
Comparison of XAML and C# Forms using
Cognitive Dimension Framework

Marjan Mernik1, Tomaž Kosar1, Matej Črepinšek1, Pedro Rangel Henriques2,
Daniela da Cruz2, Maria João Varanda Pereira3 and Nuno Oliveira2

1 University of Maribor, Faculty of Electrical Engineering and Computer Science,
Smetanova 17, 2000 Maribor, Slovenia

Email: {marjan.mernik, tomaz.kosar, matej.crepinsek}@uni-mb.si
2 University of Minho - Department of Computer Science,

Campus de Gualtar, 4715-057, Braga, Portugal
Email: {prh, danieladacruz, nunooliveira}@di.uminho.pt

3 Polytechnic Institute of Bragança
Campus de Sta. Apolónia, Apartado 134 - 5301-857, Bragança, Portugal

Email: mjoao@ipb.pt

Abstract. Many domain-specific languages arise in the past years, try-
ing to bring feasible alternatives for existing solutions with purpose to
simplify programmers work. Although these little languages seem to be
easier to use, there is an open issue whether they bring advantages com-
paring to most commonly used implementation approach, application
libraries. In this work we present an experiment, carried out to compare
such domain-specific language with comparable application library. The
experiment was conducted with 36 programmers, which were answer-
ing questions on more than 100 long pages on both implementation ap-
proaches. For domain-specific language and application library the same
problem domain has been used – construction of graphical user inter-
faces. In terms of domain-specific language, XAML has been used and
C# Forms for application library. For comparison of XAML and C#
Forms cognitive dimension framework has been used.

1 Introduction

The primary goal of developing new programming language is to make program-
ming more efficient. The perfect programming language should provide the right
level of abstraction, meaning that it describes solutions naturally and hides un-
necessary details. Also, it should be expressive enough in the problem domain
and should provide guarantees on properties critical for the problem domain. It
should also have precise semantics to enable formal reasoning about a program.
With general-purpose languages (GPLs) this is hard to achieve, since they tend
to be general with consequence on poor support for domain-specific notation.
On the other hand, domain-specific languages (DSLs) can be designed in many
problem domains to have exactly above properties. DSL is a language tailored
to specific application domain that offers appropriate notations and abstractions

[12]. DSLs are more expressive and are easier to use than GPLs for the domain
in question, with gains in productivity and maintenance costs [6], [10], [18].

Although, DSLs have proven their usefulness, GPLs together with applica-
tion libraries (APIs) are still the most commonly used programmer’s choice when
preparing new solutions for their problems. One of the reasons that DSLs are
not accepted among the practitioners, is the lack of DSLs’ promotion. Further,
studies that would point out the benefits of DSL over GPL solution are rare.
In this paper we will use cognitive dimension framework (CDF) [8] to compare
DSL and GPLs programs and to expose properties that are enhanced in the
context of DSLs. The goal of the project4 is to measure how easy is to under-
stand programs written in DSLs than in GPLs. In this manner, experiment is
conducted using questionnaires to measure programmers understanding of DSL
and GPL programs on same problem domain, a construction of graphical user
interfaces (GUIs). More precisely, with these questionnaires we try to confirm
that DSL programs are easier to understand than GPL programs. This hypothe-
sis is here defended with experiment under controlled environment, using direct
observations of experiment evaluation model involving CDF.

The organization of this paper is as follows. Related work on DSLs, prepara-
tion of experiment and CDF is discussed in Section 2. Experiment skeleton, the
identification of its main goals, and experiment details are the topics introduced
in Section 3. Experiment results, with cognitive dimension framework, are given
in Section 4. Concluding remarks with future work are summarized in Section 5.

2 Related work

The DSL is usually developed in the following phases: decision, analysis, de-
sign, implementation, and deployment as identified in work [12]. For the im-
plementation part, following techniques have been identified for DSLs: prepro-
cessing, embedding, compiler/interpreter, compiler generator, extensible com-
piler/interpreter, and commercial off-the-shelf. In order to implement a DSL,
a programmer has to choose among these implementation approaches and, of
course, the most suitable one should be chosen according to project influences.
As defined above, one of the implementation techniques is also commercial off-
the-shelf approach. Here, existing tools and/or notations can be used to a specific
domain, e.g., XML-based DSLs. This approach provides a feasible alternative
when solving particular domain problems and for instance, XML here brings
promising solutions in processing and querying documents for data exchange,
etc. In general, XML tends to be cumbersome for humans to read and write
and has some other disadvantages comparing to other DSL implementation ap-
proaches [10], however it seems that the approach is very well accepted by the
leading technologies in the software industry and it is not expected that this fact
will change in the near future.

4 This work is sponsored by bilateral project “Program Comprehension for Domain-
Specific Languages” (code BI-PT/08-09-008) between Slovenia and Portugal.

This work can be classified to empirical software engineering category. Em-
pirical research in software engineering is an important discipline, showing prac-
tical results on how practitioners (developers, end-users) come to accept and use
technologies, techniques, etc. In order to avoid questionable results and to en-
able repetition of research giving the same results, experiment has to be prepared
with caution. One of the most well known framework for software experiments
is described in [2]. This framework concentrates on building knowledge about
the context of an experiment and is based on organizing sets of related stud-
ies (family of studies). Such studies contribute to a common hypotheses which
does not vary for individual experiments. Therefore, we followed guidelines from
framework [2] in order to prepare this experiment and we defined: context of the
study, experiment hypothesis, comparison validity, and measurement framework.

Teaching environments give us an opportunity to conduct experiments also
in computer science programs. However, a lot of concerns are connected with
the accuracy of results in such environments and several threats to validity of
experiment has to be identified and to interpret the results correctly. Interested
reader, can find more about this topic in the work [4], where a checklist for
integrating empirical studies in teaching activities can be found.

As stated above, important step in experiment preparation is to set down
the measurement framework – how results of experiment are evaluated and in-
terpreted. In cognitive theory, guidelines how to measure human’s ability to
program, are defined. CDF [8] provides cognitively-relevant aspects which can
be used to determine how easy it is to understand a program. In our study, CDF
is used to compare user understanding of DSL and GPL programs. While before
CDF has been used to assess the usability of visual programming languages [3],
[17] and spreadsheets [13].

Another application of cognitive dimensions can be found recently in [1],
where method for designing Framework-Specific Modeling Languages (FSMLs)
is presented. From FMLS specifications user can build applications based on
object-oriented frameworks. In FSML software artifacts (models, languages, etc.)
are evaluated according to its goals with different quality methods. Particularly,
quality of notation is measured with cognitive dimensions – a heuristic measure
that evaluates the notation and its environment.

Before this experiment, authors of the paper were involved in another similar
experiment [9]. That work is important for interested reader, since information on
experiment skeleton is described in details. Difference among both experiments
is in hypothesis and exclusion/inclusion of CDF. Also, the problem domain in
experiment [9] is different (graph description with DOT language [7]) than in
this paper (construction of GUI with XAML).

This paper is also closely related to the field of Program Comprehension,
which is a hard cognitive task done by software analyst. In the process of pro-
gram comprehension, the use of tools to interconnect different views (operational,
behavioral, etc.) to understand results of application, are indispensable. Tradi-
tional techniques on program comprehension from GPLs (visualizers, animators,

etc.) have been studied and applied to DSLs in our previous work [15], where
CDF was also briefly described and applied to DSLs.

3 Presentation of experiment

In this section the preparation, execution, and experiment evaluation model is
given.

3.1 Subject of comparison

In the work [10] the empirical results comparing ten diverse implementation ap-
proaches for DSLs, conducted on the same representative language, are provided.
Among implementation approaches, comparison included also XML-based ap-
proach. From this study can be concluded, that XML-based approach, has some
disadvantages [10]. Although, XML usage and its tool support are spreading.
This is one of the reasons that XAML [16], as a representative DSL, has been
chosen for this study. XAML, the Extensible Application Markup Language, is a
language for representation of graphical user interfaces in Windows Presentation
Foundation and Silverlight applications of .NET Framework 3.5. C# Forms [5]
has been used for comparison since it covers the same domain of graphical user
interfaces.

3.2 Preparation of experiment environment

The results from an experiment are reliable if the repetition of experiment can
be proven [14]. Repetition is strongly connected to agreements set down before
starting the experiment [2]. Consistency of results in our experiment were ob-
tained by creating rules and constraints for programmers: using well-structured
questionnaires, domain tutorials and extra explanations in their native language,
before starting answering on questions. Tutorial to programmers included pre-
sentation of problem domain (GUI), domain specific notation (XAML) and ap-
plication library (C# Forms) together with examples of programs. Consistency
of results were obtained also with rules for questionnaire implementors, which
had to define the same group of questions for both experiment on GPL and DSL.
Implementors were also advised to prepare questions for two applications (easier
and harder application domain). More on preparation of this experiment can be
found in [9].

3.3 Threats to validity of experiment

In each experiment, there are several threats to validity of results. Those threats
needs to be identified and handled before starting the experiment. To restrict
the impact of the experiment environment on the results, following issues have
been identified for our study.

Chosen domain Results of the experiment are strongly connected to pro-
grammers’ experiences and knowledge of chosen problem domain. In Table 1,
programmers familiarity with construction of GUI is presented, together with
experience on XAML and C# Forms library application. From Table 1, we can
conclude that programmers are experienced in domain of construction GUIs.
However, their experience in implementation technique differs – programmers
were unfamiliar with XAML on one hand (median value 1), and had good knowl-
edge in constructing GUIs with C# Forms (median value 4). Uneven knowledge
on both notations could have influence on comparison results.

Table 1. Programmers knowledge in construction of graphical user interfaces (N = 36)

Average1 Median St.dev.

Familiarity GUI domain 3.39 4 1.18

Knowledge of XAML 1.36 1 0.68

Knowledge of C# Forms application library 3.5 4 1.11

N = number of received questionnaires

Programmers experience In Table 2, we present results from self evaluation
test, where students (second year of undergraduate computer science) grade their
general knowledge about programming, programming in C# language and prior
experience with DSLs. Comparing knowledge on C# (median value 4) and prior
experience with DSLs (median value 2) could also have influence on experiment
results.

Comparability of questionnaires Same type of questions in DSL and GPL
questionnaires should contain similar number of graphical components (labels,
text fields, buttons, etc), to obtain the same level of complexity.

Experiment questionnaires As stated before, two questionnaires have been
prepared for program understanding of DSL and GPL programs. Then, the struc-
ture of questionnaires has been defined to cover following three topics of program
understanding: learn, perceive, and evolve. In the first group, questions on learn-
ing notation and meaning of programs have been given to the programmers. In
the second group, questions on program perceiving have been defined, such as
identification of: correct meaning from given program, language constructs, new
construct meaning, and meaning of program with given comments. In the third

1 A five-graded scale, going from very bad (1) to very good (5) was used for self-
evaluation questionnaires (in Tables 1 and 2). Note, that column “Average” shows
the average value given by 36 programmers, “Median” stands for middle value in
set of programmers grades and “St. Dev.” represents standard deviation on given
grades.

Table 2. Programmers experiences in programming (N = 36)

Average Median St.dev.

Skills in programming 3.41 3.5 0.65

Skills of programming in C# 3.53 4 0.74

Prior experience with DSLs 2.28 2 0.70

group, programmers had been challenged to expand/remove/replace program
functionality.

For these three groups, 11 questions have been defined:

– Learn
• Q1 Select syntactically correct statements.
• Q2 Select program statements with no sense (unreasonable).
• Q3 Select valid program with given result.

– Perceive
• Q4 Select correct result for the given program.
• Q5 Identify language constructs.
• Q6 Select program with same result.
• Q7 Select correct meaning for the new language construct.
• Q8 Identify language constructs in the program with comments.

– Evolve
• Q9 Expand the program with new functionality.
• Q10 Remove functionality from the program.
• Q11 Change functionality in the program.

Learning and perceiving questions has been defined as multiple choice ques-
tion, and questions on evolve has been defined as essay question (programmers
are challenged to modify existing code). Both, XAML and C# Forms question-
naires have been constructed using the above questions.

To illustrate the style of the questions used in the questionnaires, an example
is presented in Figure 1. Because of question size only the correct choice is given.
Complete questionnaires can be found at project group webpage5.

4 Results

All together, programmers answered 22 questions on both questionnaires. Suc-
cess rate for questions vary from 27.14% for Q6 to 79.73% for Q9 (Table 3).
Differences in success rate in the same language (DSL/GPL) can be explained
with different difficulty level (some questions were harder than others). On the
other hand the biggest difference between GPL and DSL is 51.16% in case of Q9.
The smallest difference we can find in Q2, where difference is just 3.44%. In this
5 http://epl.di.uminho.pt/∼gepl/DSL/

Question 5

QL031 XAML-DSPL-RegistrationForm: Select program for the following figure:

<Window x:Class="WpfRegistration.Registration3"

 Title="Registration form 3" Height="200" Width="300">

 <Grid ShowGridLines="False">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="12*"/> <ColumnDefinition Width="2*"/>

 <ColumnDefinition Width="10*"/> </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>

 <RowDefinition Height="10*"/> <RowDefinition Height="10*"/>

 <RowDefinition Height="10*"/> <RowDefinition Height="10*"/>

 <RowDefinition Height="10*"/> <RowDefinition Height="10*"/>

 <RowDefinition Height="10*"/> </Grid.RowDefinitions>

 <Label Grid.Column="0" Grid.Row="1"> Username:</Label>

 <TextBox Grid.Column="2" Grid.Row="1" Background="LightGray"/>

 <Label Grid.Column="0" Grid.Row="2"> Full name:</Label>

 <TextBox Grid.Column="2" Grid.Row="2"/>

 <Label Grid.Column="0" Grid.Row="3"> Password:</Label>

 <TextBox Grid.Column="2" Grid.Row="3" Background="LightGray"/>

 <Label Grid.Column="0" Grid.Row="4"> Retype password:</Label>

 <TextBox Grid.Column="2" Grid.Row="4" Background="LightGray"/>

 <Button Grid.Column="2" Grid.Row="5"> Register</Button> </Grid> </Window>

Question 5

QL031 WFORM-GPL Select the correct program to produce the following figure:

private Label labelNumber, labelFilledNumber;

private Label labelInf, labelPic;

private TextBox textBoxInfo, textBox1;

private Button btnBrowse;

private void InitializeComponent() {

 labelNumber = new Label();

 labelFilledNumber = new Label();

 textBoxInfo = new TextBox();

 labelInf = new Label(); labelPic = new Label();

 btnBrowse = new Button(); textBox1 = new TextBox();

 labelNumber.ForeColor = System.Drawing.Color.Red;

 labelNumber.Location = new System.Drawing.Point(12, 9);

 labelNumber.Name = "labelNumber";

 labelNumber.Size = new System.Drawing.Size(119, 17);

 labelNumber.TabIndex = 5;

 labelNumber.Text = "Product Number: ";

 labelFilledNumber.Name = "labelFilledNumber";

 labelFilledNumber.Size = new System.Drawing.Size(72, 17);

 labelFilledNumber.Text = "90053918";

 labelFilledNumber.Location = new System.Drawing.Point(137, 9);

 textBoxInfo.Location = new System.Drawing.Point(109, 74);

 textBoxInfo.Multiline = true; textBoxInfo.Name = "textBoxInfo";

 textBoxInfo.Size = new System.Drawing.Size(246, 97);

 textBoxInfo.Text = "Price : 49,9 €\r\nAssembled size\r\nWidth: 40 cm\r\nDepth: 48 cm\r\nHeight: 56 cm";

 labelInf.Location = new System.Drawing.Point(12, 74);

 labelInf.Name = "labelInf";

 labelInf.Size = new System.Drawing.Size(82, 17); labelInf.Text = "Information:";

 labelPic.Location = new System.Drawing.Point(12, 190);

 labelPic.Name = "labelPic";

 labelPic.Size = new System.Drawing.Size(56, 17); labelPic.Text = "Picture:";

 btnBrowse.BackColor = System.Drawing.Color.Yellow;

 btnBrowse.Location = new System.Drawing.Point(276, 190);

 btnBrowse.Name = "btnBrowse";

 btnBrowse.Size = new System.Drawing.Size(79, 20); btnBrowse.Text = "Browse";

 btnBrowse.UseVisualStyleBackColor = false;

 textBox1.Location = new System.Drawing.Point(109, 190);

 textBox1.Name = "textBox1";

 textBox1.Size = new System.Drawing.Size(161, 20);

 Controls.Add(textBox1); Controls.Add(btnBrowse); Controls.Add(labelPic); Controls.Add(labelInf);

 Controls.Add(textBoxInfo); Controls.Add(labelFilledNumber); Controls.Add(labelNumber);

 }

Fig. 1. Question 5 in DSL and GPL questionnaires with correct choice

Table 3. Average programmer success rate (N = 36)

Question DSL GPL Difference

XAML C# Forms

Q1 72.97% 48.57% 24.4%

Q2 35.14% 38.57% -3.44%

Q3 64.86% 35.71% 29.15%

Q4 77.03% 70.00% 7.03%

Q5 64.86% 48.57% 16.29%

Q6 39.19% 27.14% 12.05%

Q7 75.68% 62.86% 12.82%

Q8 62.16% 45.71% 16.45%

Q9 79.73% 28.57% 51.16%

Q10 68.92% 41.43% 27.49%

Q11 66.22% 30.00% 36.22%

Table 4. Average programmer success on learn, perceive and evolve (N = 36)

Question DSL GPL Difference

XAML C# Forms

Learn Q1, Q2, and Q3 57.66% 40.95% 16.71%

Perceive Q4, Q5, Q6, Q7, and Q8 63.78% 50.86% 12.93%

Evolve Q9, Q10, and Q11 71.62% 33.33% 38.29%

case success rate was even slightly better for GPL than DSL. To our opinion this
is due to difficultness of Q2 (success rate was less than 39%), where syntactically
correct programs with no sense have to be identified. Since programmers have
more experience in C# Forms than XAML (Table 1) they were more successful
for GPL than DSL in finding programs with no sense.

However, drawing conclusions based on average value of single question can
be extremely risky. Therefore, by grouping questions on learn, perceive and
evolve we can obtain more reliable results. In Table 4 average success rate on
questions by individual group are presented. Table 4 confirms our presumption
that program understanding in terms of learn, perceive and evolve is much better
for DSL programs than on GPL programs. Later observation is specially obvi-
ous from results on evolve questions – success rate on this question was 38.29%
better for DSL than on GPL questions. Similar results were also obtained on
other problem domain described in [9].

One of possible explanation, why programs written in DSLs are easier to
understand than programs written in GPLs, can be offered by CDF [8]. The CDF
has been used before to assess the usability of visual programming languages [3],
while no such study exists for DSLs. These cognitive dimensions are:

– Closeness of mapping – languages should be task-specific;
– Viscosity – revisions should be painless;
– Hidden dependencies – the consequences of changes should be clear;
– Hard mental operations – no enigmatic is allowed;
– Imposed guess-ahead – no premature commitment;
– Secondary notation – allow to encompass additional information;
– Visibility – search trails should be short;
– Consistency – user expectations should not be broken;
– Diffuseness – language should not be too verbose;
– Error-proneness – notation should catch mistakes avoiding errors;
– Progressive evaluation – get immediate feedback;
– Role expressiveness – see the relations among components clearly;
– Abstraction gradient – languages should allow different abstraction levels.

The next step was to connect cognitive dimensions with our questions. We
identified which dimensions are relevant for particular question (Table 5). As it
can be seen Di (dimension i of CDF) can be related with several questions used
in our questionnaires.

Table 5. Questions connection to cognitive dimensions

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

Closeness of mapping 1 1 1 1 1 1 1 1 1 1 1
Viscosity 0 0 0 0 0 0 0 0 1 1 1

Hidden dependencies 0 0 1 1 1 1 0 1 0 1 0
Hard mental operations 0 1 1 1 1 1 1 1 0 0 0

Imposed guess-ahead 0 0 0 0 0 0 0 0 1 0 1
Secondary notation 0 0 0 0 0 0 0 1 0 0 0

Visibility 0 0 1 1 1 1 1 1 0 0 0
Consistency 0 0 0 0 0 1 1 0 0 0 0
Diffuseness 1 1 1 1 1 1 1 1 1 1 1

Error-proneness 1 1 1 1 1 1 1 1 1 1 1
Progressive evaluation 0 0 0 0 0 0 0 0 0 0 0

Role expressiveness 0 1 1 1 1 1 1 1 1 1 1
Abstraction gradient 0 0 1 1 1 1 1 1 0 0 0

To evaluate single cognitive dimension (Di), the following formula has been
used:

Di =
11∑

j=1

Qij ∗
Sj

Cj

where Qij stands for value from Table 5 meaning whether dimension Di is con-
nected with question Qj . Variable Sj represents average programmers success
rate on question Qj (Table 3). For example, if 4 programmers out of 5 answered
correctly on question Q1, the value of S1 would be 0.8. Finally, Cj represents the

number of cognitive dimensions relevant for Qj (for example, C1 = 3). This for-
mula is used for XAML as well as for C# Forms. Intuitively, it means that cogni-
tive dimensions contribute to the success of particular question. Here, we assume
that contribution of involved cognitive dimensions were equally distributed (one
cognitive dimension is not more important than other if it is involved). Moreover,
we assume that higher values always mean positive influence of particular cogni-
tive dimension. For example, higher values for ’closeness of mapping’ mean that
the semantic gap between the problem and solution space is small, or higher
values for ’hidden dependencies’ mean that short and long-range interactions
among program components are immediately visible.

Table 6 roughly shows how much particular cognitive dimension contribute
to the questionnaires’ success for XAML, as well as for C# Forms. From Table 6
it can be seen that in our experiment the most influential for DSL/GPL program
understanding were: closeness of mappings, diffuseness, error-proneness, role ex-
pressiveness, and hard mental operations. More than particular values the im-
portant is difference among cognitive dimensions for XAML and C# Forms. The
biggest difference among cognitive dimensions were at closeness of mappings,
diffuseness, error-proneness, role expressiveness, and viscosity.

Table 6. Influence of cognitive dimension to XAML and C# Forms

DSL GPL Difference

XAML C# Forms

Closeness of mapping 1.127 0.749 0.377

Viscosity 0.442 0.237 0.206

Hidden dependencies 0.486 0.343 0.143

Hard mental operations 0.525 0.421 0.105

Imposed guess-ahead 0.243 0.098 0.146

Secondary notation 0.069 0.051 0.018

Visibility 0.455 0.344 0.111

Consistency 0.128 0.100 0.028

Diffuseness 1.127 0.749 0.377

Error-proneness 1.127 0.749 0.377

Progressive evaluation N/A N/A N/A

Role expressiveness 0.884 0.587 0.296

Abstraction gradient 0.455 0.344 0.111

Closeness of mapping refers to how wide the semantic gap is between the
problem and solution spaces. Diffuseness refers to the number of symbols needed
to express the meaning. By definition, DSLs use existing domain notation which
should be at an appropriate level of verbosity, so it is expected that they exhibit
low diffuseness. On the other hand, it was shown in the study [11] that plenty
of low-level primitives, which are often purely syntactical, is one of the biggest

cognitive barriers for end-user programmers. Error proneness refers to the ca-
pability of a language to induce careless mistakes. GPLs, due to their extension
and intrinsic complexity, are usually error-prone. While, DSLs due to the narrow
domain they are designed for, are usually less error prone. Role expressiveness
refers to the ability to see how each component of a program relates to the whole.
The high role expressiveness can be more easily achieved in DSLs due to domain
specifics and shorter programs. It is shown in our experiment that differences of
closeness of mapping, diffuseness, error proneness, and role expressiveness among
XAML and C# Forms are the biggest and the source of main contribution for
easier understanding of XAML programs than programs written in C# Forms.

Viscosity refers to how much effort is needed to perform small changes. Since
DSLs are usually at high abstraction level and have natural notation small
changes should be easier to perform. It is shown in our experiment that the
difference in viscosity among XAML and C# Forms was among the biggest. Vis-
cosity was involved only in questions Q9-Q11, which were much better solved
using XAML and C# Forms. We can conclude that viscosity had an important
influence to this success.

5 Conclusion and future work

The purpose of this paper is to promote formal studies on advantages of DSLs
over GPLs. In this paper we tried to explain the difference among DSL/GPL
program understanding using cognitive dimension framework. Questionnaires
on understanding programs have been prepared and given to the programmers.
Each programmer answered questionnaires written in more than 100 pages and
on average spent more then 3 hours solving 44 questions.

Results show that programmers success rate was around 15% better for DSL
in all three groups of questions: learn, perceive and evolve, despite that pro-
grammers were significantly less experienced in XAML than C# Forms. Further,
experiment measurement framework included cognitive dimensions to identify
the aspects among these dimensions that are enhanced in the context of DSL.
From the study can be learned that DSLs gain comparing to GPLs in all cog-
nitive dimensions. The cognitive dimensions with the biggest influence in the
experiment are: closeness of mappings, diffuseness, error-proneness, role expres-
siveness, and viscosity.

We consider that the results of this experiment are reliable despite that
experiment has been done only on single domain. One of the future tasks of
this project, is to commit similar experiments in different domains.

References

1. Antkiewicz, M., Czarnecki, K., Stephan, M. Engineering of Framework-Specific Mod-
eling Languages, To appear in IEEE Transactions on Software Engineering, 2009,
http://doi.ieeecomputersociety.org/10.1109/TSE.2009.30.

2. Basili, V., Shull, F., Lanubile, F. Building Knowledge through Families of Experi-
ments, IEEE Transactions on Software Engineering 25(4) 456–473, 1999.

3. Blackwell, A.F. Ten years of cognitive dimensions in visual languages and comput-
ing: Guest editor’s introduction to special issue, Journal of Visual Languages and
Computing 17(4), 285–287, 2006.

4. Carver, J., Jaccheri, L., Morasca S., Shull F., A Checklist for Integrating Student
Empirical Studies with Research and Teaching Goals, To appear in Empirical Soft-
ware Engineering, doi: 10.1007/s10664-009-9109-9.

5. C# Windows Forms, Available at: http://en.wikipedia.org/wiki/Windows Forms
6. Deursen, A. van, Klint, P. Little languages: Little maintenance?, Journal of Software

Maintenance (10), 75–92, 1998.
7. Dot – Graph Description Language, Available at:

http://en.wikipedia.org/wiki/DOT language
8. Green, T., Petre, M. Usability analysis of visual programming environments: a “cog-

nitive dimensions” framework, Journal of Visual Languages and Computing 7(2)
131–174, 1996.

9. Kosar, T., Mernik, M., Črepinsek, M., Henriques, P. R., Cruz, D. da,
Varanda Pereira, M. J., Oliveira, N. Influence of domain-specific notation to pro-
gram understanding, Submitted to 2nd Workshop on Advances in Programming
Languages (WAPL’09), 2009.

10. Kosar, T., Mart́ınez López, P. E., Barrientos, P. A., Mernik, M. A Preliminary
Study on Various Implementation Approaches of Domain-Specific Language, Infor-
mation and Software Technology 50(5) 390–405, 2008.

11. Lewis, C., Olson, G. Can principles of cognition lower the barriers to program-
ming?, 2nd workshop on Empirical Studies of Programmers, 1987.

12. Mernik, M., Heering, J., Sloane, A. When and How to Develop Domain-Specific
Languages, ACM Computing Surveys 37(4) 316–344, 2005.

13. Peyton Jones, S., Blackwell, A., Burnett, M. A User-Centred Approach to Func-
tions in Excel, Proceedings of the eighth ACM SIGPLAN international conference
on Functional programming, 165–176, 2003.

14. Shull, F., Carver, J., Vegas, S., Juristo, N., The Role of Replications in Empirical
Software Engineering, Empirical Software Engineering 13(2) 211–218, 2008.

15. Varanda Pereira, M. J., Mernik, M., Cruz, D. da, Henriques, P. R., Program Com-
prehension for Domain-Specific Languages, Journal on Computer Science and In-
formation Systems, 5(2) 1–17, 2008.

16. XAML – Extensible Application Markup Language, Available at:
http://en.wikipedia.org/wiki/Extensible Application Markup Language

17. Yang, S., Burnett, M., DeKoven, E., Zloof, M. Representation design benchmarks:
a design-time aid for VPL navigable static representations. Journal of Visual Lan-
guages and Computing 8(5/6) 563–599, 1997.

18. Živanov, Ž., Rakić, P., Hajduković, M. Using Code Generation Approach in Devel-
oping Kiosk Applications, Journal on Computer Science and Information Systems,
5(1) 41–59, 2008.

