
XAGra - An XML dialect for Attribute Grammars

Nuno Oliveira1, Pedro Rangel Henriques1, Daniela da Cruz1, and Maria João Varanda
Pereira2

1 University of Minho - Department of Computer Science,
Campus de Gualtar, 4715-057, Braga, Portugal

{nunooliveira,prh,danieladacruz}@di.uminho.pt
2 Polytechnic Institute of Bragança

Campus de Sta. Apolónia, Apartado 134 - 5301-857, Bragança, Portugal
mjoao@ipb.pt

Abstract. Attribute Grammars (AG) are a powerful and well-known formalism
used to create language processors. The meta-language used to write an AG (to
specify a language and its processor) depends on the compiler generator tool
chosen. This fact can be an handicap when it is necessary to share or transfer in-
formation between language-based systems; this is, we face an interchangeability
problem, if we want to reuse the same language specification (the AG) on another
development environment.
To overcome this interoperability flaw, we present in this paperXAGra - an XML
dialect to describe attribute grammars. XAGra was precisely conceived aiming
at adapting the output of a visual attribute grammar editor (named VisualLISA)
to any compiler generator tool.
Based on the formal definition of Attribute Grammar and on the usual require-
ments for the generation of a language processor, XAGra schema is divided into
five main fragments: symbol declarations, attribute declarations, semantic pro-
ductions (including attribute evaluation rules, contextual conditions, and transla-
tion rules), import, and auxiliary functions definitions. In the paper we present
those components, but the focus will be on the systematic way we followed to
design the XML schema based on the formal definition of AG.
To strength the usefulness ofXAGra as a universal AG specification, we show at a
glance XAGraAl, a tool taking as input an AG written in XAGra, is a Grammar
Analyzer and Transformation system that computes dependencies among sym-
bols, various metrics, slices and rebuilds the grammar.

1 Introduction

In the area of language processing it is common to use Attribute Grammars (AG) [1]
as a formalism to specify the language syntax, semantics and also the translation to
target code. The notation of this kind of formalism strongly depends on the compiler
generator tool (CG) we choose to automatically produce the processor. This implies the
conversion of notations, in order to readapt the specification to other tools, which is a
situation that occurs often.
The focus of this paper is on an XML dialect to represent universally attribute grammars,
this is, in a tool-independent manner. The main idea is to generalize the output of AG

editing tools; instead of generating a description for a specific compiler generator, the
editor-like tool under development can produce this general purpose dialect. Then to
use this editor as a Front End (FE) for a specific generator, it is only necessary to resort
a simple translatorto convert the XML description into the specific meta-grammar of that
CG. This approach raises the usefulness of the editor-like tool, as it can be used as a FE
for a larger range of grammar-based generators.
Actually, XAGra — an XML dialect for Attribute Grammars — appeared during the
development of VisualLISA [2], a visual editor for LISA [3] attribute grammars that
enables the drawing of syntax trees (grammar productions) decorated with attributes
and the respective evaluation rules to define visually a complete attribute grammar. In
its original version, VisualLISA converts this visual description into LISA meta-
language. To extend the use of that visual environment for AG specification, in order to
cope with different compiler generator toolswas built to translate the visual representa-
tion into XAGra.
This XML dialect allows the declaration of all grammar symbols (terminals and non-
terminals) and all (inherited and synthesized) attributes, and also the definition of all
semantic rules (to evaluate the attributes, define contextual conditions, and translate the
language), which are the elements needed to specify a complete attribute grammar. In
addition, it is possible to identify modules or libraries to be imported, and also to define
auxiliary functions. It is worth notice that the XML-Schema (XSD) underlyingXAGra
was developed rigourously taking into account the formal definition of AG and the extra
information that a CG needs to produce a complete language processor — that working
approach led to a fast design and implementation.
We also envisage a broader field of applications for XAGra representation than just
the role of a general interface between editor-like tools and compiler generators. To
corroborate that idea, we develop in the context of a language engineering course a
powerful tool (called XAGraAl) for AG analysis and transformation; XAGraAl takes
as input a XAGra AG.
Due to its role in the conception of XAGra, attribute grammars are formally defined
in section 2. Then, section 3 is devoted to the introduction of XAGra dialect (high-
lighting its derivation from the AG definition). Section 4 introduces XAGraAl tool and
summarizes its functionality. Conclusion and future work sum up the paper in section 5.

2 Attribute Grammars

A Context-Free Grammar (CFG) is formally defined by the following tuple:

G = (T, N, S, P)

where:
T is the set of terminal symbols that define the alphabet for the language;
N is the set of nonterminal symbols;
S ∈ N is the start symbol of the grammar and
P is a set of productions.
A production, also known as derivation rule, is composed of a Left-Hand Side (LHS),
with LHS ∈ N ; and a Right-Hand Side (RHS), with RHS ⊆ (N ∪ T)∗.

An Attribute Grammar is based on a CFG. It associates: a set, A(X), of attributes with
each symbol X in the vocabulary (V = T ∪ N) of G; a set, R(p), of evaluation rules
with each production p ∈ P ; and a set, C(p), of contextual conditions with each pro-
duction p ∈ P .
So an attribute grammar is formally defined as the following tuple:

AG = (G, A,R, C, T)

where
A =

⋃
X∈(N∪T) A(X) is the set of all the attributes;

R =
⋃

p∈P R(p) is the set of evaluation rules for all the productions;
C =

⋃
p∈P C(p) is the set of contextual conditions for all the productions and

T =
⋃

p∈P T (p) is the set of translation rules for all the productions.
Each attribute has a type, and represents a specific property of symbol X; we write
X.a to indicate that attribute a is an element of A(X). For each X ∈ (N ∪ T), the
set of attributes of X is splitted into two disjoint sets: A(X) = Inh(X) ∪ Syn(X),
respectively the inherited and the synthesized attributes.
Each R(p) is a set of formulas

X.a = func(..., Y.b, ...)

that define how to compute, in the precise context of production p, the value of each
attribute a as a function of the value of other attributes b, where each defined attribute
a should be a synthesized attribute associated with the nonterminal in the lefthand side
or an inherited attribute associated with a nonterminal in the righthand side:

a ∈ (Syn(X0) ∪ Inh(Xi)), i ≥ 1

and each used attribute b should be an inherited attribute associated with the nonterminal
in the lefthand side or a synthesized attribute associated with a symbol in the righthand
side:

b ∈ (Inh(X0) ∪ Syn(Xi)), i ≥ 1

Each C(p) is a set of predicates

pred(..., X.a, ...)

describing the requirements that must be satisfied in the precise context of production p.
Each predicate, checked for the actual value of the argument attributes (any synthesized
or inherited attribute that occurs in that context can be an argument), must hold a true
value, so that the production is meaningful (is valid from a semantic point of view).
Each T (p) is a set of procedures

proc(..., X.a, X.b, ...)

that use the value of attributes available in the context of production p (preferably the
synthesized attributes of production, but not restricted to) to produce, or generate, the
output of the language processor.

Many times, and many authors, do not consider C(p) and T (p) separate from R(p):
they consider an AG as a triplet

AG = (G, A,R)

In these cases, contextual conditions and translation rules are defined as boolean func-
tions that associate a truth value with special boolean attributes and produce the desired
action (contextual constraint verification or output building) as a side effect.

In summary, AGs are a formal and practical way to develop any kind of programming
language. The possibility to use attributes to store and spread information through the
processing phase, makes easier the derivation of all modules needed to compile a lan-
guage [4], and hence, it is faster to get the desired output.

3 XAGra language

In this section is defined an XML dialect to cope with attribute grammars. We gave it the
name of XAGra, which stands for XML dialect for Attribute Grammars. From here on,
this XML notation will be referred to as XAGra.
XAGra denotes the abstract representation of an AG. Its notation, here defined, is
mainly based on the definition of AG presented in Section 2, but it also borrows parts
from the notations inherent to various AG-based compiler generator tools.
One of the standardized ways to define a new XML dialect is the creation of a schema,
using the standard XML Schema Definition (XSD) language. For the sake of space, the
integral textual definition of XAGra’s schema is not presented, and for reasons of visi-
bility and readability, the complete drawing of the schema is broken into several impor-
tant sub-parts. These sub-parts are explained in the present section. Figures 1 to 7 are
used to support the explanation of the dialect.

XAGra’s root element was defined as attributeGrammar. This element has a sin-
gle attribute, name, whose objective is to store the name of the grammar, or the lan-
guage that the grammar defines; and is a sequence of several elements. These elements
represent components of the formal definition of an AG, incremented with extra parts
related to the usage of AG-based compiler generators.
Table 1 defines a relation of inclusion between the XAGra notation elements and the
components that constitute the formal definition of an AG, which is recovered next:

AG = (T, N, S, P,A, R,C, T)

The relations depicted in Table 1 give an overview about the information that each
element of XAGra notation will store. The following sections will describe with more
detail such elements and the information they store.
Listing 1.1 presents a fragment of a grammar that computes the age of a set of students.
This example is used to compare the concrete notation of a compiler generator to the
XML fragments that are shown in the sequent figures.

Table 1. Derivation of XAGra Notation From the Formal Definition of AG

XAGra Element ⊇ AG Components
symbols T, N, S

attributesDecl A

semanticProds P, R, C, T
importations ∅

functions ∅

Listing 1.1. Example of Students Grammar
1 l a n g u a g e S t u d e n t s G r a {
2 l e x i c o n{
3 Name [A−Z] [a−z]+
4 . . .
5 }
6 a t t r i b u t e s
7 i n t STUDENTS . sum ;
8 . . .
9 r u l e S t u d e n t s 1 {

10 STUDENTS : : = STUDENT STUDENTS compute {
11 STUDENTS . sum = STUDENTS [1] . sum + STUDENT . age ;
12 } ;
13 }
14 . . .
15 method u s e r D e f i n i t i o n s {
16 i m p o r t j a v a . u t i l . A r r a y L i s t
17 p u b l i c i n t sum (i n t x , i n t y){
18 r e t u r n x+y ;
19 }
20 }
21 }

3.1 Element symbols

Figure 1 presents the schema for the element symbols. As the name suggests, this
element contains the declaration of the grammar’s vocabulary.
It is composed of a sequence of three elements: terminals, nonterminals and
start.
The element terminals is a sequence of zero or more elements named terminal,
which, in its turn, has one attribute, id, used to store the name of a terminal symbol.
This attribute is an identifier, hence any instance of it, must be different from the others,
and must be always instantiated. Besides the information kept on the attribute, this
element has a textual content where the respective Regular Expression (RE) can be
declared.
The element nonterminals has similar structure. The difference lays on the fact
that it represents a sequence of zero or more elements nonterminal which have no
textual content. The attribute id has the same purpose as the attribute with the same
name in the element terminal.
Finally, the element start has a single attribute named nt. This attribute is used to
refer the nonterminal (already defined in the XAGra specification), correspondent to
the start symbol (or Axiom) of the AG.

1 <symbols>
2 <t e r m i n a l s>
3 <t e r m i n a l id ="name">[A−Z] [a−z]+</ t e r m i n a l>
4 </ t e r m i n a l s>
5 <n o n t e r m i n a l s>
6 <n o n t e r m i n a l id ="students" />
7 </ n o n t e r m i n a l s>
8 <s t a r t n t ="students" />
9 </ symbols>

Fig. 1. XAGra Schema – Element Symbols: definition and example

3.2 Element attributesDecl

This element is composed of a sequence of zero or more elements declaration. For
the sake of readability, Figure 2 only depicts the structure of the element declaration,
which is a sequence of one or more elements attribute. This one has three manda-
tory attributes: i) id – stores the name of the attribute being declared. Any kind of text
can be used to define it, but it is always better to use the following notation: X.a, where
X is the name of a symbol in T ∪N and a is the name of an attribute in A(X) . As it is
an identifier, it must be different from all other identifiers on the specification; ii) type
– stores the data type of the current attribute value and iii) class – defines the class of
the attribute. It must be one of: InhAttribute, SyntAttribute and IntrinsicValueAttribute.

1 <a t t r i b u t e s D e c l>
2 <d e c l a r a t i o n>
3 <a t t r i b u t e id ="students.sum" type ="int" c l a s s ="SyntAttribute" />
4 </ d e c l a r a t i o n>
5 </ a t t r i b u t e s D e c l>

Fig. 2. XAGra Schema – Element Attribute Declarations: definition and example

3.3 Element semanticProds

The element semanticProds represents the structure to define productions and as-
sociated semantic rules in XAGra specifications. This structure is composed of a se-
quence of zero or more elements semanticProd. Each semanticProd has one
single attribute, name, used to store the mandatory name of the production, as an iden-
tifier.
Element semanticProd has three direct descendants: lhs, rhs, computation,
whose structure is explained in the next paragraphs and that are depicted in Figures 3, 4
and 5.
Element lhs (Figure 3) is used to refer to the nonterminal symbol on the LHS of the
production. This element has a single attribute, nt, to refer to an existent nonterminal.

1 <l h s n t ="students" />

Fig. 3. XAGra Schema – Element Semantic Productions: LHS definition and example

Element rhs (Figure 4), stores the nonterminals on the RHS of a production. It is
composed of a sequence of zero or more elements element. For this purpose, each
element, has a single attribute, symbol, which is mandatory and represents a refer-
ence to a terminal or nonterminal symbol, already instantiated in the initial symbols
structure.

1 <r h s>
2 <e l e m e n t symbol="student" />
3 <e l e m e n t symbol="students" />
4 </ r h s>

Fig. 4. XAGra Schema – Element Semantic Productions: RHS definition and example

Element computation (Figure 5) is the last child of the element semanticProds.
It represents an hard concept of AGs: the semantic rules.
This element has one attribute, name, used to give a name to the computation being
declared. This attribute, despite being mandatory, is not a unique identifier: different
computations can have equal names.
The structure of computation represents a pure abstraction of what is a semantic
rule in an AG definition: the attribute to which a value is assigned, and the operation that

1 <c o m p u t a t i o n name="getTheSum">
2 <a s s i g n e d A t t r i b u t e a t t ="students.sum" p o s i t i o n ="0" />
3 <o p e r a t i o n r e t u r n T y p e ="int">
4 <argument a t t ="student.age" p o s i t i o n ="1" />
5 <argument a t t ="students.sum" p o s i t i o n ="2" />
6 <modus> $1 + $2 </ modus>
7 </ o p e r a t i o n>
8 </ c o m p u t a t i o n>

Fig. 5. XAGra Schema – Element Semantic Productions: Computation definition and ex-
ample

computes this value. Thus, the element computation has two children: the elements
assignedAttribute and operation.
Element assignedAttribute is composed of two mandatory attributes: att, which
is used to refer to an attribute; and position, which is a number that identifies the po-
sition of the symbol associated to the attribute in the list of elements of the production.
That is, if the attribute is connected to the LHS, then the value for position must be
0. If the associated symbol belongs to the RHS, then its value should correspond to the
position that the symbol occupies in the RHS sequence of symbols, starting with 1.
The element operation aggregates a sequence of zero or more elements argument
and a single element modus. In addition to the elements, it has an attribute, returnType,
used to store the data type of the value returned by the operation.
Elements argument are, in all aspects, equal to the assignedAttribute element.
Each one has two attributes with the same name and the same semantic value underlay-
ing, therefore they are used to refer to previous declared attributes. The difference is on
the fact that this time, the attributes referenced are those used to compute the value in
the operation.
The last element, modus3, which is a simple text field to write the expression used
to compute the value. Somehow, in this element’s text, a reference to the argument
attributes should be made. An example (and the convention established) is using $x,
where x > 0 is the position of the attribute in the sequence of arguments.
The next two simple parts extend the mathematical definition of AGs to the abstract
language of any compiler generator based on AGs.

3 modus is a latin expression for way (of computing something, in our case)

3.4 Element importations

Figure 6 presents the structure to declare the importation of packages or programming
language modules that can be necessary for the computation of all attributes. The ele-
ment importations is a sequence of zero or more elements import. Each of these
elements import is a simple text container, where the name of the package or module
should be written.

1 <i m p o r t a t i o n s>
2 <i m p o r t>
3 j a v a . u t i l . A r r a y L i s t
4 </ i m p o r t>
5 </ i m p o r t a t i o n s>

Fig. 6. XAGra Schema – Element Importations: definition and example

3.5 Element functions

In a very similar way, element functions is a sequence of zero or more function
elements. Each function element has a mandatory attribute, name, used to store the
name of the function. This element is defined as a text container, in order to be possible
the definition of a concrete function. The code of the function must be written in the
target programming language like Java or other.

1 <f u n c t i o n s>
2 <f u n c t i o n name="sum">
3 p u b l i c i n t sum (i n t x , i n t y){
4 r e t u r n x + y ;
5 }
6 </ f u n c t i o n>
7 </ f u n c t i o n s>

Fig. 7. XAGra Schema – Element Functions: definition and example

XAGra’s schema is now completely defined and explained, revealing the universality
needed to store any AG for any AG-based compiler generator.

4 Application Example

In this section we give a brief introduction to XAGraAl, a Grammar Analyzer and
Transformation tool that computes dependencies among symbols, some grammar met-
rics, and grammar slices for a given criterion; moreover, XAGraAl can also derive,
from the original, new shorter grammars combining slices or removing useless produc-
tions (similar to re-factoring a program). XAGraAl takes as input an AG written in
XAGra; thus, the presentation of this tool is precisely aiming at illustrating the appli-
cability of XAGra as a universal AG specification language.
XAGraAl is a platform independent tool, developed using Java. To parse the input it is
used the Java Architecture for XML Binding (JAXB) [5] and Java API for XML Pro-
cessing (JAXP) [6]. JAXB simplifies the access to the XML document from a Java
program by presenting the document in Java format. All JAXB implementations pro-
vide a tool called a binding compiler to bind a schema (the way the binding compiler
is invoked can be implementation-specific). Binding a schema, the first step in this pro-
cessing approach, means generating a set of Java classes that represents the schema.
Those classes are then instantiated during the parsing.
While parsing a XAGra grammar using JAXB, XAGraAl builds the identifiers table
(IdTab) where it collects all grammar symbols and attributes; each identifier is asso-
ciated with all its characteristics extracted or inferred from the source document. The
identifiers table — that can be pretty-printed in HTML — complemented by the depen-
dence graph (DG) — also printable using Dot and GraphViz — constitute the core of
the tool. Traversing those internal representation structures, it is possible to implement
the other XAGraAl functionalities:

– Metrics, to assess grammar quality;
– Slicing, to ease the analysis producing sub-grammars focussed in a specific symbol

or attribute;
– Re-factoring, to optimize grammars generating smaller and more efficient versions.

Metrics are organized in three groups of assessment parameters:

– Size metrics, that measure the number of symbols, productions, and so on (grammar
and parser sizes);

– Form metrics, that describe the recursion pattern and measure the dependencies
between symbols (the grammar complexity);

– Lexicographic metrics, that qualify the clearness/readablity of grammar identifiers,
based on a domain ontology.

Slicing operation builds partial grammar with the elements that derive in zero or more
steps on the criterion (backward slicing), or that are reachable from the criterion (for-
ward slicing). The criterion can be either a symbol or an attribute. Slices are usually
presented as paths over the dependence graphs. Figures 8 (a) and (b) illustrate a for-
ward and a backward slice w.r.t the symbol age.
Re-factoring is a not so usual functionality that transforms the original grammar into
a minimal one, removing all the useless productions. Another transformation also pro-
vided is the generation of a new grammar combining forward and backward slices with
respect to the same symbol (see Figure 8 (c)).

(a) (b) (c)

Fig. 8. Slices with respect to symbol age: (a) Forward slice; (b) Backward slice and (c) Combi-
nation of Forward and Backward slices

5 Conclusion

In the context of our VisualLISA project, we felt strongly impelled to use a universal
meta-language for attribute grammars description in order to translate the graphical
specification drawn in VisualLISA, instead of producing a translation specific for a
given compiler generator. As we did not find any notation with this tool-independence
characteristic, we realized that a new one must be defined. As a mandatory requirement
we stated that it should be used by our AG development environment, as well as it should
be the lingua-franca of grammar-based tools. To satisfy the first part of the requirement
it should allow to describe all elements present in a concrete AG that specifies the syntax
of a language, and also those complementary definitions that permit the generation of a
compiler for that language. To satisfy the second part of the above statement, the new
meta-language should be supported on XML.
Conceived to annotate unstructured documents in a way independent of their future
processing, XML immediately became the universal interchangeable data representation
for assuring systems’ interoperability. So our decision to design a specific XML-Schema
for AGs, was obvious. Along the paper, we have shown how that design, was conducted
systematically by the formal definition of attribute grammar.
Besides the presentation of XAGra, the first goal of this paper, we also introduced
XAGraAl, a tool (completely independent of the one that motivates the conception
of XAGra) that supports grammar analysis taking as input a XAGra grammar. The
objective was to illustrate an applicability of this new XML dialect for AGs description.
VisualLISA environment is now generating XAGra to translate a visual AG into a
textual format usable by a compiler generator, or similar tool. The adaptation of the
original LISA generator to the new one, that should now be called VisualAG, was an
easy task performed very fast. However, for each generator that we want to couple to

VisualAG, it will be necessary to develop a XAGra uploader, this is, a translator from
XAGra to the specific notation of the tool under consideration. As future work, the
following translators are planed: XAGra into LISA (a traditional LR parser generator);
XAGra into AntLR (an LL parser generator, based on an extended BNF grammar);
XAGra into Eli (an LR parser generator with special constructors). Also a translator
from XAGra to Yacc, could be a challenging project.
The creation of these translators is possible and easy. We are sure of this, because
XAGraAl showed its feasability. Moreover, XAGraAl’s front-end (the parser and
semantic analyser that reads the XAGra input and transforms it into an internal repre-
sentation for further processing) would be similar to the core of these translators, so it
can be reused.
To conclude, we claim that: (i) XAGra is abstract and universal and (ii) this dialect was
not crafted to be pleasant for human reading. Concerning the first point, we base that
statement on the fact that XAGra was derived from the formal and complete definition
of Atrribute Grammar. Also, the dialect is abstract because it is completely independent
from the concrete syntax of any compiler generator (CG). The second point is obvious:
reading XML documents, although possible, is a cumbersome task for humans; the pur-
pose of this dialect (generated by a tool) is to be processed by tools like XAGraAl or
the translators we plan for further work.

References

1. Knuth, D.E.: Semantics of context-free languages. Theory of Computing Systems 2(2) (June
1968) 127–145

2. Oliveira, N., Pereira, M.J.V., da Cruz, D., Henriques, P.R.: VisualLISA. Technical report,
Universidade do Minho (February 2009) www.di.uminho.pt/˜gepl/VisualLISA/
documentation.php.

3. Mernik, M., Lenič, M., Avdičaušević, E., Žumer, V.: LISA: An interactive environment for
programming language development. Compiler Construction (2002) 1–4

4. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools
(2nd Edition). Addison Wesley (August 2006)

5. GlassFish: Java architecture for XML binding. https://jaxb.dev.java.net/ (June
2009)

6. GlassFish: Java API for XML processing. https://jaxp.dev.java.net/ (June 2009)

