declared in the first one. Its
drawing area is separated into two parts: the largest is
to draw the production layout and the thinnest is used
to associate computation rules to the production. The
computation rules are modeled in the fourth and last
window (ruleView) reusing the production layout.

All these windows have a dock with buttons. These
buttons are the main way to model the AG, by dragging
them into the drawing area.

Regarding the formal definition of the Students Gram-
mar, its specification in VisualLISA will be divided into
three productions and one computation rule associated to
each production. This specification is depicted through
Figure 4 to Figure 6.

A production is always defined by a LHS and a RHS.
In VisualLISA, the cloud-shaped icon identifies the LHS
symbol. The oval and the rectangular icons identify the
non-terminal and the terminal symbols, respectively.

To build a production, the user start by specifying
the RHS because the LHS is automatically drawn when
a terminal or non-terminal is pushed into the drawing
area for the first time, besides it, those two symbols are
automatically connected to create the production tree.
This connection is always created whenever another RHS
symbol is dragged into the drawing area.

The same does not happen with the attributes. To
associate an attribute to a symbol, the user should drag
the attribute icon and the respective connector line into
the drawing area, and then attach the connector to
the attribute and the symbol. There are three types of
attributes (inherited (red inverted triangle), synthesized
(green triangle) and intrinsic (grey triangle)). In order
to avoid bad constructions, the edition is directed by the
syntax of VisualLISA. For example, the intrinsic attribute
can only be associated to a terminal symbol; the editor
does not allow any other connection of this attribute.

When double clicking in an icon, a simple form with
the symbol’s properties appears. There, is possible to
write the name, or choose a data-type for that symbol,
when applied.

After a production modeling, is possible to associate
computation rules, by dragging the respective icon into
the drawing area. This declares a new instance of com-
putation rule that can be opened in the ruleView. In this
new window, the layout of the production is presented



Fig. 3. Main Windows for Grammar Specification

Fig. 4. Production P1 (left), associated Computation Rule (right) and Definition of the Operation (center-below).



by default. The user only has to concern about the
construction of the semantic rule.

A semantic rule is modeled using four different icons.
In Figure 4 we show three of them: i) function (star-
shaped icon) - where the mathematical operation to
compute a value is specified. Figure 4 at the right, shows
an example of such specification; ii) argument connector
(red dashed-arrow) - is always attached to an attribute
and to a function to specify that the value of the attached
attribute is used as argument in the function’s operation;
iii) output connector (blue full-arrow) - is used to attach
a function to an attribute. It means the assignment of the
function’s output to an attribute. In Figure 5 we present
the fourth: iv) identity function (brown full-arrow) -
it connects two different attributes, and means that the
target attribute is being assigned with the value of the
source one.

In Figure 6 is depicted the production defining the
nonterminal Student. There can be seen the terminal
symbols and their association with an intrinsic attribute.
Notice the name given to that attribute; in fact it is a
function used in LISA to access the value of the attribute.
We used this name because we will generate code for
LISA. The regular expression for a terminal is defined
locally on that terminal, as can be seen in Figure 6.c).

The Students Grammar was completely defined in
VisualLISA. But there is not any instruction to print
the final output. To achieve this, we have to define a
new production (with a new start symbol). This happens
because we must define a function to print the result, and
a function must always have an output value associated
to an attribute.

The new production is depicted in Figure 7. Creat-
ing a new production is not the only way to achieve
the requirement proposed. With this approach we can
address an important issue: the order of the production
specification. In the list of productions, the user must set
the production with the start symbol at the top of the list.
This is the way to define the start symbol of the grammar.
The reminder productions have not a predefined order.

After specifying the AG, the user can generate code.
Before generating code, VisualLISA automatically per-
forms semantics verification, in order to warn the user of
possible errors. VisualLISA generates LISA specification
that is the input for LISA compiler generator. It is also
possible to generate a XAGra specification, with the
same information, that can be adapted to be used as an
input of other compiler generator. In Figure 8 we show
the generated code for both notations. As the resultant
files are big, we only show a small part that depicts the
translation respective to the production and computation
rule associated in Figure 4.

Using LISA our example will be compiled, the output
will be evaluated and a set of visualizations generated.

V. USABILITY ANALYSIS

VisualLISA is a domain-specific visual language cre-
ated to make easier the specification of attribute gram-
mars. There are cognitive dimensions that can be used
to test the usability of this kind of programming lan-
guage [12]. Some of them are: closeness of mapping,
role-expressiveness, consistency, viscosity, visibility and
error-proneness. The following analysis is based on
our beliefs and on the feedback received from several
experiments that have been done (involving the members
of the development team, as well as, some students).

The language was crafted based on the user mental
representation of attribute grammars: a decorated tree.
In this case, the gap between the problem domain (what
we want to solve) and the program domain (how to
solve) is smaller. It is easier for the user to specify the
attribute grammar using a graphical representation of that
decorated tree (closeness of mapping).

On the other hand, a visual programming language
must provide facilities for coloring, commenting, group-
ing, modularizing and so on. So, different colored
graphical icons were chosen for VisualLISA and an
intuitive composition process was used to create the
decorated tree. This kind of features improves the role-
expressiveness of the language.

VisualLISA is a consistent language because it is easy
for the user to infer how to add a new symbol or how to
specify an attribute evaluation. Specifications are created
in a very systematic way (consistency).

VisualLISA uses a modular specification approach,
which turns less hard to perform changes (viscosity). The
modular approach can also solve problems related with
scalability. Since every production has a new specifica-
tion window we never get huge and confuse graphical
representations. The same happens with semantic rules.
In order to specify one rule we just have to choose the
production and decorate it with attributes, relations and
functions and to do that a new window is used.

Beside this, it is possible to get a global view of the
grammar (list of productions and rules) avoiding loosing
the connection between each production and the whole
grammar (visibility).

In visual programming languages there are fewer
syntactic details to take into account: situations like
unpaired delimiters, discontinuous constructors, missing
separators, missing variable initialization and so on can
not happen in this kind of language. Instead of that, the
programming style is based on drag and drop operations
and it is possible to restrict that actions in order to
follow the correct syntax of the language. There are also
semantic constraints to attain but the user can be guided
in order to avoid both syntactic and semantic errors (low
or inexistent error-proneness).



Fig. 5. Production P2 (a) and associated Computation Rule (b).

Fig. 6. Production P3 (a), associated Computation Rule (b) and Terminal symbol Properties (c)

Fig. 7. Production P0 (left), associated Computation Rule (center) and the List of Productions of the Grammar (right).

(a)

(b)

Fig. 8. Code Generated for LISA (a) and XAGra (b) specifications.



This study is just our point of view about the language
and the programming environment we developed; we are,
obviously, suspects! A concrete usability test must be
done in order to confirm our beliefs. With that purpose
we will measure the user interaction according to the
cognitive dimensions above. In the future, we expect
to pick a group of students with similar experience on
attribute grammars, and propose a set of questionnaires
with problems to be developed using VisualLISA. So
that we can gather information about these results to
compare against our beliefs.

VI. CONCLUSION

Attribute Grammars (AG) specification is not as easy
as people would desire. The difficulties of choosing
the appropriate attributes and conceiving the respective
evaluation rules are significant, as well as the effort to
write the complete specification. Normally is easier to
sketch it on paper. This strategy allows the developers
to create a syntax-independent abstract mental model.
However, after being sketched, the productions and the
semantic dependencies between attributes are not more
than scribbling on paper. The person who drew it must
go through the translation of the pencil strokes into the
concrete syntax of the compiler generator.

In this paper we presented a new visual language
to create AGs, where the improvement of the user
interaction was the basis for choosing the icon shapes,
colors and general schemas for the specification. We
also showed, briefly, a systematic approach to develop
its underlying programming environment (VisualLISA)
taking advantage from the usage of DEViL. Resorting to
a running example, we described, how the user should
interact with VisualLISA to create a new AG. This
method of specifying AGs is closer to the mental model
adopted by the users to sketch the computation of the
attributes in a semantic-directed translation. Therefore,
the gap between the mental model and that methodology
is small. We made a small and self-critic usability anal-
ysis based on the cognitive dimensions framework, to
enhance the last sentence. However, a concrete usability
test with target users is lacking and was left for further
work.

VisualLISA, as a graphical front-end for LISA, can
be used to generate compilers and other language-based
tools. Moreover, it can be easily adapted to work with
other compiler generator tools since it produces an XML
dialect as output. We are aware of the non-scalability
of VLs. For long AGs, maybe the textual approach is
better. Our approach is chiefly appropriate for beginners
and small specifications.

From long time ago, visual programming lan-
guages were created for databases management, image-
processing, user-interface (GUI) generation, and so on.

Several grammar formalisms and compiler generation
techniques were created in order to implement VLs. An
effort was made in order to systematize the generation of
visual languages and some tools, like VLDesk, DEViL,
and so on, appeared. When creating our VL we did
not intend to define a new visual interaction paradigm,
instead we desired to take profit of visual interactions
to implement a new framework for describing AGs,
because, reviewing the literature, we did not find a
similar work.

We hope we have emphasized how it is possible to
easily specify a huge amount of complex information,
as it is the case of an AG, using graphical objects and a
very intuitive modular approach.

ACKNOWLEDGEMNTS

We would like to thank Bastian Cramer, from Uni-
versity of Paderborn, for his constant support during the
development of VisualLISA, and his continuous interest
on collaborating with us on other projects.

REFERENCES

[1] D. E. Knuth, “Semantics of context-free languages,” Theory of
Computing Systems, vol. 2, no. 2, pp. 127–145, June 1968.

[2] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers Principles,
Techniques and Tools. aw, 1986.

[3] M. Mernik, M. Lenič, E. Avdičaušević, and V. Žumer, “LISA: An
interactive environment for programming language development,”
Compiler Construction, pp. 1–4, 2002.

[4] M. Boshernitsan and M. Downes, “Visual programming lan-
guages: A survey,” University of California, Berkeley, California
94720, Tech. Rep., December 2004.

[5] M. Burnett and M. Baker, “A classification system for visual
programming languages,” Journal of Visual Languages and Com-
puting, vol. 5, pp. 287–300, 1994.

[6] N. Oliveira, M. J. V. Pereira, P. R. Henriques, D. da Cruz,
and B. Cramer, “Visuallisa: A domain specific visual language
for attribute grammars,” in Proceedings of the 3rd Compilers,
Programming Languages, Related Technologies and Applications
(CoRTA’2009). Lisbon, Portugal: Faculdade de Ciências da
Universidade de Lisboa, September 2009, (To Appear).

[7] E. J. Golin, “A method for the specification and parsing of visual
languages,” Ph.D. dissertation, Brown University, Department of
Computer Science, Providence, RI, USA, May 1991.

[8] N. Oliveira, M. J. V. Pereira, D. da Cruz, and P. R. Henriques,
“VisualLISA,” Universidade do Minho, Tech. Rep., February
2009, www.di.uminho.pt/∼gepl/VisualLISA/documentation.php.

[9] P. R. Henriques, M. J. V. Pereira, M. Mernik, M. Lenič, J. Gray,
and H. Wu, “Automatic generation of language-based tools using
the lisa system,” Software, IEE Proceedings -, vol. 152, no. 2,
pp. 54–69, 2005.

[10] U. Kastens and C. Schmidt, “Vl-eli: A generator for visual
languages - system demonstration,” Electr. Notes Theor. Comput.
Sci., vol. 65, no. 3, 2002.

[11] C. Schmidt, U. Kastens, and B. Cramer, “Using DEViL for imple-
mentation of domain-specific visual languages,” in Proceedings
of the 1st Workshop on Domain-Specific Program Development,
Nantes, France, Jul. 2006.

[12] T. Green and M. Petre, “Usability analysis of visual programming
environments: A ’cognitive dimensions’ framework,” Journal of
Visual Languages & Computing, vol. 7, no. 2, pp. 131–174, June
1996.


